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High-mobility group nucleosome-binding protein 1 (HMGN1) functions as a non-histone 
chromatin-binding protein in the cell nucleus. However, extracellular HMGN1 acts as 
an endogenous danger-associated inflammatory mediator (also called alarmin). We 
demonstrated that HMGN1 not only directly stimulated cytokine production but also 
had the capacity to induce immune tolerance by a TLR4-dependent pathway, similar 
to lipopolysaccharide (LPS)-induced tolerance. HMGN1-induced tolerance was accom-
panied by a metabolic shift associated with the inhibition of the induction of Warburg 
effect (aerobic glycolysis) and histone deacetylation via Sirtuin-1. In addition, HMGN1 
pre-challenge of mice also downregulated TNF production similar to LPS-induced toler-
ance in vivo. In conclusion, HMGN1 is an endogenous TLR4 ligand that can induce both 
acute stimulation of cytokine production and long-term tolerance, and thus it might play 
a modulatory role in sterile inflammatory processes such as those induced by infection, 
trauma, or ischemia.

Keywords: high-mobility group nucleosome-binding protein 1, endotoxin tolerance, sterile inflammation, sirtuin-1, 
macrophages

inTrODUcTiOn

High-mobility group (HMG) proteins are non-histone nuclear proteins. They bind to nucleosomes 
and regulate chromosome architecture and gene transcription (1). However, upon cell stimulation or 
under stress situations, such as mechanical change and tissue damage, HMG proteins can be either 
released or excreted into the extracellular space (2). HMGB1 is the best-characterized HMG-family 
protein: it is released from injured or activated innate immune cells (1), it stimulates cytokine and 
chemokine production (3), it can induce dendritic cell activation (4), and it is chemotactic and 
functions an alarmin.

High-mobility group nucleosome-binding protein 1 (HMGN1) belongs to the HMG N family but 
it exhibits no homology to HMGB1. The functions of HMGN1 were mainly related to its nuclear 
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localization, including modulating histone phosphorylation  
(5, 6), acetylation (7), methylation preferentially at CpG island-
containing promoters (8, 9), and enhancement of DNA damage 
repair (10). However, two recent studies showed that HMGN1 
also has a biological role as an alarmin by inducing DC matura-
tion, antigen-specific immune responses, and antitumor immu-
nity (11, 12).

Upon engaging microbial or endogenous ligands, innate 
immune cells either directly clear them by phagocytosis, or they 
induce production of cytokines and chemokines for further 
activation of the immune system. After the acute inflamma-
tory phase, a resolution phase is actively induced in order to 
limit the potentially deleterious ongoing inflammation, fol-
lowed by a return to steady state. Thus, after the initial marked 
inflammatory response [e.g., induced by the Gram-negative 
cell wall component lipopolysaccharide (LPS)], subsequent 
re-stimulation of leukocytes is no longer able to induce the 
release of inflammatory mediators, but instead activates anti-
inflammatory and repair proteins, a process termed innate 
immune tolerance (13, 14). Interestingly, the first exposure of 
monocytes to other microbial stimulants “trains” or “primes” 
the cells and they respond in a more robust way to a secondary 
stimulation or infection (15).

We have hypothesized that the first exposure of the innate 
cells to HMG proteins may also induce their functional repro-
gramming resulting in either tolerance or training. We showed 
that HMGN1 functions as an endogenous TLR4 ligand that, on 
the one hand, stimulates acute cytokine production and, on the 
other hand, induces tolerance in monocytes through a Sirtuin-1-
dependent mechanism.

MaTerials anD MeThODs

isolation and stimulation of Peripheral 
Blood Mononuclear cells (PBMcs)
Separation and stimulation of PBMCs was performed from 
buffy coats obtained from healthy blood donors after written 
informed consent (Sanquin Bloodbank, Nijmegen). PBMCs 
were adjusted to a concentration of 5 × 106 cells/ml and incu-
bated at 37°C in flat-bottom 96-well plates (100 μl/well) with 
either 100 ng/ml HMGB1, 100 ng/ml HMGN1, 10 ng/ml LPS  
(E. coli strain O55:B5, Sigma Chemical Co., St. Louis, MO, USA), 
or culture medium. Recombinant HMGN1 was produced using 
an insect expression system constructed as previously reported 
(5). HMGN1 in the culture supernatant of High Five insect cells 
was purified under sterile condition by affinity chromatography. 
The endotoxin level in our HMGN1 preparation is <0.02 EU 
per μg of protein as determined by Pierce LAL Chromogenic 
Endotoxin Quantitation Kit (Cat #88282). To assess direct 
stimulation of cytokines, supernatant was removed and stored 
for assessment.

