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Abstract

Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and
are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary
restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future
opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia
nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and
affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal
role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in
female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was
monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent
diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient
diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency.
Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous
cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a
normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an
imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction
becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away
from reproduction and reallocating them to survival until well-balanced amino acid sources are found.
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Introduction

Understanding gender-specific nutritional requirements is an

important goal of modern health care research, particularly for

women whose nutritional requirements change during different

reproductive stages, including pregnancy, lactation, menstrua-

tion and menopause. Although many of the effects of excess and

inadequate dietary energy intake are similar for females and males

[1,2], distinctive sex-dependent responses to dietary energy intake

have been reported. For instance, in rodents, caloric restriction

inhibits the reproductive cycle in females but does not adversely

affect male fertility [3,4,5]. Similarly, anorexia nervosa of suffi-

cient severity induces amenorrhea in women [6,7], whereas no

observable reproductive dysfunction is found in men with this

eating disorder behavior. Serotonergic vulnerability caused by

nutritional insufficiency varies by gender and female reproductive

stage [8]. Pre-menopausal women were found to be more resistant

than men to obesity-related atherosclerotic heart disease [9], and

the influence of energy intake on disease susceptibility may also be

different between females and males.

In humans and other species, caloric restriction suppresses the

hypothalamic-pituitary-gonadal (HPG) axis by reducing luteiniz-

ing hormone (LH) secretion and disrupting ovulatory cyclicity

through central inhibition [10,11,12]. There have been reports of

delayed puberty [13] and reduced fertility [13,14,15] in animals

that are subjected to caloric restriction. The decrease in available

calories is considered the main factor suppressing LH release

and ovulatory cyclicity because pharmacological inhibitors of

metabolic fuel oxidation, including 2-deoxy-D-glucose, which is a

competitive inhibitor of glucose utilization, also disturb the estrous

cycle [16,17,18]. However, moderate caloric restriction can extend

the reproductive lifespan [4,13], presumably as a result of delaying

the aging process.

Recent evidence suggests that many of the central and

peripheral endocrine signals that govern energy homeostasis, such

as leptin [19], ghrelin [20,21], polypeptide YY3–36 [22], neuro-

peptide Y [23], neuromedin U [24], neuromedin S [25] and orexin

[26], are involved in the control of reproductive function by acting

at different levels of the HPG axis. In addition, Della Torre et al.
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[27] demonstrated that dietary amino acids regulate the trans-

criptional activity of hepatic estrogen receptor alpha through a

mammalian target of rapamycin (mTOR)-dependent mechanism.

In response to hepatic estrogen receptor alpha, insulin-like growth

factor 1 (IGF-1) is synthesized in the liver as a molecule that signals

nutritional status to the reproductive apparatus in mice. Because

these hormone levels [28,29,30,31,32], including IGF-1 levels

[33,34], are significantly affected by both the protein and amino

acid contents of the diet, it is an intriguing question whether changes

in the amino acid composition of the diet would influence female

reproductive function. Moreover, Grandison et al. [35] recently

reported that the dietary amino acid balance strongly affects the

fecundity of Drosophila; the inhibition of fecundity that is induced

by a diet devoid of amino acids was resolved by adding only

methionine to the diet, not by the addition of any other single amino

acid. This finding indicates that, in addition to the diet’s caloric

content, the amino acid levels in a diet, either in their absolute

amounts or in their balance, can influence reproductive function.

In this study, we investigated the effects of the deficiency of a

single essential amino acid on reproductive function in female rats.

We examined the changes in estrous cycles under diets that are

deficient in threonine (Thr), lysine (Lys), tryptophan (Trp),

methionine (Met) or valine (Val). As an essential amino acid-

deficient diet has been shown to cause an anorexic effect

[29,30,36,37], the specific effects of each amino acid deficiency

were evaluated via the appropriate pair feeding experiments. The

results of this study are expected to extend our understanding of

gender-specific nutritional responses to dietary amino acid

imbalances.

Results

Body weight and food intake
Body weights and daily food intake are shown in Figures 1A and

B, and the food consumption was normalized to body weight in

Figure S1. After consuming the experimental diet for 2 days, the

essential amino acid-deficient group’s average body weight was

significantly lower than that of control rats and continued to

decline over time. The control rats showed a clear 4-day food

intake cycle that was synchronized with the estrous cycle, i.e., the

lowest level of food intake occurred on the day of estrous. A

significant repression of food intake was observed after the onset of

all of the essential amino acid-deficient diets. Cyclic changes in

food intake were not detected.

Figures 2A and B show the average body weight and daily food

intake in the pair feeding experiment. Pair-fed-100% rats were

offered a control diet that was equal in calories to the amount

ingested by the ThrDef group, Pair-fed-66% rats were offered two-

thirds as many calories, and Pair-fed-33% rats were offered one-

third as many calories. Thus, the food intake levels were

significantly different among the three groups. Although the

caloric intake of the ThrDef rats was obviously similar to that of

the Pair-fed-100% rats, their average body weights were

significantly lower than those of their pair feeding counterparts

after 6 days on the deficient diet. The change in body weight of the

ThrDef rats was most similar to that of Pair-fed-66% rats.

