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Continuous-capture microwave imaging
Fabio C. S. da Silva 1,2✉, Anthony B. Kos1, Grace E. Antonucci 1,3, Jason B. Coder 1, Craig W. Nelson 1 &

Archita Hati1

Light-in-flight sensing has emerged as a promising technique in image reconstruction

applications at various wavelengths. We report a microwave imaging system that uses an

array of transmitters and a single receiver operating in continuous transmit-receive mode.

Captures take a few microseconds and the corresponding images cover a spatial range of

tens of square meters with spatial resolution of 0.1 meter. The images are the result of a dot

product between a reconstruction matrix and the captured signal with no prior knowledge of

the scene. The reconstruction matrix uses an engineered electromagnetic field mask to create

unique random time patterns at every point in the scene and correlates it with the captured

signal to determine the corresponding voxel value. We report the operation of the system

through simulations and experiment in a laboratory scene. We demonstrate through-wall

real-time imaging, tracking, and observe second-order images from specular reflections.
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Advanced uses of time in image rendering and recon-
struction have been the focus of much scientific research
in recent years. The motivation comes from the equiva-

lence between space and time given by the finite speed of light c.
This equivalence leads to correlations between the time evolution
of electromagnetic fields at different points in space. Applications
exploiting such correlations, known as time-of-flight (ToF)1 and
light-in-flight (LiF)2 cameras, operate at various regimes from
radio3,4 to optical5 frequencies. Time-of-flight imaging focuses on
reconstructing a scene by measuring delayed stimulus responses
via continuous wave, impulses or pseudo-random binary
sequence (PRBS) codes1. Light-in-flight imaging, also known as
transient imaging6, explores light transport and detection2,7. The
combination of ToF and LiF has recently yielded higher accuracy
and detail to the reconstruction process, especially in non-line-of-
sight images with the inclusion of higher-order scattering and
physical processes such as Rayleigh–Sommerfeld diffraction8 in
the modeling. However, these methods require experimental
characterization of the scene followed by large computational
overheads that produce images at low frame rates in the optical
regime. In the radio-frequency (RF) regime, 3D images at frame
rates of 30 Hz have been produced with an array of 256 wide-
band transceivers3. Microwave imaging has the additional cap-
ability of sensing through optically opaque media such as walls.
Nonetheless, synthetic aperture radar reconstruction algorithms
such as the one proposed in ref. 3 required each transceiver in the
array to operate individually thus leaving room for improvements
in image frame rates from continuous transmit-receive captures.
Constructions using beamforming have similar challenges9 where
a narrow focused beam scans a scene using an array of antennas
and frequency modulated continuous wave (FMCW) techniques.

In this article, we develop an inverse light transport model10

for microwave signals. The model uses a spatiotemporal mask
generated by multiple sources, each emitting different PRBS
codes, and a single detector, all operating in continuous syn-
chronous transmit-receive mode. This model allows image
reconstructions with capture times of the order of microseconds
and no prior scene knowledge. For first-order reflections, the
algorithm reduces to a single dot product between the recon-
struction matrix and captured signal, and can be executed in a
few milliseconds. We demonstrate this algorithm through simu-
lations and measurements performed using realistic scenes in a
laboratory setting. We then use the second-order terms of the
light transport model to reconstruct scene details not captured by
the first-order terms.

We start by estimating the information capacity of the scene
and develop the light transport equation for the transient
imaging model with arguments borrowed from basic informa-
tion and electromagnetic field theory. Next, we describe the
image reconstruction algorithm as a series of approximations

corresponding to multiple scatterings of the spatiotemporal
illumination matrix. Specifically, we show that in the first-order
approximation, the value of each pixel is the dot product
between the captured time series and a unique time signature
generated by the spatiotemporal electromagnetic field mask.
Next, we show how the second-order approximation generates
hidden features not accessible in the first-order image. Finally,
we apply the reconstruction algorithm to simulated and
experimental data and discuss the performance, strengths, and
limitations of this technique.

