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Abstract
Objectives Proposing a machine learning model to predict readers’ performances, as measured by the area under the receiver 
operating characteristics curve (AUC) and lesion sensitivity, using the readers’ characteristics.
Methods Data were collected from 905 radiologists and breast physicians who completed at least one case-set of 60 mam-
mographic images containing 40 normal and 20 biopsy-proven cancer cases. Nine different case-sets were available. Using 
a questionnaire, we collected radiologists’ demographic details, such as reading volume and years of experience. These 
characteristics along with a case set difficulty measure were fed into two ensemble of regression trees to predict the readers’ 
AUCs and lesion sensitivities. We calculated the Pearson correlation coefficient between the predicted values by the model 
and the actual AUC and lesion sensitivity. The usefulness of the model to categorize readers as low and high performers based 
on different criteria was also evaluated. The performances of the models were evaluated using leave-one-out cross-validation.
Results The Pearson correlation coefficient between the predicted AUC and actual one was 0.60 (p < 0.001). The model’s 
performance for differentiating the reader in the first and fourth quartile based on the AUC values was 0.86 (95% CI 0.83–
0.89). The model reached an AUC of 0.91 (95% CI 0.88–0.93) for distinguishing the readers in the first quartile from the 
fourth one based on the lesion sensitivity.
Conclusion A machine learning model can be used to categorize readers as high- or low-performing. Such model could be 
useful for screening programs for designing a targeted quality assurance and optimizing the double reading practice.
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Abbreviations
BREAST  Breast screen reader assessment strategy
ROC  Receiver operating characteristics
AUC   Area under ROC curve
OR  Adjusted odds ratio
LOOCV  Leave-one-out cross validation
JAFROC  Jackknifing free response operating character-

istic curve
FOM  Figure of merit

Introduction

To improve the quality of screening mammography pro-
grams, guidelines have proposed criteria based on the reader 
characteristics for certification to undertake independent 
mammography interpretation [1, 2]. Although these guide-
lines mostly use annual mammographic reading volume as 
a criterion for certification, there are discrepancies between 
countries in the volume read required for certification. For 
example, whilst the USA require 960 reads biannually, Euro-
pean countries and Australia require at least 5000 and 2000 
reads, respectively, per year. Moreover, inconsistent rela-
tionship between mammography reading volume and sen-
sitivity was reported, with studies showing no association 
[3–10], positive association [11–15], and quadratic associa-
tions [16]. Similarly, mixed findings have been reported for 
the relationship between the specificity and mammographic 
reading volume: non-significant [3, 6, 8, 9, 16], positive [4, 
14, 15, 17, 18], quadratic [11], and negative associations [5].
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Improving understanding about the relationship between 
readers’ characteristics and mammography interpretation 
performances could be used to inform targeted quality assur-
ance and surveillance measures for readers, particularly for 
those at high risk of under-performing. Such programs might 
improve the performance of the screening program [19].

In previous studies [3–6, 8, 9, 11, 14–18] often low num-
bers of observers were involved and most of the studies 
were done using images produced by non-digital mammog-
raphy units. In the current study, we aim to use data from 
very large cohort of readers (905 radiologists and breast 
physicians) and digitally acquired images to assess the 
relationship between reader characteristics and mammog-
raphy image interpretation performance. We also propose 
a machine learning model to predict reader performances 
using their characteristics.

Materials and methods

Image case sets and participants

Using Breast Screen Reader Assessment Strategy (BREAST; 
http:// sydney. edu. au/ health- scien ces/ breas taust ralia/) plat-
form. The process of the case selection has been described 
elsewhere [20]. All cases were selected by a senior breast 
radiologist based on radiological and pathological reports 
and contained four digital mammograms (both sides, two 
views). Each case set included 40 normal (based on a two-
year follow-up) and 20 biopsy-proven cancer cases. Can-
cer cases contained lesions with different mammographic 
features: malignant masses, calcifications, asymmetries, 
or architectural distortions. The senior radiologists, who 
selected the cases in various test sets, also ensured the 

inclusion of only good quality images. The quality assess-
ment process considered image criteria related to the proper 
breast positioning, exposure parameters, contrast, and arti-
facts. Please see the Supplementary Materials for the sum-
mary of the criteria.