Biochemical parameters of the plasma and liver
Tables 1 and 2 reveal the liver triglyceride levels and plasma levels

of glucose, total cholesterol, triglyceride and NEFA. Intriguingly, the

hepatic triglyceride levels tended to become elevated under the

LysDef diet, whereas the other essential amino acid-deficient diets

decreased the hepatic triglyceride levels. The plasma levels of NEFA

were sustained at constant levels regardless of the dietary conditions.

The ThrDef and Pair-Fed-100% groups showed altered plasma

levels of glucose and triglycerides, but these alterations oc-

curred in opposite directions: the rats on the ThrDef diet had

decreased levels, whereas their pair-fed counterparts had

increased levels. The levels of plasma glucose and triglycerides

were significantly different between the ThrDef and Pair-fed-

100% groups.

Hormone levels in the plasma
Table 3 reveals the plasma levels of IGF-1 (F = 27.4, P,0.01),

leptin (F = 50.1, P,0.01), insulin (F = 55.0, P,0.01) and desacyl

ghrelin (F = 4.4, P = 0.03). The plasma levels of IGF-1, leptin and

insulin were significantly decreased by the consumption of each

essential amino acid-deficient diet, and the plasma desacyl ghrelin

level was elevated by the MetDef diet.

Figure 1. Essential amino acid-deficient diets suppressed food intake and body weight gain. Daily body weight (A) and spontaneous
food intake (B) of rats that were fed each essential amino acid-deficient diet are shown. Day 0 corresponds to the first day of the experimental diet.
The data are presented as the mean 6 SEM. The significant differences (P,0.05) are shown using the following symbols or letters. *Control vs. LysDef,
TrpDef, ValDef, ThrDef and MetDef. {Control vs. LysDef and TrpDef vs. ValDef, ThrDef and MetDef. {Control vs. LysDef vs. TrpDef, MetDef, ValDef and
ThrDef. ‘‘a’’ Control vs. LysDef, ThrDef, TrpDef, MetDef and ValDef. ‘‘b’’ Control vs. LysDef vs. ThrDef, TrpDef, MetDef and ValDef. ‘‘c’’ Control, LysDef,
MetDef and ThrDef vs. TrpDef and ValDef. N = 4–6.
doi:10.1371/journal.pone.0028136.g001
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Estrous cycle
All of the animals in the control group displayed a completely

normal 4-day estrous cycle throughout the experiment. The

feeding of any of the essential amino acid-deficient diets disturbed

estrous cycles, and the animals became persistently diestrus. The

typical patterns of the estrous cycles of the ThrDef animals are

depicted in Figure 3A. Two normal four-day cycles were observed

after the dietary changes in all of the rats. Subsequently, one out of

six rats showed persistent diestrus, and the other five rats showed

irregular cycles followed by persistent diestrus. Figure 3B illustrates

the average time required for the estrous cycle delay to occur

following the ingestion of each diet and the duration of the

continuous diestrus thereafter. The particular missing amino acid

in the deficient diet significantly affected the average time that was

required to trigger estrous cycle deterioration. The ValDef diet

had a greater effect than the other diets, delaying the estrous cycle

by 5.760.4 days and triggering continuous diestrus for 5.861.1

days after changing the diet. The MetDef and TrpDef diets tended

to took more time to influence the estrous cycle. The MetDef and

TrpDef diets took 7.060.7 days and 7.560.7 days to delay the

estrous cycle and 8.861.2 days and 9.760.7 days to trigger

continuous diestrus, respectively. The ThrDef (10.760.7 days to

delay the estrous cycle, 12.060.8 days to trigger continuous

diestrus) and LysDef (13.362.6 days to delay the estrous cycle,

18.764.5 days to trigger continuous diestrus) diets caused

significantly less estrous cycle deterioration than did the ValDef

diet.

Table 4 presents the effects of caloric restriction alone on the

estrous cycle in the pair feeding experiment. Although the Pair-

fed-100% group was fed the same amount of control diet as the

ThrDef group, their average body weight was significantly greater

than the ThrDef group (Fig. 2) and their estrous cycles showed

consistently perfect four-day cycles throughout the experiment. In

the Pair-fed-66% group, two of the six animals displayed one five-

day estrous cycle, while the other four animals displayed a regular

4-day cycle during the experimental period. No persistent diestrus

was observed in any rats in this group. The average body weight of

this group was similar to that of ThrDef rats. In the Pair-fed-33%

group, a disturbance of the 4-day cycle was observed 11.760.67

days after the dietary change, and the effect subsequently shifted to

persistent diestrus, which was a response similar to that of the

ThrDef group.

In the re-feeding experiment, the control diet increased the

animals’ food intake and body weights on the first day after the

dietary change in both the ThrDef-4-day and the ThrDef-14-day

groups. Estrous cycle recovery, as monitored by vaginal smears, is

presented in Table 5. The persistent diestrus caused by the ThrDef

diet was reversed by control diet re-feeding in all animals. The

duration of ingestion of the ThrDef diet significantly affected the

time required for the control diet to restore a normal estrous cycle.

The ThrDef-14-day group took 3–4 days longer than the ThrDef-

4-day group to recover a normal estrous cycle.

