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Abstract

Our understanding of focal and segmental glomerulosclerosis (FSGS) has advanced significantly 

from the studies of rare, monogenic forms of the disease. These studies have demonstrated the 

critical roles of multiple aspects of podocyte function in maintaining glomerular function. A 

substantial body of research has suggested that the integral membrane protein podocalyxin 

(PODXL) is required for proper function of podocytes, possibly by preserving the patency of the 

slit diaphragm by negative charge-based repulsion. Exome sequencing of affected cousins from an 

autosomal dominant pedigree with FSGS identified a co-segregating private variant, PODXL 

p.L442R, affecting the transmembrane region of the protein. Of the remaining 11 shared gene 

variants, two segregated with disease but their gene products were not detected in the glomerulus. 

In comparison to wild type, this disease-segregating PODXL variant facilitated dimerization. By 

contrast, this change does not alter protein stability, extracellular domain glycosylation, cell 

surface expression, global subcellular localization, or interaction with its intracellular binding 

partner ezrin. Thus, a variant form of PODXL remains the most likely candidate causing FSGS in 

one family with autosomal dominant inheritance, but its full effect on protein function remains 

unknown. Our work highlights the challenge faced in the clinical interpretation of whole exome 

data for small pedigrees with autosomal dominant diseases.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Martin Pollak, 99 Brookline Avenue, Rm 304, Boston, MA, 02215, Office: 617-667-0496, Fax: 617-667-0495, 
mpollak@bidmc.harvard.edu.
+Contributed equally to this work

DISCLOSURES
None

HHS Public Access
Author manuscript
Kidney Int. Author manuscript; available in PMC 2014 July 01.

Published in final edited form as:
Kidney Int. 2014 January ; 85(1): 124–133. doi:10.1038/ki.2013.354.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


Introduction

Focal and segmental glomerulosclerosis (FSGS) is a histologically defined form of kidney 

injury characterized by the presence of sclerosis in parts of some but not all glomerular tufts. 

Patients with FSGS are challenging to treat due to their frequently relapsing course and a 

high rate of progression to end-stage kidney disease (ESRD).1, 2 FSGS is also the most 

common glomerular lesion underlying ESRD in the United States, thus representing a 

significant burden to health care.3, 4

Over the past two decades, our understanding of FSGS pathogenesis has advanced 

significantly. Some of these advances have come from the study of rare, monogenic forms. 

These studies have been instrumental in identifying the slit diaphragm and actin 

cytoskeleton of podocytes as critical elements in maintaining glomerular function. This 

notion has been supported by the fact that podocyte injury and dysfunction is an almost 

universal aspect of proteinuric glomerular diseases.5

A substantial body of research has suggested that a negatively-charged, heavily glycosylated 

integral membrane protein, podocalyxin (PODXL), is required for the proper function of 

podocytes as glomerular filters.6, 7 PODXL is thought to act as an anti-adhesin that 

maintains the patency of the filtration slits between adjacent podocytes through charge 

repulsion.8, 9 Neutralization of podocytes’ negative charge in rats results in podocyte injury, 

nephrosis, and massive proteinuria, and in humans, PODXL expression is reduced in several 

proteinuric glomerulopathies.6, 10–16 Mice deficient in PODXL demonstrate defective 

podocyte foot-process formation, with resulting anuria and renal failure leading to death 

within 24 hours of birth. Taken together, these data suggest that abnormal PODXL activity 

represents a common mechanism in some kidney diseases and that PODXL function is 

required for normal podocyte function.

The present study began with the analysis of the exome sequence of two individuals from a 

family with childhood onset FSGS. This analysis revealed a previously unreported non-

synonymous PODXL variant in these two individuals. Subsequently, we sequenced the 

entire PODXL gene in 176 probands with a familial inheritance pattern consistent with 

autosomal dominant FSGS. We identified five rare non-synonymous variants, though three 

of these additional variants were also found in publicly available exome databases of 

nominally normal persons. In addition, we observe that numerous additional rare non-

synonymous variants in PODXL are also present in these public databases. We performed 

several biochemical and cell biological analyses to examine the effects of several of these 

variants, with only the index case mutation demonstrating an effect on the biochemical 

properties of the protein. Taken together, this study suggests a causal role for variation in 

PODXL in the etiology of very rare cases of FSGS, but illustrates the difficulty in 

definitively identifying rare mutations as disease causing.