Table 1 summarises the characteristics of the test sets. 
Average size of the cancer cases and distribution of cases 
across various BI-RADS density categories and vari-
ous cancer types is shown. All cases were retrieved from 
the screening archive. Information about the presence of 
benign lesions was not available as benign findings are not 
routinely collected in the screening archive. Images were 
acquired using the mammography machines from different 
manufacturers in use in the screening facilities. Three of the 
nine image sets included a small (< 5%) to moderate (20%) 
fraction of computed radiography (CR) cases, but the vast 
majority were from full-field digital mammography (FFDM) 
systems.

Data were collected from 905 certified radiologists 
and breast physicians who completed at least one of the 
test sets. Using a questionnaire, we collected radiologists’ 
demographic details. Participants were recruited in nine dif-
ferent workshops. One test set was allocated to each work-
shop and made available to the participants. All interested 
radiologists/breast physicians who attended each workshop 
were allowed to do the test sets. Table 2 show radiologists’ 
responses.

Experimental protocol

Readings were conducted either at conference venues in 
rooms carefully designed to match radiologic reporting envi-
ronments or in the reporting rooms of radiologists’ practic-
ing facilities between January 2012 and January 2019. Half 

Table 1  Characteristics of the 
cases in each test set

*1 is the easiest and 9 is the most difficult test set

Feature Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Breast density
 BI-RADS A 5 4 6 1 9 5 6 8 6
 BI-RADS B 31 20 20 21 35 33 25 30 21
 BI-RADS C 23 34 28 37 15 19 23 22 30
 BI-RADS D 1 2 6 1 1 3 6 0 3

Cancer type
 Architectural Distortion 2 1 1 4 2 3 0 4 0
 Calcification 4 4 5 4 3 2 7 0 2
 Non-specific density 4 4 3 4 3 1 2 4 5
 Discrete Mass 3 1 6 1 3 1 3 0 4
 Spiculated Mass 0 1 3 3 4 3 8 0 4
 Stellate 7 9 2 4 5 10 0 12 5
 Mean size (mm) 7.4 5.6 5.5 12.8 7.4 9.2 7.3 5.9 6.8
 Case difficulty ranking* 9 8 3 7 5 4 1 2 6

http://sydney.edu.au/health-sciences/breastaustralia/
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Table 2  The mean value 
(standard deviation) of area 
under receiver operating 
characteristics curve (AUC), 
sensitivity, specificity, and 
lesion sensitivity of participants 
when grouped by various 
variables

No AUC Sensitivity Specificity Lesion sens

Gender†

 Male 144 0.81 (0.10) 77.20 (17.31) 75.48 (17.26) 65.46 (19.80)
 Female 184 0.86 (0.07) 82.21 (13.33) 80.22 (14.31) 74.28 (15.82)
 Not responded 577 0.83 (0.09) 82.28 (14.45) 73.33 (17.12) 68.76 (18.48)

Position
 Breast physician 39 0.84 (0.07) 81.6 (14.31) 73.31 (17.4) 68.06 (16.47)
 Radiologist 866 0.83 (0.09) 81.45 (14.86) 75.15 (16.79) 69.41 (18.47)
 P  value* 0.880 0.963 0.544 0.467

# Cases per week
 No cases 10 0.70 (0.08) 62.5 (25.08) 68.5 (32.81) 40.58 (13.17)
  < 20 261 0.78 (0.1) 75.53 (16.77) 71.25 (18.51) 59.40 (19.66)
 20–50 72 0.84 (0.08) 84.38 (13.16) 70.92 (18.19) 68.92 (16.14)
 51–100 113 0.85 (0.07) 81.55 (15.64) 77.27 (14.42) 67.56 (18.15)
 101–150 122 0.86 (0.07) 84.93 (12.21) 77.38 (14.91) 75.69 (14.10)
 151–200 167 0.85 (0.07) 84.61 (10.52) 76.94 (14.95) 76.18 (13.11)
  > 200 157 0.87 (0.06) 85.53 (11.6) 78.05 (15.21) 77.31 (15.14)
 Not responded 3 0.8 (0.11) 56.67 (30.14) 92 (12.17) 55.67 (31.02)
 P  value*  < 0.001  < 0.001  < 0.001  < 0.001