To study the potential reprogramming effects of HMGN1 on 
the function of monocytes/macrophages, after the initial stimu-
lation for 24  h the cells were washed with warm PBS, allowed 
to rest for 24 h in RPMI containing 10% pooled human serum, 
and then restimulated with LPS (10 ng/ml), Pam3Cys (10 µg/ml, 

EMC microcollections, Tuebingen, Germany), flagellin (2 µg/ml,  
Sigma), or co-culture of Pam3Cys and Candida albicans β-1,3-
(d)-glucan [10  µg/ml, kindly provided by D. Williams (East 
Tennessee State University)] for an additional 24  h. For the 
long-term studies, cells were incubated for a period of 6 days after 
the initial 24 h exposure to HMG proteins or LPS. On day 7, the 
cells were restimulated with the same stimuli for additional 24 h. 
Supernatants were collected 24 h after restimulation and stored 
at −20°C.

The receptor pathways involved in the biological effects of 
HMGN1 were assessed by blocking TLR4 with the natural anta-
gonist Bartonella quintana LPS (16). A potential role for histone 
methylation or acetylation in the long-term effects of HMGN1 
was assessed using specific pharmacological inhibitors: ITF2357 
(100 nM, Histone deacetylase inhibitor, ITALFARMACO S.p.A, 
Milano, Italy), EGCG (30 µM, Epigallocatechin-3-gallate, histone 
acetyltransferase inhibitor, Sigma), and pargyline (3 µM, histone 
demethylase inhibitor, Sigma) or EX527 (10 µM, sirtuin-1 inhibi-
tor, Sigma) (15, 17).

animal experiments
Female C57BL/6J mice (8–10  weeks old, weighing 20  ±  3  g) 
were obtained from National Laboratory Animal Center (Taipei, 
Taiwan). All mice were housed in a pathogen-free facility. 
Animal welfare and experimental procedures were carried out 
in accordance with the National Institute of Health Guide for the 
Care and Use of Laboratory Animals, with the approval of the 
Institutional Animal Care and Use Committee of National Tsing 
Hua University (Approval number: 10530, Hsinchu, Taiwan). 
Mice were treated with PBS, recombinant HMGN1 (10  µg 
per mice) or E. Coli LPS (20 µg per mouse) by intraperitoneal 
injection. A second injection of LPS (20  µg per mouse) was 
performed after 6 h post first injection intraperitoneally. Blood 
samples were collected 1 h post second LPS injection for serum 
cytokine determination.

cytokine and lactate Measurements
IL-6, IL-8 (Sanquin, Amsterdam, Netherlands), TNF-α, IL-1β 
(R&D, the Netherlands) concentrations in the culture supernatant 
were measured by commercial ELISA kits. The lowest detection 
limits are 0.78, 0.78, 3.9, and 3.9  pg/ml for IL-6, IL-8, TNF-α, 
and IL-1β, respectively. Mouse serum cytokine were measured by 
Cytokine Beads Array (Becton Dickinson, NJ, USA) accor ding to 
the manufacturer’s instructions. Lactate was measured by a Lactate 
Fluorometric Assay Kit (Biovision, CA, USA). Delta lactate pro-
duction (lactate concentration in the LPS restimulated sample 
minus the RPMI restimulated sample) is depicted in the figures.