Results

Exome sequencing was performed on genomic DNA samples belonging to two cousins, 

III(3) and III(4) (Figure 1a). After filtering, non-synonymous missense variants were 
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identified in 12 different genes that were present in both individuals studied (Supplementary 

table 1). Coverage of these loci was highly variable, ranging from 3× to 68× per individual. 

Even at low coverage, variants were included in the list of candidate genes selected for 

followup analysis if seen in both individuals, as the likelihood of this occurring by chance 

alone is small. All of the variants of interest were also confirmed by Sanger sequencing and 

sequenced in the additional related family members. DNA samples were available for 

affected individuals II(2), II(8), III(3), III(4) and III(5); as well as for unaffected individuals 

II(7) and III(2). The variants in the genes C6orf103, OR9A2 and PODXL cosegregated with 

disease.

C6orf103 is expressed fairly widely, with most normal tissues displaying moderate to strong 

cytoplasmic staining. In the human kidney, however, C6orf103 stains strongly in tubules but 

not in glomeruli (http://www.proteinatlas.org/ENSG00000118492/normal). Its function is 

unknown. Similarly, in the human kidney, OR9A2 stains in the tubules but is absent in 

glomeruli (Supplementary figure 1). This gene is also in proximity to PODXL, 

approximately 11 megabases apart. OR9A2 is an olfactory receptor that interacts with 

odorant molecules in the nose. No additional novel variants in these 2 genes, C6orf103 and 

OR9A2, were identified in screening 80 probands from families with FSGS. Conversely, 

PODXL stains distinctly in glomerular podocytes and in few additional cell types (http://

www.proteinatlas.org/ENSG00000128567/normal). A substantial body of research has 

shown an integral role of PODXL to glomerular function. As a result, the variant in PODXL 

was selected for further study given this gene’s known role in glomerular biology.

Coverage by next-generation sequencing at the PODXL variant was 9× and 18×, for 

individuals III(3) and III(4), respectively and confirmed by Sanger sequencing (Figure 1b, 

1c). The PODXL variant is predicted to change a highly conserved residue in most 

vertebrates, a non-polar leucine into a charged arginine (p.L442R), within the 

transmembrane domain of the PODXL protein (Figure 1d).

The clinical information for family FG-HI has been previously reported.17 The affected 

index case in the pedigree I(1) (b. 1931), was diagnosed with renal disease in his early 20s. 

He developed ESRD at age 28 and died without receiving renal replacement therapy. He had 

4 children, 3 of whom carry the PODXL variant but only 2 with clinically detectable renal 

disease. DNA belonging to the fourth child who is unaffected, II(4), was not available for 

testing. Individual II(2) (b. 1955) was identified to have proteinuria and an elevated 

creatinine at age 26 during a routine pre-employment examination. A renal biopsy showed 

FSGS and he was treated conservatively without immunomodulatory therapy. At the age of 

55, he received a living related kidney transplant. Another child, II(8) (b. 1959), was also 

detected to have proteinuria but not an elevated creatinine during a pre-employment 

examination at the age of 19. Within 4 years, he developed ESRD, initially treated with 

intermittent hemodialysis before receiving a living related kidney transplant. The graft failed 

after 15 years for unclear reasons but he eventually received a deceased donor kidney in 

1988. In 2011, his creatinine was 2.1 mg/dL with no proteinuria.

Four grandchildren of I(1), belonging to the youngest generation of this pedigree are 

affected, three of whom had DNA available and harbor the PODXL variant. The most 
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severely affected is III(4) (b. 1990) presenting with lower extremity edema at age 12 and 

subsequently found to have 4+ proteinuria along with an elevated creatinine. She received 

peritoneal dialysis for less than a year before receiving a living related kidney transplant at 

the age of 14 with good graft function. Her older sister, III(5) (b. 1989), was screened as a 

result and found to have 4+ proteinuria. She did not have a renal biopsy and has been 

managed conservatively without evidence of chronic kidney disease. A cousin, III(3) (b. 

1989), was screened for disease because of this family history and found to have proteinuria 

at the age of 13. She did not have a kidney biopsy and has been managed conservatively. 

Her sister, III(2) (b. 1991) is also monitored closely with no evidence of renal dysfunction. 

Finally, another cousin, III(6) (b. 1995) is also affected. He was found to have 3+ proteinuria 

several years ago but has not been monitored since then. DNA from this individual was not 

available for testing.