Results
Imaging model. To understand the transient imaging model,
described mathematically in the Methods section, we start with a
single transmitter-receiver pair located, respectively, at Tx and Rx
and sharing the time origin. This means that the receiver starts
the acquisition at the same time transmission starts and stops
when transmission ends. It thus follows in Fig. 1 that a pulse
leaving Tx, and scattering at a point P before arriving at Rx at a
time t, travels a distance r= ct. The position of P can be anywhere
on an ellipse (2D) or ellipsoid (3D). However, the received signal
amplitude is proportional to 1/r1r2 and thus depends on the
position of P on the ellipse. The received signal amplitude
increases when P approaches the axis near Tx and Rx and
decreases otherwise. This difference in amplitude decreases as t
increases because the ellipse approaches the shape of a circle and
thus r1 ≈ r2. A signal captured by the receiver at a time t can also
come from higher-order scattering that happens within the
ellipse. For instance, any sequence of scattering points that create
a path from Tx to Rx via a set of n connecting vectors {r1, r2,…,
rn} will have a corresponding signal amplitude proportional to
W= 1/r1r2…rn if r1+ r2+⋯+ rn= ct.

We interpret W as the likelihood of finding the scattering point
based on the recorded amplitude and time of the pulse capture.
As shown in Fig. 1, for a single (Tx, Rx) pair, there is an
ambiguity in the position of this scattering point. This ambiguity
can be reduced by adding more transmitters at different positions
while keeping a single receiver. Furthermore, each transmitter can
also send a sequence of pulses while maintaining the receiver in
continuous capture mode. By using different PRBS codes for each
transmitter pulse train, this configuration creates a spatiotem-
poral mask that can probe the whole scene continuously in time
(Fig. 2).

The exact number of transmitters and the number of pulses
needed to evaluate each voxel in the image depend the on the
scene size, number of objects, etc. However, natural scenes are
sparse in their primal domain and thus an estimate of the number
of pulses/transmitters can be inferred by simple information
theory arguments. Sparsity here relates to the presence or absence

Fig. 1 Position evaluation based on time of flight. In panel a, a diagram showing an ellipse with focal points Tx and Rx as the solution to the equation r1+
r2= r and the corresponding polar coordinates (ρ, θ) description of a solution point P. In panel b, the amplitude of the field at P as it travels the θ values
along the ellipse for increasing values of r defined by the arrow.
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of free space in the primal scene domain. In this context, we
define a sceneS as a Cartesian grid comprising N voxels where K
are non-empty. Without any prior knowledge of the scene, we say
that the probability of finding a non-empty voxel is ρ= K/N. We
consider the scene sparse if ρ≪ 1. Our conjecture is that the
number of pulses and transmitters should relate to the Shannon
entropy of the scene11 I=M/N=−ρlog2(ρ)− (1− ρ)log2(1− ρ).
M is the number of different patterns generated by the
spatiotemporal mask and is a quantity related to the number of
pulses and transmitters. The sparsity condition thus leads to:

M ’ Klog2
2N
K

� �
: ð1Þ

Because the value of K is not known a priori, we calculate M by
finding the maximum number of patterns a set of transmitters
can generate. By allowing each transmitter to emit PRBS pulse
codes, for NT transmitters there are 2NT possible binary
combinations that will produce a spatiotemporal mask. With 12
omin-directional antennas, we therefore had access to M= 4096
patterns. We also chose to arrange the antenna array in a linear
fashion to allow a more convenient access to the PRBS generators.
Different number of antennas and their arrangement have not
been tested and could produce more optimized results than those
described here.

The resulting first-order spatiotemporal mask is illustrated in
Fig. 2 where we observe the elliptical contributions from all
transmitters aggregated to produce the mask which evolves at
approximately half the speed of light. The factor of 1/2 is achieved
when the ratio of between ct and the ∣Tx - Rx∣ distance is large.
The discretization of the evolution is dictated by the sampling
rate of the receiver.

Implementation of the imaging model. Figure 3 shows a sche-
matic diagram of the layout used for the simulation and experi-
ment. We placed 12 omni-directional transmitter antennas along
the x-axis of a 2D Cartesian coordinate system spanning 5 meters
in each direction. The separation between two contiguous
antennas was 30.48 cm starting from−1.68 m to+1.68 m. The
position of the receiver was at the origin of the coordinate system.
In the experiment, the receiver was a pair of omni-directional
antennas placed along the y-axis in symmetric positions with
respect to the x-axis and separated by 15 cm. The output of these
antennas fed the input ports of a 180-degree transformer that
subtracted their signal. An analog-to-digital converter (ADC)
captured the receiver signal in the experiment at a sampling rate
B defined below. The ADC trigger signal came from the one of
the channels of the PRBS generator assigned solely for that
purpose. Phase-matched coaxial delay lines ensured the spatio-
temporal mask and the signal captures shared the same time
origin by making the trigger and captured signals arrive at the
same time at the ADC. The pulses in the simulation were bipolar