Amino acid levels in the plasma and ovaries
The plasma amino acid concentrations after the dietary changes

are illustrated in Figure 4. A one-way ANOVA showed significant

differences in the plasma levels of Thr (F = 39.6, P,0.001), Lys

(F = 16.5, P,0.01), Trp (F = 19.7, P,0.01), Met (F = 15.6,

P,0.01), Val (F = 15.3, P,0.01), Ser (F = 16.0, P,0.01) and urea

(F = 16.0, P,0.01) under each nutritional condition. Among these

amino acid levels, only Ser and Thr levels were significantly

elevated in essential amino acid-deficient groups compared to

control rats. The plasma Thr levels were significantly higher in the

LysDef, TrpDef, MetDef and ValDef groups, whereas the Thr

levels in ThrDef rats were lower. The plasma Ser levels were

significantly upregulated in all essential amino acid-deficient

groups compared to the control rats. The plasma levels of Lys,

Trp, Met and Val were decreased after rats were fed the LysDef,

TrpDef, MetDef and ValDef diets, respectively. The plasma urea

concentration was significantly higher in the Pair-fed-33% group

than in control rats.

The amino acid levels in the ovaries are depicted in Figure 5. A

one-way ANOVA showed significant differences in the levels of

Thr (F = 41.0, P,0.01), Lys (F = 25.1, P,0.01), Trp (F = 4.5,

P,0.01), Met (F = 20.2, P,0.01), Val (F = 27.2, P,0.01), Ser

(F = 19.5, P,0.01) and urea (F = 7.9, P,0.01), depending on the

nutritional conditions. Among these amino acid levels, those of

Thr, Ser and urea were significantly elevated in specific essential

Figure 2. Essential amino acid-deficient diets caused body weight loss under calorie-restricted conditions. (A) and (B) show the daily
body weight and food intake, respectively, of rats that were fed the limited amount of control diet in the pair feeding experiment. The Pair-fed-100%
rats were offered isocaloric control diets with the same calories as those of the ThrDef group, Pair-fed-66% rats were offered two-thirds that amount,
and Pair-fed-33% were offered one-third that amount. The body weight curve of the ThrDef rats was similar to that of the Pair-fed-66% group. Day 0
corresponds to the first day of the experimental diets. The data are presented as the mean 6 SEM. The significant differences (P,0.05) are indicated
by the following letters or symbols: ‘‘a’’ Control vs. Pair-fed-33%. ‘‘b’’ Control vs. Pair-fed-100%, ThrDef and Pair-fed-66% vs. Pair-fed-33%. ‘‘c’’ Control
vs. Pair-fed-100% vs. ThrDef and Pair-fed-66% vs. Pair-fed-33%. *Control vs. ThrDef and Pair-fed-100% vs. Pair-fed-66% vs. Pair-fed-33%. N = 4–6.
doi:10.1371/journal.pone.0028136.g002
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amino acid-deficient groups compared to control rats. The

alterations in ovarian Thr levels were similar to those in the

plasma, and significantly higher concentrations were observed

with the LysDef, TrpDef, MetDef and ValDef diets, whereas

ThrDef rats had significantly lower levels. Ovarian Ser levels

were significantly upregulated only in the ValDef and ThrDef

groups. The changes in ovarian urea levels were unique. Rats that

consumed the LysDef, TrpDef and ValDef diets had markedly

elevated ovarian urea levels, but the ThrDef diet did not affect this

parameter. The Pair-fed-33% group also had elevated ovarian

urea levels. The ovarian levels of Lys, Trp and Val were

significantly decreased by feeding the LysDef, TrpDef and ValDef

diets, respectively.

Discussion

This study found that consumption of a Val, Met, Trp, Thr or

Lys-deficient diet promptly induced a persistent diestrus state in

female Wistar-Imamichi rats. This persistent diestrus or anovula-

tory state was nutritionally reversible and could be restored by the

consumption of a control diet. This disturbance in the cycle was

triggered not by decreased caloric intake but by the various single

essential amino acid deficiencies because pair-fed counterparts,

which were fed identical amounts of an isocaloric control diet,

maintained regular estrous cycles. The length of time required to

achieve the diestrus state varied among the amino acid-deficient

diets: the ValDef diet took the shortest period of time, and the

LysDef diet took the longest period of time.

We previously observed that dietary essential amino acid

deficiency decreased food intake remarkably in male rats or mice

[29,30,36,37]. This reduction in food intake was also observed in

this study among female Wistar-Imamichi rats (Fig. 1B) and

resulted in an overall loss in body weight (Fig. 1A). Anorexia is a

characteristic phenomenon that is induced by many types of

dietary essential amino acid deficiencies. A valine deficiency is one

of the strongest inducers of anorexia among deficiencies of the 9

essential amino acids, while a lysine deficiency has the mildest

effect [36]. In the experiments using male rodents, the food intake

of male mice that are fed a ValDef diet declines to 33% of the

control level and is associated with a decrease in body weight [37],

which is consistent with the data obtained from male rats that are

fed a ValDef diet [29]. It was recently reported that a chemosensor

in the anterior piriform cortex of the brain, which surveys the

balance of dietary amino acids, is involved in the central

Table 1. Tissue weights and biochemical parameters in Wistar-Imamichi rats fed each essential amino acid deficient diet.