To ascertain whether mutations in PODXL were present in other autosomal dominant FSGS 

families, we sequenced PODXL in DNA from 176 probands with presumed autosomal 

dominant FSGS. We identified 4 additional individuals with rare variants in PODXL coding 

sequence. However, analysis of available exome sequencing data from both the 1000 

Genomes Project and the Exome Sequencing Project revealed that three of these variants 

have been found in nominally normal individuals, leaving a single additional private variant 

not found previously. This variant, p.S214R, was detected in family FG-IX, which harbors 

another private mutation in a second gene that has also been linked to kidney disease (MB, 

GG, MRP; unpublished data). DNA was not available from any of the other affected 

individuals. The frequency of rare non-synonymous variants in the PODXL gene was not 

different between cases and controls in the Exome Sequencing Project (ESP), indicating that 

the burden of rare variants was not enriched in cases. Taken together, these data suggest that 

rare variation in PODXL are not a significant contributor to glomerular disease.

In light of suggestive but not definitive genetic evidence that any of these PODXL variants 

we identified contributed to disease, we examined whether any of these variants affected 

protein behavior, as has been demonstrated for disease-causing mutations in ACTN4, TRPC6 

and INF2.18–22 We were particularly interested in whether the private PODXL variants 

p.L442R and p.S214R behaved differently from the three non-unique variants identified in 

our FSGS cohort and the four variants found in ESP (Table 1). Western blot analysis of 

transiently transfected MDCK cells did not reveal any apparent differences in the quantity of 

protein expressed between the suspected PODXL disease-causing mutations and “control” 

variants or wildtype protein (Figure 2).

While the quantity of the protein expressed was not affected, the PODXL construct 

containing the p.L442R variant produced a higher molecular weight form in addition to a 

normally sized product. By SDS-PAGE, PODXL p.L442R expressed in MDCK cells and 

lysed in mild lysis buffer (TBS + 1% NP-40) was detected as two bands: a ~330 kDa upper 

band and a ~165 kDa lower band (Figure 2, lane 2). By contrast, the other variants and the 

wildtype protein were detected primarily as ~165 kDa bands under the same experimental 

conditions. We suspect that the upper band observed for the PODXL p.L442R mutant may 

represent a dimer of the protein given its molecular weight, though we cannot exclude the 

alternative possibility that it represents aggregation with an unrelated protein.7
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To determine if differential extracellular domain glycosylation accounted for the higher 

molecular form, we treated cell lysates with either PNGase F to remove N-glycosylations; 

neuraminidase to remove sialic acid motifs; or a combination of O-glycosidase and 

neuraminidase to remove O-glycosylations. No significant differences were seen between 

the glycosylation patterns of wildtype and PODXL p.L442R mutant on Western blotting, 

indicating that the mutation has little effect on the on the glycosylation of the protein (Figure 

3a). We then investigated the effect of different lysis buffers on the abundance of the two 

forms of PODXL p.L442R. Lysing cells in RIPA buffer prevented the formation of the 

dimer, suggesting that the upper band is an aggregate generated during cell lysis with non-

ionic detergent (Figure 3b).

PODXL is predominately localized to the apical surface of podocytes and MDCK cells and 

some protein is associated with endoplasmic reticulum, Golgi complexes, and cytoplasmic 

vesicles.23, 24 To investigate whether the L442R mutation alters the subcellular localization 

and surface expression of PODXL, we performed confocal immunofluorescence microscopy 

and cell surface biotinylation experiments. Confocal immunofluorescence microscopy 

showed similar staining patterns for wildtype and PODXL p.L442R mutant, with punctate 

staining along the apical surface of the cell (Figure 4a, b). Biotinylation experiments served 

to quantitatively examine cell surface expression; the fraction of PODXL protein reaching 

the cell surface did not appear to be different between wildtype or mutant on Western blot 

(Figure 4c).

PODXL has been reported to complex ezrin to link to the actin cytoskeleton.25, 26 Mutations 

in other FSGS genes such as ACTN4 and INF2 have been shown to disrupt the actin 

cytoskeleton thus this represents a plausible common mechanism of injury.27, 28 The ability 

of wildtype and PODXL p. L442R to colocalize with ezrin was compared; both forms 

demonstrated partial colocalization with overexpressed ezrin (Figure 5).