(±1) and single-ended in the experiment. Their capture sampling
rate and the emission bit rate B was 3 GHz in the simulation and
1.5 GHz in the experiment with sampling time defined as ts= 1/B.
This corresponded to a spatial resolution of δr= c/2B of 10 cm
for the experiment and 5 cm for the simulation. The number of
pixels in each image was the closest power of 2 greater than the
spatial resolution: 64 × 64 pixels for the experiment and 128 × 128
pixels for the simulation with a corresponding spatial resolution
step (δr∘) of 7.81 cm and 3.91 cm, respectively. The 2D scene
simulations used a finite-difference time-domain package12,13.
The experimental scene was built inside an electromagnetic
anechoic chamber 5 m wide × 5 m tall × 10 m long. The simulated
pulses had a 56-point time profile comprising a rising sinusoidal
quarter wave edge starting at zero amplitude (12 points), a flat
section at amplitude 1 (32 points) and a sinusoidal quarter wave
edge starting at amplitude 1 (12 points) and ending one point
from amplitude zero. A convolution between this pulse envelope
and the PRBS codes for each antenna produced the excitation for
each transmitter in the simulation. The simulation time resolu-
tion was Δt ¼ Δr=c

ffiffiffi
2

p
where the spatial resolution was Δr ≈

2.52 mm. At a given time, the bits from each antenna formed a
12-bit pattern. The sequence starts with all bits set to one and
ends with all bits set to zero. Each intermediate bit pattern is then
followed by its complement until all 2NT patterns are used. This
choice is an attempt to minimize spectral power below the cutoff
frequency of the omni-directional antennas (nominal roll-off
3 dB point at 200MHz) in the experiment.

The received capture, y, contained 4096 points in the
experiment and 4096 × 56 in the simulation. A reference
capture with an empty scene was subtracted from each capture
to remove background signals from the adjacent transmitters.
In the simulation we performed a sequential sum in blocks of
56 points to obtain the 4096 samples. The first-order image x1
was the dot product of the capture y and the reconstruction
matrix A1:

x1 ¼ A1 � y: ð2Þ
The calculation of the first-order mask A1 happens in two

steps. First we generate the sampling matrix S1 by adding the
values of W for each transmitter across the N voxels in the scene
for all M sampling and code times. In the next step, we normalize
the time series for each voxel by its Euclidean norm ∥ ⋅ ∥2.
The calculation of A1 and A2 is described in pseudo-code form
in the Methods section.

The calculation of the second-order sampling matrix A2

involves an extra loop accounting for the scene voxels weighted
by the first-order image mask where the test condition is based on
r1+ r2+ r3. The matrix is then normalized in the same fashion as
A1. The reconstruction of the second-order image requires
removing the first-order response from the received signal y. This
is done by normalizing the first-order image xn1 ¼ x1=max jx1j

Fig. 2 Time-of-flight sampling mask. Panels a, b, c, and d show the normalized spatiotemporal mask at different times (ta < tb < tc < td). This mask is
generated by 12 transmitters arranged in a line with the receiver in the center. Notice the several elliptical contributions adding to unique spatial patterns at
each time step.
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and using the transpose of the first-order reconstruction matrix
AT
1 to reach:

y1 ¼ y � AT
1 � xn1 : ð3Þ

The second-order image thus follows from Eq. (3) as:

x2 ¼ A2 � y1: ð4Þ

Simulations. We simulated a simple scene comprising two
orthogonal walls connected by their ends (Fig. 4a). The walls were
0.1 m in thickness with relative permitivity of ϵr= 1.5. The total
emission-capture time was 1.37 μs. The first-order reconstructed
image contains the horizontal wall but not the vertical wall except

for its bottom corner (Fig. 4b). This is because the first-order
reconstruction matrix does not contain any second-order signals to
correlate with the vertical wall. A histogram of the reconstructed
image shows that the voxels are normally distributed at low
amplitudes. However, the Gaussian fit does not describe the
histogram tails. The Gaussian part of the histogram corresponds to
the background of the image, whereas the non-Gaussian tail relates
to the horizontal wall and the lower end of the vertical wall. The
reconstructed image strength, defined here as−20log10(σ) is
18.9 dB, where σ= 0.11 is the standard deviation of the normalized
first-order image voxel values. To evaluate the image strength
metric above, we performed an additive white Gaussian noise
(AWGN) test. AWGN is a good approximation for the types of