Body Ovary Total fat Liver Liver Plasma Plasma Plasma Plasma

weight weight weight weight triglyceride glucose
total
cholesterol triglyceride NEFA

(g)
(%Body
weight)

(%Body
weight)

(%Body
weight) (mg/g) (mg/dL) (mg/dL) (mg/dL) (mEq/L)

Ad lib

Control 240.864.0 0.03360.015 4.660.5 3.860.2 8.161.2 191.868.5 84.8613.6 91.0614.8 0.2360.01

LysDef 184.862.4* 0.03060.004 2.560.2* 3.160.1* 13.161.9 178.2612.8 82.263.5 58.466.6* 0.2360.03

TrpDef 174.263.4* 0.03660.003 1.260.2* 3.460.2 3.760.8 167.567.4 73.068.4 34.366.1* 0.2960.05

MetDef 170.163.1* 0.03660.003 1.060.1* 3.660.1 3.860.0 135.865.7* 55.562.5* 27.364.5* 0.2260.03

ValDef 166.664.2* 0.03460.001 1.260.2* 3.560.1 5.361.8 154.362.1* 86.566.6 48.764.0* 0.2060.02

ThrDef 165.163.5* 0.03560.004 1.360.1* 3.460.2 4.961.0 151.868.3* 67.563.2 28.567.2* 0.2160.01

The data are presented as mean6SEM.
*P,0.05 compared with control group.
doi:10.1371/journal.pone.0028136.t001

Table 2. Tissue weights and biochemical parameters in pair-fed Wistar-Imamichi rats.

Body Ovary Total fat Liver Liver Plasma Plasma Plasma Plasma

weight weight weight weight triglyceride glucose
total
cholesterol triglyceride NEFA

(g)
(%Body
weight)

(%Body
weight)

(%Body
weight) (mg/g) (mg/dL) (mg/dL) (mg/dL) (mEq/L)

Ad lib

ThrDef 165.163.5 0.03560.004 1.360.1 3.460.2 4.961.0 151.868.3 67.563.2 28.567.2 0.2160.01

Pair-fed

100% 193.561.9# 0.04860.002 1.660.1 3.660.1 3.760.5 203.766.8# 72.566.1 100.265.2# 0.2060.01

66% 165.464.5 0.04660.002 0.560.1# 3.260.1 0.860.2# 171.3610.8 62.661.6 109.2616.7# 0.1960.01

33% 122.463.7# 0.05560.006 0.160.0# 2.460.2# 0.460.3# 155.0618.0 N. D. 30.867.9 0.2160.03

The data are presented as mean6SEM. #P,0.05 compared with ThrDef group. N.D., not detected.
doi:10.1371/journal.pone.0028136.t002
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mechanism that is responsible for the rejection of diets that are

imbalanced or deficient in essential amino acids [38,39]. An

amino-acid-deficient or amino acid-imbalanced diet causes a

specific increase in uncharged tRNAs of the relevant amino acid,

which activates general control nonderepressible 2 in the anterior

piriform cortex [38,39]. Although the mechanism by which the

hypothalamus regulates food intake under an essential amino acid

deficiency not clear, hypothalamic somatostatin has been shown to

be involved in this regulation [37]. The female control rats showed

a clear 4-day feed intake cycle that was synchronized with their

estrous cycles, i.e., food intake was the lowest on the day of estrous

(Fig. 1B). Not only was a significant repression of food intake

observed after the onset of all of the essential amino acid-deficient

diets, but cyclic changes in food intake were also not detectable

Table 3. The plasma hormone levels in Wistar-Imamichi rats
fed each experimental diet.

Control MetDef ValDef

IGF-1 (ng/mL) 517.22617.64 189.99625.38* 206.95652.57*

Leptin (ng/mL) 12.7161.64 1.1160.14* 0.9660.12*

Insulin (ng/mL) 2.5060.26 0.4260.12* 0.2860.04*

des-acyl ghrelin (fmol/mL) 312.81638.57 521.91670.42* 451.62636.27

The data are present as mean6SEM.
*Significantly different (P,0.05) from control group.
doi:10.1371/journal.pone.0028136.t003

Figure 3. The essential amino acid-deficient diet induced persistent diestrus. The individual estrous cycle patterns of rats that were fed the
ThrDef diet are depicted in (A). The triangles indicate each 4-day estrous cycle, beginning with estrus. The gray circles indicate the first day when the
estrous cycle delay was observed, and black rectangles indicate the day when continuous diestrus started. (B) shows the average time until the
estrous cycle delay was first observed, and the time until continuous diestrus started due to the essential amino acid-deficient diet. The data are
presented as the mean6SEM. *significantly different (P,0.05) from the ValDef group, and {significantly different (P,0.05) from the MetDef and
TrpDef group. N = 4–6.
doi:10.1371/journal.pone.0028136.g003

Table 4. The estrous cycle in Wistar-Imamichi rats fed each
experimental diet.