Discussion

Exome sequencing of two affected individuals belonging to a family with autosomal 

dominant FSGS revealed a novel variant in a highly attractive candidate gene, PODXL. This 

gene encodes a transmembrane sialoglycoprotein localized to the podocyte apical surface 

and is presumed to keep adjacent foot processes separated by virtue of its negative charge, 

thereby serving an essential role in glomerular filtration as supported by knockout studies in 

mice. Further screening in 176 probands revealed an additional private mutation in only one 

other individual where no other affected samples were available, leading to a lack of strong 

statistical genetic evidence to support PODXL as a disease gene. In view of this, several 

biochemical and cell biological analyses were undertaken involving the two identified 

private variants as well as additional rare variants found in cases and controls. Only the 

index case mutation located in the transmembrane domain, PODXL p.L442R, demonstrated 

a differential effect, with our results suggesting that the mutant form promotes dimerization. 

Further experiments showed that the mutation, however, does not alter: 1. protein stability 2. 

extracellular domain glycosylation 3. cell surface expression 4. global subcellular 

localization, or 5. interaction with its intracellular binding partner ezrin.
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Twelve shared rare variants were identified between two affected cousins in the pedigree 

FG-HI. The variant in PODXL cosegregated with disease, though with incomplete 

penetrance in this family. Screening 176 additional probands revealed only a single other 

private mutation but in a family where no other samples were available. Furthermore, the 

burden of rare non-synonymous variants was not enriched in the cases versus controls and 

therefore collectively the statistical support for this gene was not strong. Sequencing for 

cosegregation for the remaining 11 shared variants was also performed, leaving only 2 

additional novel candidates: C6orf103 and OR9A2. C6orf103 is expressed fairly widely but 

only in tubular and not glomerular cells in the kidney. Its function is unknown. Similarly, 

OR9A2 is expressed in the tubules but not glomerular cells. The gene coding this protein is 

also in close proximity to PODXL. OR9A2 is known to be an olfactory receptor that 

interacts with odorant molecules in the nose. Neither of these has compelling biological data 

to indicate an obvious link to FSGS. We were also unable to identify novel variants in the 

two genes, C6orf103 and OR9A2, in screening 80 additional FSGS families.

Similar to other monogenic forms of later onset FSGS, disease severity in this family is 

variable. Disease onset occurs in the teenage to early adulthood years but ESRD occurs 

widely from the second to sixth decade of life. Interestingly, disease penetrance in this 

family is incomplete. All three generations are affected, consistent with autosomal dominant 

inheritance but individual II(7), who is an obligate carrier, does not have clinically 

detectable renal disease, with her last examination occurring at age 53 years. The 

explanation for why this individual did not manifest disease is unclear but since it is 

reasonable to assume that she and her affected daughters and brothers were exposed to 

similar environments, a gene-gene interaction may provide a plausible explanation.

With biochemical and cell-based experiments, we provide evidence that the transmembrane 

variant PODXL p.L442R facilitates dimerization of the protein. We have not, however, been 

able to establish the effect of this biochemical change on the function of PODXL, nor can 

we exclude that this property is solely unmasked after cell lysis. We have shown that the 

mutation does not alter protein stability, extracellular domain glycosylation, cell surface 

expression, global subcellular localization, or interaction with its intracellular binding 

partner ezrin. Our working hypothesis that the variant might lead to (a) reduced negative 

charge at the apical membrane resulting in disruption of filtration slit patency or (b) 

alteration in actin cytoskeleton dynamics through interference with ezrin, an actin binding 

protein, is not supported by our experimental data.25, 26, 29–31

Given these observations, it is still conceivable then that altered multimerization of PODXL 

alone could affect proper assembly/disassembly into the larger multiprotein complex it 

forms with other proteins including CLIC5A and NHERF. Previous reports have shown that 

PODXL can form dimers, which likely represent a more mature form of the protein.7, 32 One 

group has suggested a model in which nascent PODXL is initially monomeric and is 

subsequently clustered into dimers through the binding of PODXL to the intracellular 

adaptor protein NHERF2.33 Our result of the PODXL p.L442R variant enhancing 

dimerization suggests that the transmembrane domain of the protein may play a key role in 

regulating the high-order aggregation of the protein with itself and other binding partners.33 
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More detailed cell biological and biochemical analysis, including those involving ezrin and 

other binding partners, are needed to explore this possibility.