# Hours per week
 None 10 0.70 (0.08) 62.5 (25.08) 68.5 (32.81) 40.58 (13.17)
  < 4 307 0.80 (0.1) 77.86 (15.92) 72.75 (18.42) 62.33 (18.98)
 5–10 299 0.83 (0.08) 81.33 (14.9) 75.04 (16.07) 70.73 (17.51)
 10–15 100 0.86 (0.06) 84.57 (11.12) 77.48 (13.71) 74.84 (14.74)
 16–20 82 0.86 (0.08) 84.51 (16) 76.76 (16.05) 74.78 (18.51)
 21–30 46 0.89 (0.06) 89.15 (8.32) 79.28 (13.51) 81.40 (9.99)
  > 30 61 0.88 (0.06) 85.09 (10.52) 80.28 (13.43) 73.41 (17.01)
 P value *  < 0.001  < 0.001 0.007  < 0.001

Cases in usual practice
 Both 113 0.80 (0.1) 76.74 (15.41) 73.92 (18.62) 61.78 (18.93)
 Hard copy 129 0.82 (0.1) 79.96 (15.14) 74.55 (16.89) 67.03 (19.72)
 Soft copy 662 0.84 (0.08) 82.55 (14.51) 75.40 (16.48) 71.1 (17.67)
 Not responded 1 0.83 (0) 85 (0) 57 (0) 71 (0)
 P value *  < 0.001  < 0.001 0.555  < 0.001

Screening program
 BreastScreen Aotearoa 181 0.87 (0.06) 87.92 (9.57) 76.09 (13.88) 82.15 (10.53)
 BreastScreen Australia 451 0.84 (0.08) 82.19 (13.9) 76.98 (16.14) 69.80 (17.14)
 No 273 0.79 (0.09) 75.96 (17.07) 71.25 (18.95) 60.13 (19.2)
 P  value*  < 0.001  < 0.001 0.007  < 0.001

Fellowship
 Yes 205 0.85 (0.08) 82.22 (13.93) 78.38 (15.7) 73.34 (17.24)
 No 574 0.82 (0.09) 80.72 (15.41) 74.15 (17.11) 69.69 (18.67)
 Not Responded 126 0.85 (0.07) 83.57 (13.28) 73.88 (16.62) 61.34 (16.41)
 P  value* 0.001 0.312 0.001 0.015

Age
 Q1: [28–44) 212 0.81 (0.1) 77.81 (16.54) 74.77 (18.14) 65.65 (19.87)
 Q2: [44–54) 234 0.84 (0.08) 83.34 (13.79) 74.46 (17.52) 71.02 (17.85)
 Q3: [54–61) 211 0.85 (0.07) 83.65 (12.09) 76.27 (14.29) 72.49 (15.74)
 Q4: 61 + 248 0.84 (0.09) 81.38 (15.73) 74.88 (16.86) 68.53 (19.15)
 P  value*  < 0.001  < 0.001 0.932 0.001

# Years 1
 Q1: [0–3) 208 0.79 (0.09) 76.8 (16.26) 71.59 (18.98) 60.85 (18.47)
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of the assessments (50.28%) were conducted in a conference 
venue. The radiologists viewed images using Sectra Breast 
Imaging PACS (Sectra, Linköping, Sweden; Hologic, Bed-
ford, Mass). Options for zooming, panning, and window-
ing were available to readers. Ambient lightning was below 
10 lx in the room. The workstations were linked to either 
two MFGD 5621 monitors (Barco, Kortrijk, Belgium), or 
two RadiForce G51 monitors (Eizo, Ishikawa, Japan). All 
monitors were calibrated to the Digital Imaging and Com-
munication in Medicine gray-scale standard display func-
tion, had a contrast ratio of 365:1, and displayed a maximum 
luminance within 5% of 475 cd.  m−2, minimum luminance 
of 1.3 cd.m−2.

Each reader reported their findings per case using the 
Royal Australian and New Zealand College of Radiologists 
(RANZCR) rating system, which rates mammographic find-
ings into the following five categories: (1) no significant 
abnormality, (2) Benign, (3) Equivocal, (4) Suspicious, and 
(5) Malignant. The RANZCR rating system is similar to the 
Tabar five-tier grading system [21]. Although it is different 
from Breast imaging-reporting and data system (BI-RADS) 
classification system [22], the two systems are translatable. 
Grades 1, 2, and 5 in the RANZCR system is identical to BI-
RADS 1, 2, and 5, respectively. The RANZCR grade for the 
cases graded as BI-RADS 3 and 4A, is “3” while the RAN-
ZCR grade equivalent to the BI-RADS 4B and 4C, is “4”. 
The readers had no prior knowledge about the prevalence 
and types of cancer included in the case sets. They were 
also asked to annotate the location of cancer. By using the 
readers’ ratings, a receiver operating characteristic (ROC) 
was generated and the area under the ROC curve (AUC) 

was calculated. All markings rated as 3 or more were con-
sidered as positive to compute sensitivity, specificity, and 
lesion sensitivity.