The 1st day when The day when

the delay of continuous diestrus

estrous cycle started started

Control - -

ThrDef 10.760.7 12.060.8

Pair-fed-100% - -

Pair-fed-66% * -

Pair-fed-33% 11.760.7 12.860.2

*Two of 6 rats showed only one extended estrous cycle (5-day) during this
period.
The data are present as mean6SEM.
doi:10.1371/journal.pone.0028136.t004

Essential Amino Acids Impact Rat Estrous Cycle
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(Fig. 1B). Because the magnitude of the anorectic effect of feeding

any one of essential amino acid-deficient foods did not differ

between male and female rats, male and female rats may have

similar central mechanisms of regulation of food intake.

In this study, the reduction in body weight is believed to

result from a decline in caloric intake and an enhancement of

endogenous protein catabolism, which is induced by the amino

acid imbalance [40,41]. Diets that lack only one of the essential

amino acids decrease the plasma level of the deficient amino

acid and induce a number of metabolic changes [30,36,42,43]. A

decrease in the plasma amino acid level predisposes tissues toward

proteolysis to release the deficient amino acid from endogenous

proteins, yielding all 20 proteinogenic amino acids [40,41]. In

addition, experiments performed in mice also demonstrated that

the decline in food intake and body weight by dietary valine

deficiency was restored in a dose-dependent manner by valine

supplementation [37]. These findings suggest that the changes in

Table 5. Control diet consumption restored the normal 4-day
estrous cycle in threonine deficient Wistar-Imamichi rats.

The 1st day when The day when

the estrous cycle the 4-day estrous

re-started cycle re-started

ThrDef-4day 3.660.2 4.661.2

ThrDef-14day 6.360.4* 8.661.3*

The data are present as mean6SEM.
*Significantly different (P,0.05) between the ThrDef-4day and ThrDef-14day
groups.
doi:10.1371/journal.pone.0028136.t005

Figure 4. Essential amino acid-deficient diets perturbed plasma aminograms. Plasma threonine (A), lysine (B), tryptophan (C), methionine
(D), valine (E), serine (F) and urea (G) concentrations in rats that were fed one of the experimental diets. The data are presented as the mean6SEM.
*significantly different (P,0.05) from the control group and #significantly different (P,0.05) from the ThrDef group. N = 4–6.
doi:10.1371/journal.pone.0028136.g004

Essential Amino Acids Impact Rat Estrous Cycle
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food intake and body weight are solely attributable to the amino

acid deficiency. Consistent with the disappearance of the food

intake cycle, a body weight fluctuation due to cyclic changes in

food intake was not observed after feeding one of essential amino

acid-deficient diets (Fig. 1A). The anorexia induced by an essential

amino acid-deficient diet is not as detrimental as that resulting

from the ratio of preference relative to the control diet. Instead, it

serves as a form of protection against protein catabolism in the

body. When presented with other foods following the rejection of

such a diet, animals began foraging for a diet that is balanced in

essential amino acids, and the animals developed a conditioned

aversion to cues that were associated with the deficient diet

[29,37].

Reproductive functions are inhibited by severe caloric restric-

tion [10,11,12], while moderate caloric restriction can extend the

reproductive lifespan [4,18]. The cessation of estrous cycles in this

study (Fig. 3), however, could not be attributable to the anorexia or

the loss of body weight that followed. Pair-fed groups that were fed

an isocaloric control diet were used. The Pair-fed-100% group,

whose caloric intake was adjusted to be equal to that of the

ThrDef group, maintained regular 4-day estrous cycles throughout

the experiment (Table 4). The Pair-fed-66% group, whose caloric

intake was restricted to two-thirds of the intake of the ThrDef

group, lost a similar amount of body weight as the ThrDef group.

Four out of the six rats continued regular four-day cycles, while the

four-day cycles in the other two rats were interrupted once by a

five-day cycle (Table 4). The robustness of the cyclicity in the pair-

fed groups suggests that the cessation of the estrous cycle was

attributable to the deficiency of the essential amino acid itself.

These pair feeding experimental results are consistent with the

results of previous studies showing that restricting food intake in

female rats to 50–60% of ad libitum intake does not significantly

Figure 5. Essential amino acid-deficient diets perturbed ovarian aminograms. Ovarian concentrations of threonine (A), lysine (B),
tryptophan (C), methionine (D), valine (E), serine (F) and urea (G) in rats that were fed one of the experimental diets. The data are presented as the
mean6SEM. *significantly different (P,0.05) from the control group and #significantly different (P,0.05) from the ThrDef group. N.D., not detected.
N = 4–6.
doi:10.1371/journal.pone.0028136.g005
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alter their estrus cycles [4,18]. McShane et al. [4] report that the

average estrous cycle was greater in length in rats under this

magnitude of caloric restriction compared to those that were fed

ad libitum during the first 3 months of moderate caloric restriction

but did not differ thereafter. Pair-fed-100% and Pair-fed-66%

groups in this study consumed approximately 60% and 40% of the

ad libitum intake, so the elongation of the estrous cycle to 5 days,

which was observed in two rats in Pair-fed-66% group, was

consistent with the results of this study. Furthermore, because

essential amino acid-deficient groups, whose estrous cycles were

completely interrupted, consumed between 44% (ValDef diet) and

68% (LysDef diet) of the control rat intake, the disturbances of the

estrus cycle can be considered to be due to the deficiency of the

amino acid itself in the diet. However, lengthening and cessa-

tion of estrous cycles occurred in the Pair-fed-33% group. This

irregularity was most likely due to their highly restricted caloric

intake and reduced availability of oxidizable metabolic fuels

[11,12,16,17,18].