We point out that exome capture coupled with next-generation sequencing is associated with 

a higher false positive rate than Sanger sequencing. By sequencing the exome of 2 affected 

individuals, we reduce the error introduced by false positive variants as the possibility of 

observing falsely occurring variants in two samples is statistically very low. However, an 

inherent limitation with subgenomic capture is the heterogenous enrichment of the target 

and lack of variant calls in certain regions. As a result, we may have excluded some 

candidate genes. We also point out that we used MDCK cells for these studies rather than a 

native human kidney cell line. Other groups have also used MDCK cells as a surrogate to 

examine PODXL characteristics given the cells’ columnar morphology, which allows for the 

study of apical and basolateral localization.34–36 Despite several attempts, we were unable to 

obtain efficient expression of PODXL in cultured podocytes for study.

The conclusions we draw from this study are two-fold. PODXL is a candidate causative gene 

in a single family under study, based on suggestive but not definitive genetic data and 

abnormal dimerization of the mutant protein. Secondly, the lack of in vitro evidence beyond 

apparent dimerization supporting PODXL p.L442R mutant pathogenicity highlights the 

insensitivity of in vitro techniques to help support or refute a candidate gene as disease 

causing. We note that these issues will be increasingly common in the era of exome and 

whole genome sequencing, which offers the potential of uncovering culprit genes in small, 

previously uninformative autosomal dominant families but at the expense of generating 

cumbersome lists of candidate genes. This is in contrast to early onset autosomal recessive 

conditions, especially in pedigrees with consanguinity, where exome sequencing has been 

highly successful by narrowing the list of suspicious variants to those that affect both alleles 

of a single gene. The difficulties in reaching definitive conclusions even in a research setting 

with the added benefit of multiple affected family members and the willingness to pursue 

follow up biochemical studies suggests that clinical application of these methods to 

autosomal dominant disease will be fraught with difficulties.

Concise Methods

Patients

Individuals belonging to 176 families with FSGS were included in this study. Familial cases 

were defined as 2 or more affected individuals. All families had an inheritance pattern 

consistent with autosomal dominance. Familial FSGS affected status was defined as having 

either a reported history of proteinuria, nephrotic syndrome or biopsy-proven FSGS, having 

documented proteinuria with urine microalbumin >250mg/g creatinine in a family with at 

least one other case of documented FSGS or nephrotic syndrome. Most of these families had 

previously been screened for mutations in known genes including INF2, TRPC6 and 

ACTN4. We obtained blood, saliva, or isolated DNA and clinical information after receiving 

informed consent from participants in accordance with the Institutional Review Board at the 

Beth Israel Deaconess Medical Center. Clinical information was obtained from telephone 

interviews, questionnaires and physician reports. Genomic DNA was extracted from blood 

or saliva samples using standard procedures.
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Exome and next-generation sequencing

We performed exome sequencing in two affected individuals of a family with FSGS. A 

shotgun library was made from each individual’s genomic DNA and captured using the 

NimbleGen SeqCap EZ Exome v2 (NimbleGen, Madison, WI) according to protocol. The 

manufacturer’s specifications state that the capture regions total approximately 44 Mb. This 

kit covers 98% of the human genome corresponding to the Consensus Conserved Domain 

Sequences database (CCDS) and 710 miRNAs. Enriched libraries were then sequenced by 

46 base pair, paired end read sequencing on an Illumina GAII machine according to protocol 

(Illumina Inc, San Diego, CA). Variants of interest were confirmed by Sanger sequencing.

Variant analysis

Next-generation sequencing reads were mapped to the most recent reference human genome 

(UCSC hg19), with bwa.37 The Genome Analysis Toolkit was used to further process the 

aligned read data, and the same program was used to genotype the individuals from the 

processed read data.38, 39 Variants were filtered by comparison to the other related affected 

individual sent for exome sequencing—variants that appeared in both affected individuals 

remained in the analysis, even at low coverage given the unlikely possibility of this 

happening by chance. If a variant was seen at low coverage in one sample but not in the 

other due to non-capture, it was kept in the analysis as well. For all sequencing data 

produced, whether by Sanger method or next-generation sequencing, genotype calls were 

compared against dbSNP 134 (ftp://ftp.ncbi.nih.gov/snp/), 1000 Genomes Project (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/) and the Exome Sequencing Project (http://

evs.gs.washington.edu/EVS/).