Fig. 3 Experimental setup. Schematic showing the pseudo-random binary sequence (PRBS) generators that feed the antenna array after an amplification
stage (not shown). The transmitter array comprises 12 omni-directional antennas each receiving a unique PRBS code. The generators are synchronized by
the trigger source also used to time align the analog-to-digital converter (ADC). The differential receiver comprises two omini-directional antennas
connected by a 180-degree transformer and amplification stage (not shown). The ADC digitizes the signal from the amplified transformer output and
stores it in a local buffer. The computer (CPU) queries and transfers the digitized capture from the ADC buffer and uploads it to a graphics processing unit
(GPU) that performs the image reconstruction.

Fig. 4 Numerical evaluation of image reconstruction model. The simulated scene in panel a shows the two walls (black), the position of the transmitters
(red) and the receiver (blue), and the first-order reconstructed image using Eq. (2) with its corresponding gray scale bar in panel b. In panel c, the
histogram of the normalized image pixels in blue is fitted by a Gaussian in orange.
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noise encountered in most RF hardware in the absence of a
detailed specification of the electromagnetic environment at such
frequencies14. The received signal y was normalized to produce

0 dBm of power over the simulation time of 1.37 μs and deviations
from the noiseless image were computed for various levels of
AWGN. These image loss deviations were computed using the
relation 20log10∣IAWGN− Inoiseless∣ and measured in dB. IAWGN and
Inoiseless are the reconstructed images with and without AWGN,
respectively. Figure 5 shows that the image loss increases linearly
with the added noise and that the 0 dB image loss happens around
18 dBm of AWGN.

In addition, the number of non-zero voxels of the threshold
mask at 2σ is K= 722 pixels or 4.4% of the number of pixels in
the image. This result corresponds to a value for M in Eq. (1) of
3974, which is close to the actual 4096 choice.

To obtain the remainder of the vertical wall, we used the
normalized first-order image in Fig. 4b as an input for the
calculation of the second-order reconstruction matrix as
described above (Fig. 6). We chose three different threshold
levels (4σ, 5σ, and 6σ) for the input first-order image mask (panels
a, e, and i in Fig. 6). At 4σ, the mask contains most of the
horizontal wall and some background. At 5σ, the mask contains
primarily the horizontal wall. Finally, at 6σ the mask fails to show
the horizontal wall in full. The histograms (Fig. 6, panels b, f, and
k) of the normalized second-order images (Fig. 6 panels c, g, and
k) show a pronounced peak near zero amplitude followed by
nearly flat tails. A simple threshold applied to the those images
produce the aggregate image in panels d, h, and l of Fig. 6. The
thresholds were set at−0.256,−0.212, and−0.170 for panels c, g,
and k, respectively, with only the pixels below the threshold
counted. The combined reconstructed images in Fig. 6 panels d,
h, and l, show that there is enough specular reflection paths from
the transmitters to the receiver that involved two reflections at the
horizontal and vertical walls.

Fig. 5 Noise analysis of image reconstruction model. Image loss (blue
dots) as a function of additive white Gaussian noise (AWGN) and the
AWGN prediction (orange line). Insets show the recovered images at
different noise levels for comparison.