mrna extraction and rT-Pcr
Cells were primed with either HMGN1 or LPS and restimulated 
with LPS as described above. mRNA was extracted by Trizol 4 h 
post-stimulation. The qPCR primers sequence are listed in the 
(Table S1 Supplementary Material) For sirtuin-1 expression, 
cells were stimulated for 4  h before RNA was isolated. cDNA 
was synthesized from 1 µg of total RNA by use of SuperScript 
reverse transcriptase (Invitrogen). Relative mRNA levels were 
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FigUre 1 | High-mobility group nucleosome-binding protein 1 (HMGN1) induces pro-inflammatory cytokine production. Human peripheral blood mononuclear 
cells were stimulated with recombinant HMGN1 or lipopolysaccharide (LPS) in a dose-dependent manner. HMGN1 concentration used were 10, 100, and 
1,000 ng/ml, and LPS concentration was 10 ng/ml. Supernatant was harvested after 24 h stimulation. IL-6, TNF-α, and IL-1β production was determined by 
ELISA (n = 6).

FigUre 2 | High-mobility group nucleosome-binding protein 1 (HMGN1) induces short- and long-term immunotolerance. Human peripheral blood mononuclear 
cells were primed with recombinant HMGN1 or lipopolysaccharide (LPS) for 24 h and then washed with PBS. The cells were further rested in RPMI containing 10% 
serum for (a) 24 h or (B) 6 days, and then restimulated with LPS or RPMI for additional 24 h and supernatant was harvested. The IL-6 and TNF-α level were 
determined by ELISA [n = 8, *p < 0.05 vs RPMI (LPS restimulated) control].
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determined using the Bio-Rad i-Cycler and the SYBR Green 
method (Invitrogen). Values are expressed as fold increases in 
mRNA levels, relative to those in unstimulated cells, with HPRT 
as a housekeeping gene.

statistical analysis
Results from at least three sets of experiments were pooled and 
analyzed using GraphPad Prism software. Data are given as 
means + SEM and the paired Wilcoxon test or one-way ANOVA 
was used to compare differences between groups. The level of 
significance was set at p < 0.05.

resUlTs

hMgn1 induces Pro-inflammatory 
cytokine Production in PBMcs
We first examined the capability of HMGN1 to induce pro-
inflammatory cytokine production in human PBMCs. HMGN1-
induced considerable IL-6, TNF-α, and IL-1β production in 

PBMCs after 24  h stimulation in a dose-dependent manner 
(Figure 1). Strikingly, HMGN1 at 100 ng/ml could induce com-
parable amount of IL-6 and TNF-α and more IL-1β compared to 
that induced by LPS at 10 ng/ml.

hMgn1 induces immune Tolerance  
in PBMcs
We hypothesized that HMGN1 may induce long-term effects on 
innate immune cells. To assess this possibility, PBMCs were first 
stimulated with HMGN1 or LPS (as a positive control). After 
24 h stimulation, cells were washed with PBS to remove remain-
ing stimulants and rested for an additional 24 h or 6 days, before 
secondary LPS stimulation was performed. IL-6 and TNF-α 
production upon secondary LPS (TLR4 ligand) stimulation were 
significantly impaired in HMGN1 pretreated monocytes both 
in short-term (Figure 2A) and long-term (Figure 2B) tolerance 
models, suggesting HMGN1-induced considerable tolerance 
against LPS stimulation. The HMGN1-induced tolerance is 
similar to LPS-induced tolerance.
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FigUre 3 | High-mobility group nucleosome-binding protein 1 (HMGN1) immunotolerance is not specific for TLR4 ligands. Human peripheral blood mononuclear 
cells were primed with recombinant HMGN1 or lipopolysaccharide (LPS) for 24 h and then washed with PBS. The cells were further rested in RPMI containing 10% 
serum for (a) 24 h or (B) 7 days then stimulated with Pam3Cys, flagellin, β-glucan, or RPMI, respectively, for additional 24 h and supernatant were harvested. The 
IL-6 and TNF-α levels were determined by ELISA (n = 4–8 *p < 0.05 vs RPMI control within each group of restimulation).
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hMgn1 induces Tolerance to Different 
Tlr agonists in PBMcs
To further examine whether the HMGN1-induced tolerance is 
specific for TLR4 ligands or more general for other microbial 
ligands as well, we extended the study by also using TLR2 and 
TLR5 agonists, as well as the dectin-1 ligand β-glucan. We found 
that both HMGN1 and LPS could induce partial cross-tolerance 
to other TLRs both in short-term (Figure  3A) and long-term 
(Figure  3B) experiments. Only a partial tolerance effect was 
induced on dectin-1-induced TNFα production.