Sanger Sequencing

Sanger sequencing was performed on the remaining FSGS samples using Big Dye 3.1 

terminator cycle sequencing kit (Life Technologies, Grand Island, NY) and analyzed with an 

ABI Prism 3730 XL DNA analyzer (Applied Biosystems, Foster City, California). Primer 

sequences are available on request. Sequence chromatograms were analyzed using the 

Sequencher software (Gene Codes, Ann Arbor, MI). Specific variants identified in family 

probands were sequenced in all available family members to investigate if the variant 

segregated with disease (Supplementary Figure 1). If an affected individual did not harbor 

the variant of interest, it was excluded as disease causing.

Reagents and plasmids

A plasmid containing the full-length human PODXL cDNA (transcript variant 2) was 

obtained from Origene and was mutated to remove the carboxyl-terminal epitope tags. The 

indicated coding mutants were introduced by site-directed mutagenesis (QuickChange II 

XL, Stratagene). All plasmids were sequenced to confirm the presence of mutations and 

exclude the presence of unwanted mutations. GFP-tagged ezrin in pEGFP-N2 was provided 

by A. Bretscher (Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, 

NY; PMID 22801783). Antibodies were obtained from commercial sources as follows: anti-

PODXL 3D3 mouse monoclonal (Santa Cruz), anti-GFP full-length rabbit polyclonal (Santa 

Cruz) and HRP conjugated secondary antibodies (Cell Signaling Technologies).
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Cell culture

Madin-Darby canine kidney (MDCK) Tet-Off cells were obtained from Clontech and 

maintained as per the manufacturer’s recommendations. Transient transfections were 

performed using Lipofectamine 2000 (Invitrogen) following the manufacturer’s protocol. 16 

to 24 hours after transfection, cells were washed once in PBS and then lysed in 300 μl of ice-

cold RIPA lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% NP-40, 1% sodium 

deoxycholate, 0.1% SDS) or TBS with 1% (v/v) Nonidet P-40 lysis buffer supplemented 

with Complete Protease Inhibitor Cocktail and PhosSTOP Phosphatase Inhibitor Cocktail 

(Roche).

Western blot analysis

Cell lysates were cleared by centrifugation at 14,000 g for 15 minutes at 4ºC. The resulting 

supernatant was mixed with sample loading buffer, separated by SDS-PAGE, and 

transferred to polyvinylidene difluoride membrane (Bio-Rad). Western blot analysis was 

performed using standard techniques with primary antibodies used at the following 

dilutions: anti-PODXL (1:1000), anti-GFP (1:1000). Blots were developed with SuperSignal 

West Dura Chemiluminescent Substrate (Pierce) and a Fluorochem Q imager (Cell 

Biosciences).

Immunofluorescence confocal microscopy

MDCK cells were plated on collagen I-coated coverslips (BD) and transfected with 

lipofectamine 2000 (Invitrogen). After 16–24 hours, cells were fixed in 2% 

paraformaldehyde, 4% sucrose in PBS for 10 minutes at room temperature and 

permeabilized with 0.3% (v/v) Triton X-100 in PBS for 10 minutes. Nonspecific binding 

sites were blocked using blocking solution (2% (v/v) fetal bovine serum, 2% (w/v) bovine 

serum albumin, 0.2% fish gelatin in PBS) for 30 minutes at room temperature. For 

localization, cells were incubated with 1:50 anti-PODXL antibody for 1 hour, followed by 

incubation with 1:500 Dylight 594 goat anti-mouse antibodies (Thermo Scientific) for 1 

hour. Cells were counterstained with AlexaFluor 488 Phalloidin and Hoechst 33342 

(Invitrogen). For colocalization with ezrin experiments, cells were incubated with 1:50 anti-

PODXL antibody as well as 1:50 anti-GFP antibody for 1 hour, followed by incubation with 

1:500 Dylight 594 goat anti-mouse antibodies (ThermoScientific) and 1:50 AlexaFluor 488 

goat anti-rabbit antibodies (Invitrogen) for 1 hour. Cells were mounted with Fluoromount-G 

(Southern Biotech). Confocal fluorescent images were obtained by a Zeiss LSM510NLO 

confocal scan head mounted on a Zeiss Axiovert 200M on an inverted-based microscope 

with a 63× objective and 0.1 μm sections. Images were analyzed by Zeiss software.