Fig. 6 Second-order reconstruction of the scene in Fig. 4a. Panel sets (a, b, c, d), (e, f, g, h), and (i, j, k, l) correspond to threshold filter levels of 4σ, 5σ,
and 6σ applied to the normalized image in Fig. 4b, respectively. Panels a, e, i correspond to the filtered first-order image, the second-order result including
gray scale bars (b, f, j) and corresponding intensity distribution (c, g, k), and the combined first- and second-order masks (d, h, l) in black with the ground
truth scene in red.
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Experiment. As presented in the Supplementary Video, we also
performed first-order reconstruction experiments in four differ-
ent configurations shown as snapshots in Fig. 7. Ground-truth
images generated by a camera system installed on top of the
anechoic chamber provided direct feedback on the performance
of the system under dynamic conditions. In the first configuration
(panel a) a person walked in front of the antenna array. The
performance of the system (panel e) is similar to the simulations
despite being operated at lower sampling rate (1.5 GHz versus
3 GHz in the simulation). In the second configuration (panel b),
we placed a particle-board wall (1.22 m tall × 2.44 m wide ×
12.7 mm thick) 1 m from the array. We see the image (panel f)
shows contributions coming from an empty area along the
antenna array axis as described in Fig. 1. We then had a person
walk behind the wall (panel c) in the third configuration. In the
real-time screen view of the image (panel g), it is possible to see
small fluctuations correlate visually with the ground-truth image.
However, because the reflection from the wall overwhelms the
signal from objects behind it, their signature is difficult to see
in the same scale. We thus collected a reference capture from
the wall and subtracted it from captures taken with a person
in the fourth configuration (panel d). The result (panel h) shows
that the dynamic range of the system is high enough to resolve
objects behind the wall.

In the experiment, the capture duration for 4096 samples was
2.73 μs. Due to the on-board buffer memory capability of the
ADC, image captures can be recorded at a rate of 1/2.73 μs or

366 kHz for a total duration of 1.3 s. Single-capture data transfers
to the computer lasted an average of 0.5 ms per image. The image
reconstruction algorithm employed a graphics processing unit
that performedM ×N= 4096 × 4096= 16.8 million operations in
0.9 ms. These performance metrics allow display refresh rates of
700 frames per second or more than 20 times typical video frame
rates. The first-order matrix calculation lasted 50 s. If memory of
the order N ×M is available, this matrix does not need to be re-
calculated unless changes in the position of the antenna array or
receiver antenna are made. The second order reconstruction
matrix calculations was performed in 9 h on the same graphics
processing unit. Because it requires the image from the first-order
calculation it poses an optimization challenge. However, if
memory of the order M ×N2 is available, all second-order
contributions can be calculated in no more than 3.6 s using the
above GPU hardware.

Discussion
We developed an RF transient imaging model that uses con-
tinuous emission and capture to obtain images with a few
microseconds of capture time. Simulations and experiments
demonstrated its dynamic range, spatial and time resolution to
produce through-wall images in real-time. The dynamic range of
the system is sufficient to resolve small changes in position and
possibly shape variations at sub-pixel resolutions. The recon-
struction matrix operates on each voxel and can be calculated to

Fig. 7 Experimental demonstration. Ground truth images from a camera mounted 5 m above the scene with a person (a), a wall (b), a person behind a wall
and no wall background subtraction (c), and a person behind a wall with background subtraction (d). The corresponding first-order reconstructions and
gray scale bars for panels a, b, c, and d set are shown, respectively, in panels e, f, g, and h.
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image patches in a wider range in order to save memory. The
above results show that this system can be used for a variety of
applications involving real-time analysis. These include tracking
explosions15 and space debris dynamics16 where objects travel at
speeds of the order of 10 km/s.

The transient image model is a full 3D model that can be used
to produced 2D images without any loss of generality. In the case
of the experimental images, each voxel represented a projection of
all scatterings happening in the z-axis. To remove z-axis ambi-
guities, a 2D emitter array must be employed.

This approach also demonstrated second-order images under
specular conditions. It is important to mention, however, that the
specular conditions are very stringent and second-order reflec-
tions may not be sufficient to recover all the details in a scene. In
fact, without structuring the first-order and characterizing higher-
order responses as done by Liu8, the second-order reconstruction
presents some challenges. However, if the specular conditions are
relaxed and diffuse scattering is present as is the case in some
optical systems, second-order imaging may restore more of the
overall components of a scene.