Blocking Tlr4 signaling attenuates 
hMgn1-induced Tolerance
It has been suggested that HMGN1-induced dendritic cell matu-
ration via TLR4 (11, 12). Therefore, we examined whether TLR4 
is involved in HMGN1-induced tolerance in PBMCs. To block 
TLR4 signaling, PBMCs were first incubated with B. quintana LPS, 
a natural antagonist of TLR4 (16) for 1 h, followed by stimulation 
with HMGN1 or LPS. Pretreatment of cells with B. quintana LPS 
resulted in markedly reduced production of IL-6 and TNF-α upon 
LPS stimulation and a partial reduction upon HMGN1 stimula-
tion (Figure  4A). Thereafter, we assessed both the short- and 
long-term tolerance effects induced by HMGN1. TLR4 blockade 
by antagonists blocked or reversed the tolerance effects induced by 
HMGN1 on IL-6 and TNF-α production (Figures 4B,C).

hMgn1-induced Tolerance is restricted 
to Pro-inflammatory cytokines, But not  
to the antimicrobial Peptides
Lipopolysaccharide priming has been demonstrated to induce 
transient silencing of pro-inflammatory mediators and priming 
of genes such as antimicrobial effectors (14). To address whether 

HMGN1 also induces similar differential gene regulation pat-
terns, the mRNA expression of pro-inflammatory cytokines 
IL-6 and TNF-α, anti-inflammatory cytokine IL-10, chemokine 
IL-8 and antimicrobial peptide CAMP (cathelicidin-related 
antimicrobial peptide, also called LL-37) were determined by 
quantitative real-time PCR (Figure 5). In line with the cytokine 
results, pro-inflammatory cytokines TNF and IL-6 expression 
were significantly downregulated by both HMGN1 and LPS. IL-10 
expression was downregulated by HMGN1 in the short-term 
incubations (albeit the difference was not significant) and recov-
ered to the normal state in the long-term model. However, unlike 
the experiments earlier reported in mouse macrophages, neither 
in HMGN1- nor in LPS-induced tolerance could the expression of 
CAMP be induced in human PBMCs. Surprisingly, the expression 
of IL-8 was not inhibited, but was even enhanced after long-term 
incubation. The long-term effects of HMGN1 on IL-8 production 
were confirmed by ELISA (Figure S1 in Supplementary Material).

hMgn1-induced immune Tolerance 
In Vivo
To assess the pathophysiological role of HMGN1, mice were 
pretreated with either recombinant HMGN1 or LPS to induce 
tolerance for 6 h followed by secondary stimulatory LPS injec-
tion. TNF and KC production was significantly blunted in the LPS 
pretreated group compared to PBS control (Figure 6). Similarly, 
HMGN1 pretreatment also downregulated LPS-induced TNF 
and KC production, albeit the downregulated level was lower 
than that of LPS pretreated group.

The effects of histone Methylation and 
acetylation on hMgn1-induced Tolerance
Epigenetic modifications have been suggested to play an 
important role for the LPS-induced tolerance through histone 
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FigUre 4 | High-mobility group nucleosome-binding protein 1 (HMGN1) immunotolerance is dependent on TLR4 ligation. (a) Human peripheral blood mononuclear 
cells were preincubated with B. quintanea lipopolysaccharide (LPS; TLR4 antagonist) for 1 h and then primed with recombinant HMGN1 or LPS for 24 h. 
Supernatant was then harvested for IL-6 and TNF-α measurement. The cells were further rested in RPMI containing 10% serum for (B) 24 h or (c) 7 days and then 
stimulated with LPS or RPMI for additional 24 h. Supernatant was harvested after 24 h stimulation. The IL-6 and TNF-α level were determined by ELISA. The relative 
production of IL-6 and TNF-α compared to the RPMI control was presented (n = 4–8 *p < 0.05 vs RPMI control).
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acetylation and methylation (18). To examine whether epigenetic 
modifications are also involved in HMGN1-induced tolerance, 
several enzymatic inhibitors of acetyl- and methyltransferases 
were added to the PBMCs prior to the priming stage. However, 
no obvious restoration of cytokine production was observed by 
the inhibitors we tested, with the exception of the short-term 
restoration effect induced by blocking histone acetylation 
by EGCG for IL-6 production (Figure S2 in Supplementary 
Material).

