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a b s t r a c t

Primary lateral sclerosis and amyotrophic lateral sclerosis are pri-
marily associated with motor cortex and corticospinal tract pa-
thology. A standardised, prospective, single-centre neuroimaging
protocol was used to characterise thalamic, hippocampal and basal
ganglia involvement in 33 patients with primary lateral sclerosis
(PLS), 100 patients with amyotrophic lateral sclerosis (ALS), and 117
healthy controls. “Widespread subcortical grey matter degeneration
in primary lateral sclerosis: a multimodal imaging study with ge-
netic profiling” [1] Imaging data were acquired on a 3 T MRI system
using a 3D Inversion Recovery prepared Spoiled Gradient Recalled
echo sequence. Model based segmentation was used to estimate the
volumes of the thalamus, hippocampus, amygdala, caudate, pal-
lidum, putamen and accumbens nucleus in each hemisphere. The
hippocampus was further parcellated into cytologically-defined
subfields. Total intracranial volume (TIV) was estimated for each
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education.
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Description of data collection The protocol,
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Related research article Authors: Eoin
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Value of the Data
- This dataset confirms extensive extra-motor in
- The data reveal evidence of considerable thala
- The data confirm divergent subcortical imaging
- The presented data may guide future post m
structures.
participant to aid the interpretation of subcortical volume alter-
ations. Group comparisons were corrected for age, gender, TIV, ed-
ucation and symptom duration. Considerable thalamic, hippocampal
and accumbens nucleus atrophy was detected in PLS compared to
healthy controls and selective dentate, molecular layer, CA1, CA3,
and CA4 hippocampal pathology was also identified. In ALS, addi-
tional volume reductions were noted in the amygdala, left caudate
and the hippocampal-amygdala transition area of the hippocampus.
Our imaging data provide evidence of extensive and phenotype-
specific patterns of subcortical degeneration in PLS.
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under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
al Sclerosis, Radiology, Neuroimaging
tter volumetry, Hippocampus
euroimaging data with standardised acquisition
were acquired on a Philips Achieva 3T MRI scanner (Philips Medical
, The Netherlands) with an 8-channel head coil.
rginal means and standard error for subcortical grey matter structures and
subfields adjusted for total-intracranial volume, age, gender, and

ted sequence: spatial resolution: 1 � 1 � 1 mm, Field of view:
160 mm, TR/TE ¼ 8.5/3.9 ms, TI ¼ 1060 ms, flip angle ¼ 8� , SENSE
agittal acquisition; 256 slices.
consent forms, recruitment procedures, and data management were
the institutional ethics committee. All participants provided informed
to inclusion.
ALS patients were diagnosed according to the El Escorial research criteria
nts were diagnosed according to the Gordon criteria. Patients underwent
neurological assessments and MRI data were acquired with uniform pulse
ings and anonymised.
omputational neuroimaging group, Trinity Biomedical Sciences Institute,
e Dublin
gion: Dublin
nd
al grey matter profile and hippocampal subfield features of the three
esented as raw data in box plots and contrasted in statistical tables using
ovariates.
Finegan, Stacey Li Hi Shing, Rangariroyashe H. Chipika, Mark A. Doherty,
ngeveld, Alice Vajda, Colette Donaghy, Niall Pender, Russell L. McLaughlin,
n, Peter Bede
read subcortical grey matter degeneration in primary lateral sclerosis: a
aging study with genetic profiling

oimage Clinical
oi.org/10.1016/j.nicl.2019.102089

volvement in primary lateral sclerosis (PLS)
mic, hippocampal, accumbens, amygdala and caudate atrophy in PLS
signatures in ALS and PLS

ortem studies to characterise pTDP-43 load in subcortical grey matter

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.nicl.2019.102089


E. Finegan et al. / Data in brief 29 (2020) 105115 3
1. Data

The majority of primary lateral sclerosis and amyotrophic lateral sclerosis studies focus on the
motor cortex and corticospinal tracts [2e5]. In this dataset (Table 1) we present total intracranial
volume, thalamus, hippocampus, amygdala, caudate, pallidum, putamen and accumbens nucleus
volumes for 33 patients with primary lateral sclerosis, 100 patients with amyotrophic lateral sclerosis
and 117 age and gender-matched healthy controls. Data for bilateral structures are presented sepa-
rately. Additionally, we provide hippocampal subfield volume estimates for the CA1, CA2/3, CA4,
fimbria, subiculum, hippocampal tail, molecular layer, dentate gyrus, and hippocampal-amygdala
transition area (HATA). Accompanying clinical and demographic characteristics are presented to
highlight that the patient groups were matched for age, gender and ALSFRS-r and differed in years of
education and symptom duration. Raw subcortical volumetric data (Fig. 1) and raw hippocampal
subfield characteristics (Fig. 2) are presented in box plots for each cohort. The estimated marginal
means and standard error of subcortical structures adjusted for the relevant clinical, radiological and
demographic variables (age, gender, education, total intracranial volume, symptom duration) are
summarised in Table 2, and hippocampal subfield profiles are presented in Table 3 using the same
covariates. Based on estimated marginal means corrected for age, gender, total intracranial volumes
and education, the comparative profile of the two patient groups are also illustrated in radar plots with
reference to healthy controls. Contrary to our original paper [1] where percentage change was pre-
sented as absolute values, here, ‘100%’ represents the estimated marginal means of healthy controls as
normative values and the concentric circles depict the selective atrophy profiles of the ALS and PLS
cohorts (Figs. 3 and 4).
2. Experimental design, materials, and methods