Methods
Derivation of the transient image model. To generate the reconstruction matrix
we used a simple light transport model based on the propagation and scattering of
Dirac delta functions. We start with the wave equation:

1
c2
∂2E
∂t2

� ∇2E ¼ Fðt; r; tj; rjÞ: ð5Þ

The solution for a point source F= δ(t− tj, r− rj) localized in space and time is
the Green’s function17:

Gðt; r; tj; rjÞ ¼
1

4πjr� rjj
δ
h
tj �

�
t � jr� rjj

c

�i
: ð6Þ

In Eq. (6), δ is the Dirac delta function. The above expression can be extended
to an array of NT point sources emitting pulses at random times according to a
pseudo-random binary sequence Cj(tj):

Eð�Þðt; rÞ ¼ ∑
NT

j¼1
CjðtjÞGðt; r; tj; rjÞ: ð7Þ

In terms of the transient rendering6, E(∘) is the locally emitted flux. It follows
that the first-order response of the scene E(1) upon illumination by E(∘) is given by
the geometry and visibility term x, and a scattering term represented by the Green’s
function (Eq. (6)):

Eð1Þðt; rÞ ¼
Z

Eð�Þðt0; r0ÞGðt; r; t0; r0Þx1ðr0Þdt0dr0: ð8Þ

The Dirac delta functions in Eq. (8) will make the integral in dt0 over the
sampling time ts vanish except when the path connecting a transmitter to a point in
the scene (r1) and from that point to the receiver (r2) satisfies the condition r1+ r2
= ct. The integral in dr0, when evaluated over the spatial resolution step δr∘ across
the scene, leads to the the dot product of the S matrix and the discretized version of
x. Each entry of S is a sum of the non-zero likelihood factors 1/r1r2. Finally, the
value of the received signal is evaluated at the origin of the coordinate system y=
E1(t, r= 0) giving the first-order transient rendering equation:

y ¼ A1 � x1: ð9Þ
Notice that y already has the background contribution from E(∘) subtracted as in

the case of the simulation and experimental data. The resulting value of x1 is the
first-order term in an expansion. It does not contain components due to multiple
scatterings. To obtain higher order corrections to x, we calculate E(1) using the first-
order solution to solve for x2 in the second-order integral:

Eð2Þðt; rÞ ¼
Z

Eð1Þðt0; r0ÞGðt; r; t0; r0Þx2ðr0Þdt0dr0: ð10Þ

The expansion to higher orders follows by induction:

EðnÞðt; rÞ ¼
Z

Eðn�1Þðt0; r0ÞGðt; r; t0; r0Þxnðr0Þdt0dr0: ð11Þ

Reconstruction algorithm. The algorithm below includes first- and second-order
effects. The Image[pixel] variable is the image calculated in the first-order pass of
the algorithm where line 27 must read “Add 0 to scene”. For the second-order
calculation, line 19 must read “Add 0 to scene”. The algorithm was scripted in
Python with the GPU components written in C18 for an Nvidia Titan V GPU.

Algorithm 1
Reconstruction matrix calculation in 2D
1: Initialize coordinates for the transmitters and receiver
2: Initialize sampling time array with M elements
3: Initialize the codes matrix for all transmitters CNT´M
4: Initialize scene with N elements
5: Initialize SM×N

6: Initialize AN×M

7: for every t0 in the sampling time array do
8: Set all elements of scene to zero
9: for every transmitter coordinate rTx do
10: for every time tTx in the transmitter code time array do
11: if t ¼ t0 � tTx ≥ 0 then
12: Set rmin= c(t− ts)
13: Set rmax= ct
14: for every pixel position in scene do
15: Calculate the distance from pixel to transmitter r1
16: Calculate the distance from pixel to receiver r2
17: Calculate r= r1+ r2
18: if rmin ≤ r < rmax then
19: Add CTx ;t

=r1r2 to scene
20: else
21: for every pixel position in scene do
22: Calculate the distance from first pixel to transmitter r1
23: Calculate the distance from first to second pixel r2
24: Calculate the distance from second pixel to receiver r3
25: Calculate r= r1+ r2+ r3
26: if rmin ≤ r < rmax then
27: Add Image½pixel� ´CTx ;t

=r1r2r3 to scene
28: end if
29: end for
30: end if
31: end for
32: end if
33: end for
34: end for
35: end for
36: for Every pixel n in scene do
37: Calculate An,M= SM,n/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑nS

2
M;n

q
38: end for

Data availability
Data used in the preparation of this manuscript is available in the text, supplemental
material or upon reasonable request to the first author.

Code availability
The code needed to reproduce the results of this manuscript is presented in the
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Received: 20 January 2020; Accepted: 18 May 2021;

References
1. Bhandari, A. & Raskar, R. Signal processing for time-of-flight imaging sensors.