The effects on sirtuin-1 and 
immunometabolism by hMgn1 
stimulation
It has been shown before that Sirtuin-1 (a histone deacetylation 
inhibitor) is a key regulator of LPS tolerance (17, 19). Sirtuin-1 
has been shown to be upregulated during the early phase after 
LPS stimulation and has a driving role in the transition from a 
glycolytic energy metabolism to a more β-oxidation-dependent 
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FigUre 5 | Effect of high-mobility group nucleosome-binding protein 1 (HMGN1) on TNF, IL-6, IL-8, IL-10, and CAMP production. Human peripheral blood 
mononuclear cells were primed with recombinant HMGN1 or lipopolysaccharide (LPS) for 24 h and then washed with PBS. The cells were further rested in RPMI 
containing 10% serum for (a) 24 h or (B) 7 days. The cells were stimulated with LPS or RPMI. The total RNA was extracted after 4 h and the different gene 
expression was measured by RT-PCR. The expression fold of target genes was normalized to the expression of HPRT [n = 5–6, *p < 0.05 vs RPMI  
(LPS restimulated) control].
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FigUre 6 | High-mobility group nucleosome-binding protein 1 (HMGN1)-induced tolerance in vivo. Mice were pretreated with HMGN1, lipopolysaccharide (LPS) or 
PBS intraperitoneally. After 6 h, mice were challenged with LPS for 1 h. TNF and KC level in serum were determined (n = 10–12, *p < 0.05).

FigUre 7 | Inhibition of Sirtuin-1 restores cytokine and lactate production. Human peripheral blood mononuclear cells (PBMCs) were incubated with high-mobility 
group nucleosome-binding protein 1 (HMGN1) or lipopolysaccharide (LPS) for 4 h, then (a) mRNA was isolated and sirtuin-1 expression was determined by 
RT-PCR, showing an upregulation of sirtuin-1 for both stimuli. Human PBMCs were preincubated for 1 h with EX527 (sirtuin-1 inhibitor) before LPS or recombinant 
HMGN1 were added for 24 h. Then stimuli were washed away and cells rested in RPMI with 10% serum for an additional 6 days before they were restimulated with 
RPMI or LPS. (B) IL-6, (c) TNF, and (D) lactate production were assessed (n = 4–5, *p < 0.05).
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metabolism (19). First, Sirtuin-1 mRNA expression was upre-
gulated after HMGN1 stimulation (Figure  7A). Second, the 
Sirtuin-1 inhibitor EX527 (17) partially restored cytokine pro-
duction inhibited by HMGN1 (Figures  7B,C). Finally, EX527 
also restored the capacity to release lactate after restimulation 
(as a measure of glycolysis) in both LPS- and HMGN1-tolerant 
macrophages (Figure 7D).

DiscUssiOn

Although HMGN1 functions physiologically within the nucleus, 
the release of extracellular HMGN1 has been demonstrated to 

possess chemotactic function and to induce DC maturation 
(11). In the present study, we demonstrate that extracellular 
exposure of human PBMCs to HMGN1 induces a robust 
release of pro-inflammatory cytokines, such as IL-6 and TNF-α. 
This effect is likely to be relevant during sterile inflammation 
induced by perturbed cellular and/or tissue homeostasis (20), 
where the release of intracellular HMGN1 may cause acute local 
inflammation.

HMGB1 is the best-characterized HMG-family protein. It was 
initially identified as a nuclear protein that is important for the 
regulation of transcription (21). HMGB1 facilitates the binding of 
regulatory protein complexes to DNA by causing DNA bending 
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(22) to enhance transcription activation (23). The extracellular 
HMGB1 was first described to be a late-acting mediator of 
endotoxemia and sepsis (24–26). Moreover, increasing evidence 
suggests the involvement of endogenous alarmins in ischemia–
reperfusion injury (27, 28). The endogenous TLR4 ligands, such 
as HMGB1 and heat shock protein, have been demonstrated to be 
involved in these sterile inflammatory conditions (29, 30). In the 
human primary mononuclear cells used in the present study, we 
demonstrated that, similar to HMGB1, HMGN1 is a potent pro-
inflammatory cytokine inducer and functions as an endogenous 
TLR4 ligand (11, 12).