Proposed machine learning model

To predict the readers’ AUC values and their lesion sensitiv-
ity, radiologists’ characteristics were fed into two ensemble 
of regression trees (250 trees with surrogate splits to han-
dle the missing data combined using the bagging method). 
Among all collected characteristics, participants’ gender was 
excluded as considerable number of participants did not pro-
vide response to this question. We selected the ensemble of 
trees method as the feature selection is embedded within 
the model and it can successfully handle missing data. The 
AUC value provides a measure of over-all accuracy and the 
trade-off between case-level sensitivity and specificity while 
lesion sensitivity indicates how well radiologists perform 
in the actual annotation of the cancer location (lesion-level 
analysis).

We also included the case set difficulty measure. To do 
so, for each case set we used the jack-knifing free response 
operating characteristic curve (JAFROC) figure of merit 
(FOM) [23], which measures the trade-off between lesion 
sensitivity and specificity. We ranked the case sets from 1 to 
9 and used this value as one of the regression model’s inputs 
(ordinal variable).

We used the average JAFROC FOM from five radiolo-
gists, who used a similar platform to read the images. For six 
sets, readings from all five was available while for three sets, 
readings from four of these five radiologists were available. 

Table 2  (continued) No AUC Sensitivity Specificity Lesion sens

 Q2: [3–10) 237 0.83 (0.08) 80.44 (15.76) 76.07 (15.79) 69.09 (18.87)
 Q3: [10–18) 210 0.86 (0.07) 84.82 (12.18) 77.2 (16.09) 73.68 (16.4)
 Q4:18 + 250 0.85 (0.08) 83.47 (13.61) 75.23 (16.07) 73.05 (17.01)
 P  value*  < 0.001  < 0.001 0.016  < 0.001

# Years 2
 Q1: [0–1) 224 0.79 (0.09) 75.07 (17.62) 72.98 (19.3) 60.29 (19.11)
 Q2: [1–10) 223 0.85 (0.08) 82.28 (14.16) 77.43 (14.83) 72.04 (17.85)
 Q3: [10–19) 237 0.85 (0.08) 85.25 (12.16) 74.21 (16.28) 73.94 (16.09)
 Q4:19 + 221 0.85 (0.08) 83.07 (13.14) 75.16 (16.47) 70.77 (17.95)
 P  value*  < 0.001  < 0.001 0.012  < 0.001

The number (No.) of participants (out of 905) and p values, indicating whether the difference in each per-
formance metric among categories is significant, are also shown. The reader’s age, number of years reading 
mammograms (# Years 1), and number of years certified as screening readers (# Years 2) were discretized 
in four quartiles
†As majority of participants did not provide the response to the questions about their gender, the p value 
for this feature is not reported
*It should be noted that although p values are significant, adjustments to confounding factors are required 
for judging the effect of each variable on the performance
Significant p values are in bold
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All these radiologists read 101–150 mammograms per week, 
had 10–16 years of experience in reading mammograms, 
were screen readers, and devoted 10–20 h of their practice 
to reading breast images.

Statistical analysis and validation

The mean AUC, sensitivity, specificity, and lesion sensitiv-
ity for readers in each group of categorical variables was 
calculated. Using the Kruskal–Wallis test, we investigated 
if the performance metrics differed across various values 
of each variable (Table 2). For participant’s age, number 
of years reading mammograms, and number of years certi-
fied as a screening reader, we calculated the range of each 
quartile (presented in Table 2) and explored if performance 
metrics differed significantly in each quartile using the 
Kruskal–Wallis test. For analysing each variable, the sam-
ples where responses were not provided by the reader, were 
omitted for the Kruskal–Wallis test. We also calculated the 
adjusted odds ratio (OR) of various factors for having an 
AUC (and lesion sensitivity) higher than the median value 
to adjust for confounding effects. In all statistical tests, a p 
value of < 0.05 was considered statistically significant.

We performed the analysis twice. Firstly, we treated work-
load variables (hours and case number) as ordinal and con-
sidered number of years reading mammograms and number 
of years certified as a screening reader as ordinal variables. 
The rest of the variables have been treated as categorical 
variables in both types of analyses. Secondly, we categorised 
number of years reading mammograms and number of years 
certified as a screen reader into four categories (represent-
ing four quartiles) and treated all variables as categorical 
variables. We conducted the same process for the lesion 
sensitivity. These statistical analyses were conducted in the 
R (version 3.6.0) environment.