Following institutional ethics approval, patients were recruited from a national motor neuron
disease clinic and data were acquired with a standardised protocol [6]. Participating ALS patients were
diagnosed according to the El Escorial research criteria and PLS patients were diagnosed according to
Table 1
Data categories and measures ALS ¼ amyotrophic lateral sclerosis; ALSFRS-R ¼ amyotrophic lateral
sclerosis functional rating scale-revised; PLS ¼ Primary lateral sclerosis; CA ¼ Cornu Ammonis; GC-
DG ¼ granule cell layer of the dentate gyrus; HATA ¼ hippocampus-amygdala transition area, Lt ¼ Left,
Rt ¼ Right.

Data categories Specific measures

Demographic variables Age (year)
Gender (Male/Female)
Years of education (years)
Handedness (Rt/Lt)

Clinical data for ALS and PLS Symptom duration (months)
ALSFRS-R (max 48)

Subcortical grey matter structure volumes hippocampus (mm3)
amygdala (mm3)
thalamus (mm3)
nucleus accumbens (mm3)
caudate nucleus (mm3)
putamen (mm3)
pallidum (mm3)

Hippocampal subfield volumes CA1 (mm3)
CA2/CA3 (mm3)
CA4 (mm3)
Fimbria (mm3)
Subiculum (mm3)
Molecular layer (mm3)
GC-ML-DG (mm3)
HATA (mm3)



Fig. 1. Subcortical grey matter volumes in primary lateral sclerosis (PLS), amyotrophic lateral sclerosis (ALS) and healthy controls
(HC).

Fig. 2. Hippocampal subfield volumes in primary lateral sclerosis (PLS), amyotrophic lateral sclerosis (ALS) and healthy controls
(HC). CA ¼ Cornu Ammonis; GC-ML-DG ¼ Granule Cell and Molecular Layer of the Dentate Gyrus; HATA ¼ hippocampus-amygdala
transition area.
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the Gordon criteria. The protocol was specifically designed to characterise subcortical grey matter
degeneration in PLS based on evidence of extra-motor involvement in other motor neuron diseases
[7e11]. T1-weighted imageswere acquiredwith a spatial resolution of 1�1�1mm and field of view of



Table 2
The demographic, clinical and subcortical grey matter profile of the three groups. ALSFRS-r ¼ the revised ALS functional rating
scale, EMM¼ estimatedmarginal mean, M¼Mean, N/a¼Not applicable, SE¼ standard error, SD¼ standard deviation. Estimate
marginal means are adjusted with the following values age ¼ 58.77, gender ¼ 1.45, education ¼ 13.78, and total intracranial
volume ¼ 1429699.38.

PLS
n ¼ 33

ALS
n ¼ 100

Healthy Controls
n ¼ 117

p value

Age M/SD 60.5 (10.5) 59.8 (11.2) 57.4 (11.9) 0.19
Gender (M/F) 19/14 62/38 56/61 0.11
Education (years) M/SD 12.9 (3.4) 13.5 (3.2) 14.3 (3.3) 0.04
Handedness (R/L) 29/4 90/10 109/8 0.55
ALSFRS-r (max 48) M/SD 34.4 (5.3) 36.6 (7.5) N/a 0.11
Symptom Duration (months) M/SD 121.76 (68.7) 20.6 (14.3) N/a 7.1E-16
Total intracranial volume (mm3) M/SD 1439675.5 (145614.1) 1440623.0