To determine the effects of a single essential amino acid

deficiency on basic biochemical parameters, we measured hepatic

triglyceride levels and plasma glucose, total cholesterol, trig-

lyceride and NEFA levels (Tables 1 and 2). In contrast to the

remarkable decreases in body, total fat and liver weights, these

biochemical parameters were fairly stable during the consumption

of any single essential amino acid-deficient diets, suggesting the

involvement of strong homeostatic regulation of glucose and lipid

metabolism under these dietary conditions. Only plasma triglyc-

eride levels were generally lowered, and significant decreases in the

plasma glucose level were observed in the ThrDef, MetDef and

ValDef groups (Table 1).

On the other hand, the plasma levels of amino acids were

markedly affected by the feeding of single essential amino acid-

deficient diets (Fig. 4). Consistent with the deficiency, Thr, Lys,

Trp, Met and Val levels were decreased by the consumption of

diets that are deficient in those nutrients. We previously reported

that single essential amino acid-deficient diets specifically elevate

the plasma serine and threonine concentrations in male rats,

reflecting hyper-production of serine and threonine by hepato-

cytes. The expression of 3-phosphoglycerate dehydrogenase, the

rate-limiting enzyme for serine synthesis, is upregulated, while

serine dehydratase, which catalyses the conversion of serine and

threonine to pyruvate and alpha-ketobutyrate, respectively, is

downregulated [30,36]. These elevations in plasma serine and

threonine levels were reproduced in this study using female rats

(except for Thr levels in ThrDef rats), whereas rats in the pair

feeding groups, whose dietary amino acids were balanced, did not

show elevated levels. Therefore, the impacts of caloric restriction

and single essential amino acid deficiencies on amino acid

metabolism seem to be very different. The extent of weight loss

in the ovaries was comparatively minor (Tables 1 and 4), and the

free amino acid profile in ovarian tissues generally followed that

seen in the plasma (Fig. 5). Several amino acid transport systems

were found to be active in oocytes during growth and maturation

[44]. Thus, theoretically, an amino acid imbalance in the ovaries

could prevent oocytes from maturing, stop ovulation and cease the

estrous cycle.

In this study, the plasma levels of IGF-1, leptin and insulin were

markedly reduced, while the plasma level of desacyl ghrelin was

elevated in rats that were fed an essential amino acid-deficient diet

(Table 3). LH secretion is principally stimulated by gonadotropin-

releasing hormone (GnRH) in the hypothalamus. GnRH synthesis

in GnRH neurons is directly or indirectly controlled by many

circulating hormones, including estrogen, leptin, insulin and

ghrelin. Leptin knockout (ob/ob) or leptin receptor knockout

(db/db) mice display reproductive deficits and infertility. The

physiological conditions of low circulating leptin levels during

negative energy balance usually induce the suppression of LH

secretion and fertility, and leptin administration during negative

energy balance restores LH levels and reproductive function [12].

The low level of circulating leptin is considered to be due to

reduced body fat content, and it may partly cause the deterioration

of estrous cycle under conditions of dietary amino acid deficiency.

However, because the body fat content of pair feeding groups is

also significantly reduced compared to control rats, it is likely that

circulating leptin is decreased in these groups as well. The unique

alteration induced by dietary essential amino acid deficiency is the

marked reduction in the IGF-1 level. The dietary essential amino

acid deficiency suppresses hepatic IGF-1 mRNA expression

[33,34]. The decline in circulating IGF-1 level hinders the correct

proliferation of the lumen epithelium in the uterus and the

progression of the estrous cycle [27]. Further studies should be

performed to uncover the underlying mechanism that induces the

cessation of the estrous cycle.

Another important finding of this study is that the estrous cycle

perturbations were reversible (Table 5). Although the duration of

time that the ThrDef diet had been ingested (4 vs. 14 days)

significantly affected the time required to restart a normal 4-day

estrous cycle, the diestrus induced by the consumption of the

ThrDef diet for two weeks was reversible by the consumption

of the control diet for 6.360.4 days. The estrous cycle then

reappeared in all animals. Rats and mice are thought to be grain

eaters by nature, implying that the lysine content of their diet

might be extremely limited and that they could have difficulties

finding amino acid-balanced diets over the long term [45]. With a

shortage of well-balanced amino acid sources, reproduction

becomes risky for both the mother and the fetus [46,47,48,49].

Continuous diestrus could be viewed as an adaptation to

nutritionally imbalanced conditions, diverting resources away

from reproduction and reallocating them to survival until well-

balanced amino acid sources are found. Nutritionally reversible

cessation of the estrous cycle could be an advantageous adaptation

that balances reproduction and survival in rodents.