The performances of the models for predicting the AUC 
and lesion sensitivity were evaluated using leave-one-out 
cross validation (LOOCV). We calculated the Pearson corre-
lation coefficient between the predicted values by the model 
and the actual AUC and lesion sensitivity. The model’s out-
put can also be thresholded and used to categorise readers 
as high-performers and low-performers. We grouped read-
ers as two categories in five different ways based on their 
performances:

(1) Those in the lowest quartile (low-performers) 
versus those in the second, third, highest quartiles 
(high-performers).

(2) Those in the lowest and second quartiles (low-
performers) versus those in the third, highest quartiles 
(high-performers).

(3) Those in the lowest, second, and third quartiles 
(low-performers) versus those in the highest quartiles 
(high-performers).

(4) Those in the lowest quartile (low-performers) versus 
those in the highest quartiles (high-performers).

(5) Lowest one-third of the readers (low-performers) ver-
sus highest one-third of the readers (high-performers).

In each one of the scenarios, we then evaluated the 
model’s over-all accuracy by generating the ROC curve by 
applying different cut-off values to the performance metrics 
predicted by the model. The models were built and cross 
validated in MATLAB 2018b (Mathworks, MA, US) on a 
desktop (Dell Precision 5820 Tower). The cross-validation 
processes for the AUC and lesion sensitivity models com-
pleted in 784 and 622 s, respectively.

Currently, in most countries, the interpretive volume 
serves as the main eligibility criteria for being qualified as 
a screen reader [2]. Therefore, for all these five scenarios, a 
model which relies on the reading volume (number of cases 
per week) and case set difficulty served as the comparison 
baseline. To build the baseline model, a linear regression 
model and an ensemble of regression trees were tested. 
Although the performance of the ensemble was slightly 
better, the difference was insignificant. For consistency in 
the comparison, the ensemble of regression trees was used 
as the baseline comparison. It should be noted that this is 
slightly more accurate and complicated compared to the sim-
ple thresholding of the reading volume.

Results

Table 2 indicates the performance metrics. As shown, the 
p-values for all performance metrics were significant for 
number of cases per week, number of hours per week, being 
a screen reader, number of years reading mammograms (# 
Years 1 in Table 2), and number of years certified as screen-
ing readers (# Years 2 in Table 2). Although most of the 
p-values for the last three variables in Table 2 were sig-
nificant, adjustments against the confounding factors and 
case set difficulties were required. The last three variables 
presented in Table 2 were significantly correlated with each 
other. Therefore, we only included number of years reading 
mammograms, which resulted in the highest non-adjusted 
OR for the AUC and Lesion sensitivity. Table 3 shows the 
characteristics which led to an adjusted OR significantly 
greater than, or less than 1. As stated, number of hours, 
reading volume, and years of experience are treated once as 
ordinal and once as categorical variables. Based on the first 
analysis presented in Table 3, a one-year increase in years 
of experience increases the odds of having AUC above the 
median by 3% (CI 1%–5%; OR of 1.03). Also, a single unit 
of increase in two ordinal variables, representing seven lev-
els of interpretive hours and volume, increases the odds of 
having an AUC above the median by 28% (CI 16%-40%; OR 
of 1.28) and 38% (CI 23%–55%; OR of 1.38), respectively.
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The ROC curves for the proposed method and the base-
line comparison method for categorising readers (the second 
way of categorisation in the Statistical Analysis and Valida-
tion section and the second column in Table 4) is shown 
in Fig. 1. The baseline model represents how well one can 
categorise these two groups of readers if only the number 
of cases per week (measure of reading volume) and case set 
difficulty was used. As indicated in the figure and Table 4, 
the proposed model outperformed the baseline model for 
categorising readers.

The Pearson correlation coefficient between the predicted 
AUC and the lesion sensitivity by the ensemble models and 

the actual values was 0.59 (p < 0.001) and 0.58 (p < 0.001), 
respectively. Using MATLAB’s predictorImportance func-
tion, the three most important features in the AUC model 
were number of years since certification, position, and num-
ber of cases per week while the three features for the lesion 
sensitivity were number of cases per week, number of hours 
per week, and number of years reading mammograms.