Cell surface biotinylation

16 to 24 hours after transient transfection, cells were labeled with 0.5 mg/ml Sulfo-NHS-

biotin (Thermo Scientific), followed by quenching in ice-cold TBS with 10mM glycine 

following the manufacturer’s recommendations. Cells were subsequently lysed in TBS with 

1% (v/v) Nonidet P-40, Complete Protease Inhibitor and PhosSTOP Phosphatase Inhibitor 

Cocktail (Roche). Lysates were briefly cleared by centrifugation. An aliquot of lysate was 

set aside and mixed with sample loading buffer. The remaining lysate was incubated with 20 
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ul of a 50% slurry of streptavidin beads (Pierce) at 4°C for 2 hours. After extensively 

washing the beads, bound material was eluted by boiling in sample loading buffer. Total and 

biotinylated PODXL were detected by Western blot analysis as above.

Deglycosylation

Cell lysates were either mock treated or treated with peptide N-glycosidase F, 

neuraminidase, or O-glycosidase and neuraminidase (PNGase F; O-Glycosidase & 

Neuraminidase Bundle; New England Biolabs) as per the manufacturer’s recommendations, 

followed by SDS-PAGE and Western blot analysis.

Immunohistochemistry

Formalin-fixed human testis and kidney tissue was paraffin-processed and sectioned at 4 

μm. After processing for antigen retrieval (pressure cooker in citrate buffer pH 6), sections 

were treated with antibodies against OR9A2 (1:200, rabbit polyclonal, LSBio) followed by 

Polymer-HRP secondary antibodies (Dako), and counterstained with hematoxylin. Images of 

representative glomeruli were taken with an Olympus BX53 microscope equipped with an 

Olympus DP72 camera.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pedigree of family FG-HI, sequencing and multisequence alignment. (a) Pedigree for family 

FG-HI. Affected individuals are indicated in grey. Individuals who are heterozygous for the 

variant PODXL p.L442R are denoted by “+” while those without the mutation are denoted 

by “−”. Individuals without a notation were not tested because no sample was available. (b) 

Next-generation sequencing reads across PODXL aligned to the reference genome in 

Integrative Genome Viewer (IGV). The antisense strand is indicated as reference. (c) Sanger 

sequencing confirming the PODXL variant in all affected individuals where DNA was 

available. The sense strand is indicated. (d) Multisequence alignment showing conservation 

of the affected amino acid residue, p.442L indicated with an “*”.
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Figure 2. 
FSGS-associated genetic variants do not alter the stability of PODXL protein. MDCK cells 

were co-transfected with GFP and equal amounts of either wildtype PODXL plasmid, 

PODXL plasmid containing an FSGS-associated variant (p.L442R to p.K515R), or PODXL 

plasmid containing a control variant from the Exome Sequencing project (p.G112S to 

p.M490V). After 24 h, the cells were lysed, and the lysates were immunoblotted for PODXL 

(upper panel) or GFP (lower panel). * indicates amino acid is deleted.
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Figure 3. 
The FSGS-associated p.L442R variant induces the formation of PODXL dimers. (a) MDCK 

cells transfected with either wildtype or p.L442R PODXL plasmid were mock treated or 

treated with either PNGase F, neuraminidase, or a combination of O-glycosidase and 

neuraminidase. No differences were observed before or after deglycosylation patterns in 

both PODXL wildtype and p.L442R mutant on Western blotting. (b) MDCK cells were 

transfected with either PODXL wildtype plasmid or PODXL p.L442R plasmid. The cells 

were lysed after 24 h in either mild lysis buffer (TBS + 1% NP-40) or lysis buffer with ionic 

detergent (RIPA). PODXL was detected using an anti-PODXL antibody. Arrows indicates 

upper form.
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Figure 4. 
The FSGS-associated p.L442R variant does not alter the subcellular localization of PODXL. 

MDCK cells transfected with PODXL wildtype or p.L442R plasmid. PODXL was labeled 

with an anti-PODXL antibody (red), F-actin was labeled with phallodin (green), and nuclei 

were labeled with Hoechst 33342 (blue). (a) Horizontal slices of confocal stacks. (b) 

Vertical slices of confocal stacks. (c) Transfected MDCK cells were surface biotinylated, 

and cell surface proteins were pulled down using streptavidin beads. Total PODXL and 

biotinylated PODXL were visualized by Western blot.
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Figure 5. 
The FSGS-associated L442R variant does not alter co-localization of PODXL with ezrin at 

the apical surface. MDCK cells co-transfected with ezrin and either wildtype or p.L442R 

PODXL plasmid were fixed. PODXL was labeled with an anti-PODXL antibody (red) and 

GFP-tagged ezrin was labeled with anti-GFP antibody (green). Scale bar: 20 μm.
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