(149085.7)
1417549.2 (128172.3) 0.432

Hippocampus (Left) EMM/SE 3566.6 (84.4) 3624.1 (48.5) 3805.1 (45.1) 0.007
Hippocampus (Right) EMM/SE 3707.4 (85.4) 3739.1 (49.1) 3888.5 (45.7) 0.045
Amygdala (Left) EMM/SE 1189.4 (42.3) 1124.0 (24.4) 1213.9 (22.7) 0.03
Amygdala (Right) EMM/SE 1144.2 (44.0) 1111.2 (25.3) 1178.8 (23.5) 0.16
Thalamus (Left) EMM/SE 7044.0 (97.9) 7376.1 (56.3) 7614.0 (52.4) 2E-6
Thalamus (Right) EMM/SE 6896.5 (81.5) 7181.9 (52.6) 7402.8 (48.9) 5E-6
Nucleus accumbens (Left) EMM/SE 473.8 (19.6) 465.8 (11.3) 493.8 (10.5) 0.19
Nucleus accumbens (Right) EMM/SE 326.9 (19.0) 339.6 (10.9) 378.2 (10.2) 0.01
Caudate nucleus (Left) EMM/SE 3283.3 (60.0) 3287.5 (34.5) 3409.6 (32.1) 0.02
Caudate nucleus (Right) EMM/SE 3412.4 (66.3) 3506.8 (38.1) 3576.7 (35.5) 0.08
Putamen (Left) EMM/SE 4550.8 (82.3) 4620.7 (47.3) 4692.2 (44.0) 0.27
Putamen (Right) EMM/SE 4625.6 (86.7) 4674.1 (50.0) 4741.9 (46.3) 0.41
Pallidum (Left) EMM/SE 1733.7 (36.3) 1751.6 (20.8) 1773.1 (19.4) 0.58
Pallidum (Right) EMM/SE 1713.7 (40.5) 1775.4 (23.3) 1779.5 (21.7) 0.34

Table 3
The hippocampal profile of the three groups. ALSFRS-r ¼ the revised ALS functional rating scale, EMM ¼ estimated marginal
mean, M¼Mean, N/a¼Not applicable, SE¼ standard error, SD¼ standard deviation. Estimatemarginal means are adjustedwith
the following values age ¼ 58.77, gender ¼ 1.45, education ¼ 13.78, and total intracranial volume ¼ 1429699.38.

PLS
n ¼ 33

ALS
n ¼ 100

Healthy Controls
n ¼ 117

p value

CA1 (mm3) EMM/SE 632.8 (10.8) 642.2 (6.2) 660.5 (5.8) 0.03
CA2/CA3 (mm3) EMM/SE 214.1 (5.0) 212.6 (2.9) 227.6 (2.7) 5.2E-4
CA4 (mm3) EMM/SE 254.6 (4.6) 257.0 (2.6) 270.0 (2.5) 4.2E-4
Fimbria (mm3) EMM/SE 74.9 (2.9) 75.6 (1.6) 77.1 (1.5) 0.72
Subiculum (mm3) EMM/SE 421.6 (7.4) 428.9 (4.3) 438.7 (4.0) 0.08
Molecular layer (mm3) EMM/SE 559.5 (9.3) 563.5 (5.4) 589.3 (5.0) 6.5E-4
GC-ML-DG (mm3) EMM/SE 292.3 (5.4) 296.5 (3.1) 311.8 (2.9) 2.9E-4
HATA (mm3) EMM/SE 62.7 (1.5) 62.2 (0.9) 65.1 (0.8) 0.04
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256� 256� 160mmusing a 3D Inversion Recovery prepared Spoiled Gradient Recalled echo (IR-SPGR)
sequence. Pulse sequence settings are as follows: repetition time (TR) ¼ 8.5 ms, echo time
(TE) ¼ 3.9 ms, Inversion time (TI) ¼ 1060 ms, flip angle ¼ 8�, SENSE factor ¼ 1.5 [12]. Raw MRI data
underwent thorough quality control before pre-processing. Following ‘deskulling’ and spatial regis-
tration, model based segmentation was used the estimate subcortical volumes using FSL-FIRST of the
FMRIB's Software Library (FSL) [13,14]. Raw volumetric data were recorded for the hippocampus,
amygdala, thalamus, nucleus accumbens, caudate nucleus, putamen, and pallidum in each hemisphere.
Subsequently, the hippocampus of each participant was segmented into cytologically-defined subfields
using version 6.0 of the FreeSurfer image analysis suite to estimate volumes of the CA1, CA2/3, CA4,
fimbria, subiculum, hippocampal tail, molecular layer, dentate gyrus, and the hippocampal-amygdala
transition area [15]. Analyses of covariance (ANCOVA) were used to explore intergroup volumetric
differences using age, education, gender and TIV as covariates [16,17]. PLS versus ALS contrasts were



Fig. 3. The subcortical volumetric profile of PLS and ALS with reference to healthy controls. Estimated marginal means of volumes
were calculated for each structure with the following values age ¼ 58.77, gender ¼ 1.45, education ¼ 13.78, and total intracranial
volume ¼ 1429699.38. The estimated marginal means of healthy controls represent 100%.

Fig. 4. The hippocampal volumetric profile of PLS and ALS with reference to healthy controls. Estimated marginal means of volumes
were calculated for each structure with the following values age ¼ 58.77, gender ¼ 1.45, education ¼ 13.78, and total intracranial
volume ¼ 1429699.38. The estimated marginal means of healthy controls represent 100%.
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also corrected for symptom duration. To illustrate disease-specific volumetric traits in PLS and ALS, the
estimated marginal means of each structure were plotted on radar charts with reference to healthy
controls.
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