Table 4 shows the AUC values of the model for classify-
ing the readers into high- or low-performers. Column Num-
bers represent the five different ways of categorizing readers 
as low- and high-performers, as presented in the Statistical 
Analysis and Validation section. As screening guidelines 
mostly use reading volume as their main criteria for select-
ing the screen-readers, we also calculated the AUC obtained 
by using reading volume (as measured by number of cases 
per week) to classify readers. As explained earlier, test set 
difficulty was also fed into the model.

The histogram of the model’s absolute error, i.e., the pre-
dicted AUC subtracted from the actual AUC, is indicated in 
Fig. 2. As shown, the absolute error value for most (91%) 
of the readers is less than 0.1. The error rate (absolute error 
divided by the value) was less than ± 10% for nearly 87% 
of readers.

The proposed machine learning model can be used for 
analyzing the sensitivity of reader’s performance to each 
variable. Examples of such analyses is shown in Fig. 3a-d. 
In Fig. 3a, b, we analysed the model’s output when sweeping 
the entire grid placed on a two-dimensional feature space 
including all possible pairs for years of experience in mam-
mography and cases per week. As mentioned earlier, we 
included a variable to represent the case set difficulty. We 
simulated the results for the most difficult (a) and the easiest 
(b) case sets, for a screen reader without fellowship train-
ing. These figures indicate how the proposed model can be 
used to understand readers’ performance in case sets with 
different levels of difficulties. For example, as shown by the 
orange arrows in Fig. 3a, for the easiest case set, based on 
the model’s prediction, readers’ performances increased 
with a steeper slope from “ < 20” to “21–50” cases per 

Table 3  Adjusted Odds Ratios (OR) for readers characteristics, which 
led to an adjusted OR, significantly greater than, or less than 1

The ORs for having an area under receiver operating characteristics 
curve (AUC) and lesion sensitivity (L. Sens.) greater than the median 
values are shown. The analyses have been done twice (Ordinal and 
Categorical). Only significant values are shown
#Hours, #Cases, and #Years represent number of hours reading mam-
mograms per week, number of mammographic cases per week, and 
number of years reading mammographic images
“–” represents non-significant adjusted ORs

Variables AUC > Median L. Sens. > Median

Treating #Hours, #Cases, and #Years as ordinal variables
 Radiologist: breast Phy 2.31 (1.14–4.69) –
 # Hours (ordinal 1–7) 1.28 (1.16–1.40) 1.21 (1.07–1.35)
 # Cases (ordinal 1–7) 1.38 (1.23–1.55) 1.35 (1.23–1.48)
 # Years 1.03 (1.01–1.05) –

Treating #Hours, #Cases, and #Years as categorical variables
 Radiologist: breast Phy 2.56 (1.22–5.36) –
 # Year Q3: Q1 2.34 (1.45–3.78) 2.03 (1.24–3.31)
 # Year Q4: Q1 1.72 (1.07–2.76) –
 # Cases 21–50: none 13.66 (1.33–140.61) 23.57 (2.38–233.46)
 # Cases 51–100: none 12.53 (1.23–127.74) 26.96 (2.75–264.54)
 # Cases 101–150: none 21.8 (2.15–221.19) 31.41 (3.24–304.6)
 #Cases 151–200: none – 23.42 (2.43–225.88)
 #Cases 201 + : none 15.06 (1.48–152.78) 33.12 (3.4–322.47)

Table 4  The performance of the 
proposed model’s prediction if 
used for categorizing the readers 
as high- and low-performers

The numbers in the columns represent five different ways of categorizing readers as low- and high-per-
formers, as presented in the Statistical Analysis and Validation section. The performance is measured by 
area under receiver operating characteristics curve (AUC) and corresponding 95% confidence interval for 
the AUC values. The baseline model for the comparison only includes reading volume (as measured by 
number of cases per week) and set difficulty as its inputs

1 2 3 4 5

Predicting over-all reader’s performance, as measured by AUC 
 Baseline model 0.72(0.68–0.75) 0.68(0.64–0.71) 0.65(0.62–0.69) 0.75(0.71–0.79) 0.72(0.68–0.76)
 Proposed model 0.81(0.79–0.84) 0.78(0.74–0.80) 0.73(0.70–0.77) 0.89(0.86–0.92) 0.85(0.82–0.88)

Predicting reader’s lesion sensitivity
 Baseline model 0.71(0.68–0.75) 0.69(0.66–0.72) 0.68(0.63–0.71) 0.78(0.74–0.82) 0.74(0.71–0.78)
 Proposed model 0.81(0.78–0.84) 0.79(0.76–0.81) 0.79(0.75–0.82) 0.91(0.89–0.94) 0.88(0.86–0.91)
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week compared to “None” to “ < 20”. On the other hand, 
for the most difficult case set the model suggests that the 
performance of the reader steadily increases from “None” 
to “21–50” cases per week (orange arrow). From 51 cases 
per week onwards (dashed black arrows), the trends are only 

slightly different in two test sets and a peak is evident at 
101–151 cases per week only for the most difficult test set.