IEEE Signal Process. Mag. 33, 45–58 (2016).
2. Faccio, D. & Velten, A. A trillion frames per second: the techniques

and applications of light-in-flight photography. Rep. Prog. Phys. 81, 105901
(2018).

3. Ghasr, M. T., Horst, M. J., Dvorsky, M. R. & Zoughi, R. Wideband microwave
camera for ream-time 3-d imaging. IEEE Trans. Antennas Propag. 65,
258–268 (2017).

4. Charvat, G., Temme, A., Feigin, M. & Raskar, R. Time-of-flight microwave
camera. Sci. Rep. 5, 14709 (2015).

5. Velten, A. et al. Recovering three-dimensional shape around a corner using
ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012).

6. Smith, A., Skorupski, J. & Davis, J. Transient rendering. Technical Report
UCSC-SOE-08-26 https://www.soe.ucsc.edu/research/technical-reports/UCSC-
SOE-08-26 (2008).

7. Jarabo, A., Masia, B., Marco, J. & Gutierrez, D. Recent advances in transient
imaging: a computational graphics and vision perspective. Vis. Informatics 1,
65–79 (2017).

8. Liu, X. et al. Non-line-of-sight imaging using phasor-field virtual wave optics.
Nature 572, 620 (2019).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24219-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3981 | https://doi.org/10.1038/s41467-021-24219-0 | www.nature.com/naturecommunications 7

https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-08-26
https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-08-26
www.nature.com/naturecommunications
www.nature.com/naturecommunications


9. Adib, F., Hsu, C., Mao, H., Katabi, D. & Durand, F. Capturing the human
figure through a wall. ACM Trans. Graph. 34, 219 (2002).

10. Seitz, S. M., Matsushita, Y. & Kutulakos, K. N. A theory of inverse light
transport. Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1 2, 1440–1447 Vol. 2 (2005).

11. Shannon, C. A mathematical theory of communication. Bell System Technical
J. 27, 379 (1948).

12. Warren, C., Giannopoulos, A. & Giannakis, I. Open source software to
simulate electromagnetic wave propagation for ground penetrating radar.
Comput. Phys. Commun. 209, 163–170 (2016).

13. Warren, C. et al. A cuda-based gpu engine for gprmax: open source fdtd
electromagnetic simulation software. Comput. Phys. Commun. 237, 208–218
(2018).

14. Goldsmith, A. Wireless Communications (Cambridge Univ. Press, 2005).
15. Pooley, J., Price, E., Ferguson, J. & Ibsen, M. Detonation velocity

measurements with uniform fibre bragg gratings. Optics Express 27,
23464–23475 (2019).

16. Mehrholz, D. et al. Detecting, tracking and imaging space debris. ESA Bulletin
109, 128–134 (2002).

17. Felsen, L. & Marcuvitz, N. Radiation and Scattering of Waves (Prentice-Hall,
1972).

18. Klöckner, A. et al. PyCUDA and PyOpenCL: a scripting-based approach to
GPU run-time code generation. Parallel Comput. 38, 157–174 (2012).

Acknowledgements
J. Benson, D.A. Howe, V. Gerginov, B.K. Alpert, M. Pomponio.

Author contributions
Fabio da Silva developed the theory, designed, and implemented the experiment.
Anthony Kos designed and implemented the experiment. Grace Antonucci assisted with
the design and implementation of the experiment. Jason Coder assisted with the
implementation of the experiment. Craig Nelson assisted with the digital instrumenta-
tion. Archita Hati assisted with the radio-frequency instrumentation.

Competing interests
The authors declare no competing interests.

Disclaimers
Certain commercial equipment, instruments, or materials are identified in this paper in
order to specify the experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by NIST, nor is it intended to imply
that the materials or equipment identified are necessarily the best available for the
purpose. This is an official contribution of the National Institute of Standards and
Technology; not subject to copyright in the United States.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-24219-0.

Correspondence and requests for materials should be addressed to F.C.S.d.S.

Peer review informationNature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24219-0

8 NATURE COMMUNICATIONS |         (2021) 12:3981 | https://doi.org/10.1038/s41467-021-24219-0 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-24219-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Continuous-capture microwave imaging
	Results
	Imaging model
	Implementation of the imaging model
	Simulations
	Experiment

	Discussion
	Methods
	Derivation of the transient image model
	Reconstruction algorithm

	Algorithm 1
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