Since LPS is well known to induce tolerance in monocytes 
through TLR4, we further examined whether HMGN1 could also 
induce similar tolerance effects. We demonstrated that HMGN1 
is able to induce both short-term and long-term tolerance in 
terms of pro-inflammatory cytokines production in response to 
second stimulation with both TLR agonists as well as the dectin-1 
ligand β-glucan. By blocking TLR4 signaling, the tolerance effect 
could be partially restored, indicating that HMGN1-induced tol-
erance is TLR4 dependent. In addition, intraperitoneal injection 
of HMGN1 into mice also renders the mouse less responsive to 
subsequent LPS stimulation, similar to LPS-mediated immune 
tolerance in vivo.

Earlier studies have shown that histone modifications play 
an important role in mediating the tolerance effects induced 
by LPS (14). We hypothesized that the long-term effects of 
HMGN1 effects may also be induced by epigenetic mechanisms. 
The involvement of epigenetic modulators for HMGN1-induced 
tolerance was examined using inhibitors of epigenetic modifier 
enzymes including ITF2357 (Histone deacetylase inhibitor), 
EGCG (Epigallocatechin-3-gallate, histone acetytransferase 
inhibitor) and pargyline (histone demethylase inhibitor). 
Only EGCG had a marginal effect on the short-term effects 
of HMGN1-induced tolerance. By contrast, a different picture 
emerged when the effect of the NAD+-dependent histone dea-
cetylase Sirtuin-1 was studied (18). First, HMGN1 induced, just 
as LPS, Sirtuin-1 expression. Second, inhibition of Sirtuin-1 by a 
specific inhibitor partially restored cytokine production during 
HMGN1-induced tolerance. This provides further support for 
the sharing of the tolerance pathway by endotoxin and HMGN1. 
Sirtuin-1 is a pivotal downstream signal of this pathway.

An additional interesting observation concerns the 
interplay between immune activation of the cells and the cel-
lular metabolism of glucose. A recent study demonstrated that 
induction of aerobic glycolysis (Warburg effect) is necessary for 
the effective production of cytokines by macrophages during 
LPS stimulation (31). Moreover, we have also recently reported 
that during trained immunity, a process mirroring tolerance 
that is also mediated by epigenetic reprogramming, namely 
induction of aerobic glycolysis is crucial (32). In line with this, 
the data presented here show that tolerant cells (both induced 
by HMGN1 or LPS) are not able to mount aerobic glycolysis, 
as mirrored by defective lactate production. Interestingly, the 
Sirtuin-1 inhibitor EX527 restored the capacity of monocytes 
to respond with lactate production upon stimulation with LPS, 
demonstrating that histone acetylation controls both immune 

and metabolic function of tolerant monocytes. This suggests 
Sirtuin-1 to be an attractive potential therapeutic target in 
immune tolerance and paralysis during Gram-negative sepsis 
and other severe infections.

In conclusion, HMGN1 induces tolerance in human PBMCs 
through a TLR4/Sirtuin-1 dependent mechanism, arguing 
that it may contribute to modulation of sterile inflammation 
in processes, such as severe trauma and ischemia-reperfusion, 
during which high amounts of TNF and IL-6 are released in 
the absence of exogenous stimuli (33). The sterile inflamma-
tion may be caused by the release of endogenous HMGN1 
from the damaged cells and the induction of cytokines through 
TLR4 signaling. Moreover, the acute inflammation induced 
by HMGN1 might later translate into tolerance and even 
immunoparalysis, to increase the susceptibility of the patient 
to secondary infections. Therefore, blocking these HMGN1 
effects may have potential therapeutic benefits in pathological 
processes in which hyperinflammation and/or immune paraly-
sis play a role in pathogenesis.
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