As another example, we also analysed the model’s output 
when sweeping the entire grid placed on a two-dimensional 
feature space including all possible pairs for hours per week 
and cases per week for a screen reader with fellowship 
training. The model is simulated for a highly experienced 
reader (24 years of experiences). We assigned average age 
and years since certified to this reader, based on average 
of readers with 20 to 25 years of experience in the original 
dataset. The simulated resulted are shown in Fig. 3 for the 
most difficult (c) and the easiest (d) case sets. As shown, the 
sensitivity of variables to changes of hours per week and 
cases per week is dependent on how difficult the case set is. 
For the easiest case set, the performance reach to a plateau 
for high volume readers (interpretative volume >  = 51) or 
those spending > 20 h reading mammograms. On the other 
hand, for the most difficult case set, an increasing trend is 
exhibited by the model.

Discussion

This paper investigated how the readers' characteristics 
affect the performance of readers, using a very large dataset 
collected from 905 radiologists and breast physicians. Only 
a few previous studies considered the effect of radiologists’ 
characteristics on the overall accuracy [7–10, 12–15, 24, 25]. 
A study in the US [11] found no evidence of a relationship 
between overall accuracy and larger reading volume while 
in [4], in concordance with this study, a positive relationship 
between these two was noted.

We also proposed a model for predicting the reader’s 
AUC and lesion sensitivity based on reader’s characteristics. 
The Pearson correlation values suggest a moderate level of 
correlation between the model’s prediction and the actual 
performance of the readers. To investigate the usefulness 
of the model, a baseline model for comparison was created 
based on the case difficulty and reading volume, as most 
screening program guidelines use the number of cases as 
their main criterion for selecting the screening readers. The 
proposed machine learning model outperformed the baseline 
model in all various scenarios for categorising high- and 
low-performing readers.

By having a reliable tool to identify readers at an elevated 
risk of low performance, the screening programs can estab-
lish more frequent and targeted quality assurance schemes 
for these readers and structure training programs for less 
experienced radiologists or trainees. Moreover, in settings 
with limited resources for training or quality assurance, the 
resources could be more effectively allocated to improve 
global diagnostic abilities. Feedbacks about radiologists’ 
decisions [7] and knowledge sharing [26] could improve 

Fig. 1  The receiver operating characteristics (ROC) curves and their 
confidence intervals (dashed and dotted lines) for categorising readers 
as high- and low-performers using the median AUC value (the sec-
ond way of categorisation in the Statistical Analysis and Validation 
section). The grey ROC curve represents the ROC of the proposed 
ensemble of regression trees and the black ROC curve represents how 
well one can categorise these two groups of readers if only the num-
ber of cases per week (measure of reading volume) and case set dif-
ficulty is used

Fig. 2  The histogram of the absolute error for predicting the AUC of 
readers using the proposed machine learning model
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readers’ performances. Identifying readers at risk of per-
forming lower than the median value and making feedback 
and knowledge sharing available to them, could improve the 
overall screening program.

Moreover, our results showed that the proposed machine 
learning model outperformed the baseline model, which 
relied on the mammographic reading volume. Currently, 
the guidelines mostly use annual mammographic read-
ing volume as a criterion for certification. The promising 
results obtained by the machine learning model, suggest 
that this model can be used for the certification of the read-
ers. Although, it should be noted that a criterion based on 
the annual reading volume can be easily understood by the 
workforce, clinic managers, and policymakers. A more com-
plex machine learning model is difficult to interpret, par-
ticularly when someone is classified as unqualified, proper 
explanations should be provided. Therefore, before using the 
model, efforts on improving the explainability of the model 
should be made. Moreover, similar to any other machine 
learning model, the proposed model might misclassify indi-
viduals. The implications of such error on the sensitivity 
and specificity of a screening program should be investi-
gated. Finally, the feasibility of using this model should be 

investigated in the context of each screening program con-
sidering the availability of the workforce.