Gender-specific nutrition is one of the most important topics of

research in modern health care. In particular, understanding the

nutrients that women require to experience normal menstrual

cycles is vital. Stress-induced amenorrhea, which is usually called

hypothalamic amenorrhea, affects a consistent percentage of

women, regardless of their age [50]. Undernutrition, excess

physical training and psychological stress are factors that can

potentially trigger hypothalamic amenorrhea, which leads to

decreased estrogen levels due to reduced ovarian activity [50,51].

In addition, women with anorexia nervosa are known to exhibit

amenorrhea [6,7]. Considering the results of this study, negative

energy balance and amino acid imbalances could play pivotal roles

in amenorrhea.

Materials and Methods

Animals and diets
The entire experiment was reviewed and approved by the

Animal Committee for animal care at Fukui University (permit

number for this study: 22018). Six-week-old female Wistar-

Imamichi rats were purchased from the Institute for Animal

Reproduction (Ibaragi, Japan). The animals were housed individ-

ually in hanging wire cages with free access to water and food. The

animal room was maintained at 2362uC with a 12 h light/dark

cycle (lights on 8:00220:00). The rats were adapted to the cage for

one week after their arrival. Food intake and body weight were
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measured, and vaginal smears were observed between 10:00 and

11:00 every day. The estrous cycle consists of four stages, termed

proestrus, estrus, metestrus and diestrus, and it is exactly four days

long in Wistar-Imamichi rats. The stage of estrous was determined

by cytological evaluations of the vaginal smears [52].

In the pre-experimental period, rats were offered a normal

laboratory pellet diet (NMF, 3.49 kcal/g; Oriental Yeast Co., Ltd.,

Tokyo, Japan) for at least 8 days followed by the control diet for at

least 8 days. The control diet was based on the modified AIN93G

standard diet but replaced the casein portion with an equivalent

free amino acid mixture that provided the entire dietary nitrogen

source (Table 6). During this period, estrous cycle regularity was

confirmed by monitoring vaginal smears. The plasma amino acid

profile of rats that were fed the control diet was found to be similar

to that of rats that were fed the AIN93G standard diet. Animals

that showed four continuous 4-day estrous cycles, i.e., twice under

NMF and twice under the control diet, were used for the

experiment. Rats whose estrous cycles were irregular during the

pre-experimental period were excluded from the experiment.

Experimental design
Threonine-deficient (ThrDef), methionine-deficient (MetDef),

valine-deficient (ValDef), lysine-deficient (LysDef) and tryptophan-

deficient (TrpDef) diets were made isonitrogenous using glutamine

[29,30,36] (Table 7). Of all of the essential amino acids, the diets

that were deficient in Thr, Met, Val, Lys or Trp were chosen

because the plasma Lys concentration is highly conserved,

regardless of nutritional conditions, due to its capacity for

reservation and slower catabolism [30,36]. Conversely, Val

deficiency is associated with severe observable phenotypes in rats

[29,37]. Thr deficiency is associated with a marked decrease in the

plasma Thr level [42,43]. Restricting either Trp or Met is reported

to affect lifespan extension in rodents [35]. On the morning of

metestrus during control diet feeding, the rats were randomly

divided into five diet groups: control, ThrDef, MetDef, ValDef,

LysDef or TrpDef (N = 4-6 in each group) and were kept on these

diets until the end of the experiment. On the 15th day of persistent

diestrus, the rats were anesthetized with ether. Blood, liver, ovaries

and fat pads were collected. The fat pads were obtained from

subcutaneous inguinal, perigonadal and dorsal abdominal fat pads

around the kidneys and combined (Tables 1 and 2). The tissues

were immediately freeze-clamped and stored at –80uC until

analysis. Control rats were euthanized at metestrus when their

reproductive stage was most similar to that of the essential amino

acid-deficient groups, and their blood and tissues were obtained.

Three groups of rats underwent a pair feeding experiment. On

the morning of metestrus during the control diet feeding, these rats

were divided into three diet groups: 100% (Pair-fed-100%), 66%

(Pair-fed-66%) or 33% (Pair-fed-33%) pair-fed (N = 4–6 in each

group). Pair-fed-100% rats were offered the same amount (g) of

control diet as the ThrDef group had spontaneously ingested, Pair-

fed-66% rats were fed two thirds as much as the ThrDef group,

and Pair-fed-33% rats were fed one third the amount that the

ThrDef group had spontaneously ingested. At the end of the

experiment, blood and tissues were collected.

In the third re-feeding experiment, two groups of rats were used.

On the morning of metestrus during the control diet feeding, all

rats were given the ThrDef diet. Within several days, persistent

diestrus was observed by vaginal smears. On either the 4th

(ThrDef-4day) or 14th (ThrDef-14day) day of persistent diestrus,

the rats were re-fed the control diet (N = 6 in each group). This

experiment was continued until the recovery of a normal estrous

cycle was observed by the criteria of two continuous 4-day estrous

cycles. At the end of the experiment, the rats were euthanized by

deep anesthesia. No mortalities were observed during any of the

studies.

Amino acid analyses
Plasma samples were mixed with 2 volumes of 5% (w/w)

trichloroacetic acid, centrifuged (4uC, 15 min, 10,000 x g) to

remove the precipitate and were filtered through a Microcon

Ultracel YM-10 (Nihon Millipore, Tokyo, Japan). To measure the

amino acid levels in the ovaries, the ovaries were rinsed well in

Table 6. Diet composition.