Secondly, such a model can be used for pairing low- and 
high-performing readers in double reading practice. Recent 
studies showed that more benefits of double reading can be 
accrued by optimising the pairing [20, 27]. Such strategic 
matching will lower the chances of pairing low-performing 
readers and reducing the efficacy of double reading. How-
ever, it should be noted that a pre-requisite for translating 
this into practice is conducting detailed efficacy studies to 
consider the possible net change in the number of false posi-
tives and false negatives by pairing low and high-performing 
reader, compared to random pairing of the readers. Another 
important point to consider in the implementation of rou-
tinely pairing low- and high-performing readers in double 
reading practice is the radiology workforce shortage. A 
shortage of radiologists specialising in Breast imaging is 
a recognized worldwide challenge [28–30] and the limited 
number of radiologists in a practice might hinder efforts for 
optimally pairing readers. To some extent, the wider utili-
zation of teleradiology might help in adopting this pairing 
strategy, especially where there are significant workforce 
shortages. Therefore, beside cost-efficacy analysis, the 

Fig. 3  The output of the proposed machine learning model has been 
simulated for various values for number of cases per week and years 
of experiences a the simulation results for the most difficult; and b 
the simulation result for the easiest case set. The output of the pro-

posed machine learning model has been simulated for all possible 
pairs for hours per week and cases per week c the simulation result 
for the easiest case set; and d the simulation results for the most dif-
ficult case set
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available radiology workforce and infrastructure for telera-
diology should be taken account.

This study had a few limitations. Firstly, the prevalence 
of cancer cases in the case sets was different from the clini-
cal practice. Mixed evidence about the prevalence effect has 
been reported [31], with studies showing both measurable 
performance decreases [32–34] and no change in perfor-
mance [35]. A laboratory effect could also be a limitation 
[36]. Although it certainly affects our data, a significant pos-
itive correlation between laboratory and real practice perfor-
mance was reported in a previous study [37]. As our model 
aims at classifying readers into high- and low-performers, 
the presence of such a correlation implies that our model 
could predict the performance of readers in real clinical 
practice to some extent. Moreover, approximately half of the 
assessments were conducted in the participants’ workplaces 
and we were not able to ensure that ambient light and moni-
tor’s parameters were in concordance with the assessments 
conducted in the conferences. Also, although in none of the 
previous studies such a large cohort of radiologists were 
included, number of readers in some categories were limited.

As stated, to adjust for the case difficulty, we added a vari-
able ranged from 1 to 9 to show the difficulty of cases in a set. 
As we analysed the data retrospectively, we could not match 
the test sets based on their difficulty level. This is another 
limitation of our study. The difficulty measure was calcu-
lated based on assessments from five radiologists, who were 
included in the analysis. This could cause bias in the perfor-
mance of the model. However, as these five readers comprised 
less than 0.56% of our samples, it is reasonable to assume that 
considerable bias was not introduced to the results.

Currently, among all input variables, only the test set diffi-
culty describes the characteristics of the cases in our test sets. 
The quality of images produced by the CR and FFDM units 
are different, and these differences could lead to a change 
in a reader’s performance [37]. Thus, for a future work, 
variables describing the mammography unit manufacturer 
and technology can also be fed as input variables to the per-
formance prediction model to improve its accuracy. In the 
current study, although images were acquired from various 
mammography, for all test sets except one, the proportion 
of CR images was small or non-existent. Hence, our dataset 
did not provide sufficient power to include mammography 
technology as one of the inputs. Moreover, as stated in the 
Materials and Methods section, the senior radiologists, who 
selected the cases, ensured that only good quality images 
were included in the test sets. As all images had acceptable 
quality, a possible effect that different technologies and image 
processing methods may have on the visibility of cancer was 
potentially mitigated in our dataset. To explore the effect of 
adding variables describing the above-mentioned case char-
acteristics on the accuracy of the model, a more diverse set of 
images should be used to create test sets in the future.

A more comprehensive reader characteristics can also be 
collected from readers and fed into the model to improve the 
accuracy of the model. For example, whether working full-
time or part-time [11] or being affiliated with academic cen-
tres [38] could affect the performance. The current study is a 
proof-of-concept study and although the proposed machine 
learning model outperformed the baseline model for catego-
rising high- and low-performing readers, the added benefits 
of the variables describing additional case and reader char-
acteristics can be explored in the future works.
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