%, w/w

Amino Acid Mixture 20

L-Cystine 0.3

Corn Starch 62.9

Cellulose 5

Soybean Oil 7

AIN93G Mineral Mix 3.5

AIN93 Vitamin Mix 1

Choline Bitartrate 0.25

t-Butyl Hydroquinone 0.0014

Energy (kcal/g) 3.9

doi:10.1371/journal.pone.0028136.t006

Table 7. Amino acid composition in each diet.

%, w/w Control ThrDef LysDef TrpDef MetDef ValDef

Alanine 2.55 2.55 2.55 2.55 2.55 2.55

Arginine 3.28 3.28 3.28 3.28 3.28 3.28

Asparagine H2O 3.6 3.6 3.6 3.6 3.6 3.6

Aspartate 3.16 3.16 3.16 3.16 3.16 3.16

Cystin 0.5 0.5 0.5 0.5 0.5 0.5

Glutamine 9.16 11.5 16.22 9.94 10.35 12.74

Glutamate 9.16 9.16 9.16 9.16 9.16 9.16

Glycine 1.62 1.62 1.62 1.62 1.62 1.62

Histidine 2.54 2.54 2.54 2.54 2.54 2.54

Isoleucine 4.45 4.45 4.45 4.45 4.45 4.45

Leucine 8.13 8.13 8.13 8.13 8.13 8.13

Lysine N HCl 8.82 8.82 0 8.82 8.82 8.82

Methionine 2.43 2.43 2.43 2.43 0 2.43

Phenylalanine 4.5 4.5 4.5 4.5 4.5 4.5

Proline 9.37 9.37 9.37 9.37 9.37 9.37

Serine 5.06 5.06 5.06 5.06 5.06 5.06

Threonine 3.81 0 3.81 3.81 3.81 3.81

Tryptophan 1.08 1.08 1.08 0 1.08 1.08

Tyrosine 4.85 4.85 4.85 4.85 4.85 4.85

Valine 5.73 5.73 5.73 5.73 5.73 0

Amino Acids-
Total

93.82 92.35 92.06 93.51 92.58 91.67

Starch 6.18 7.65 7.94 6.49 7.42 8.33

Total 100 100 100 100 100 100

doi:10.1371/journal.pone.0028136.t007
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saline to minimize contamination by extracellular fluid or plasma.

Ovarian samples were homogenized, deproteinized in 10% (w/w)

trichloroacetic acid and filtered. The amino acid concentrations in

these filtrates were measured by an automatic amino acid analyzer

(L-8800A; Hitachi, Tokyo, Japan). Briefly, amino acids that

were separated by cation-exchange chromatography were detect-

ed spectrophotometrically after a postcolumn reaction with a

ninhydrin reagent [30,36,53].

Analyses of biochemical parameters in plasma and liver
The plasma levels of glucose, total cholesterol and triglyce-

ride (Tables 1 and 2) were determined enzymatically using an

autoanalyzer (Fuji Dry-Chem 7000, Fujifilm Medical, Tokyo,

Japan). The plasma concentrations of nonesterified fatty acids

(Tables 1 and 2) were enzymatically determined using a colo-

rimetric method from a commercially available kit (NEFA C test,

Wako Pure Chemicals, Osaka, Japan).

The liver samples were homogenized with 5 volumes of (w/w)

phosphate-buffered saline. The lipids were extracted from the

homogenate with isopropanol and centrifuged (4uC, 10 min,

10,0006g) to remove the precipitate. The triglyceride contents of

these samples were measured using commercially available

enzyme reagents (Triglyceride E-test Wako, Wako Pure Chemi-

cals, Osaka, Japan).

Analyses of plasma hormone levels
Commercially available enzyme-linked immunosorbent assay

(ELISA) kits were used to measure the plasma concentrations of

insulin (Morinaga Institute of Biological Science, Yokohama,

Japan), leptin (Morinaga Institute of Biological Science, Yoko-

hama, Japan), insulin-like growth factor 1 (IGF-1) (Diagnostic

Systems Laboratories, Inc., Texas, United States) and desacyl

ghrelin (Mitsubishi Kagaku Iatron, Inc., Tokyo, Japan) according

to the manufacturer’s instructions (Table 3).

Statistical analyses
Data are presented as the mean6standard error of the mean

and were analyzed by one-way analysis of variance (ANOVA).

Changes in the amount of food intake and body weight were

analyzed by two-way ANOVA. When the ANOVA indicated a

significant effect (P,0.05), a post-hoc Tukey’s test was conducted

to determine individual differences.

Supporting Information

Figure S1 Food consumption normalized to body
weight. Daily spontaneous food intake of rats that were fed each

essential amino acid-deficient diet is normalized to body weight as

grams per day per kg of body weight. The data are presented as

the mean 6 SEM. The significant differences (P,0.05) are shown

as ‘‘a’’. Control vs. LysDef, ThrDef, TrpDef, MetDef and ValDef.

N = 4–6.

(TIF)
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