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PIWIL4 and SUPT5H combine to predict 
prognosis and immune landscape 
in intrahepatic cholangiocarcinoma
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Abstract 

Background:  Intrahepatic cholangiocarcinoma (ICC) is a fatal primary liver cancer, and its long-term survival rate 
remains poor. RNA-binding proteins (RBPs) play an important role in critical cellular processes, failure of any one or 
more processes can lead to the development of multiple cancers. This study aimed to explore pivotal biomarkers and 
corresponding mechanisms to predict the prognosis of patients with ICC.

Methods:  The transcriptomic and clinical information of patients were collected from The Cancer Genome Atlas and 
Gene Expression Omnibus databases. Bioinformatic methods were used to identify survival-related and differentially-
expressed biomarkers. Quantitative real-time PCR (qRT-PCR) and immunohistochemistry were used to detect the 
expression levels of key biomarkers in independent real-world cohorts. Subsequently, a prognostic signature was con-
structed that effectively distinguished patients in the high- and low-risk groups. Independent prognosis analysis was 
used to verify the signature’s independent predictive capabilities, and two nomograms were developed to predict 
survival.

Results:  PIWIL4 and SUPT5H were identified and considered as pivotal biomarkers, and the same expression trends 
of upregulation in ICC were also validated via qRT-PCR and immunohistochemistry in the separate real-world sample 
cohorts. The prognostic signature showed good predictive capabilities according to the area under the curve. The 
correlation of the biomarkers with the tumour microenvironment suggested that the high riskScore was positively 
related to the enrichment of resting natural killer cells and activated memory CD4 + T cells.

Conclusion:  In the present study, we demonstrated that PIWIL4 and SUPT5H could be used as novel prognostic bio-
markers to develop a prognostic signature. This study provides potential biomarkers of prognostic value for patients 
with intrahepatic cholangiocarcinoma.
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Background
Intrahepatic cholangiocarcinoma (ICC) is a fatal hepa-
tobiliary malignancy derived from the bile ducts, and 
has a difficult diagnosis, poor prognosis, and very high 
chance of mortality [1, 2]. It accounts for approximately 
10–20% of all bile duct malignancies [3]. To date, an 
increasing incidence of ICC has been reported in 
most of the world, while most patients with ICC have 
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underlying liver diseases such as primary sclerotic 
cholangitis and hepatitis B, etc. [4, 5]. Surgery is con-
sidered the only treatment for cure at present, whereas 
most patients are not viable candidates for surgery at 
the time of diagnosis [6, 7]. Chemotherapy is another 
effective treatment, but most patients develop resist-
ance eventually [8]. Therefore, finding novel and effec-
tive treatments to strengthen the long-term prognosis 
of ICC is necessary and urgent. Recently, immunother-
apies and targeted therapies have gradually come to 
researchers’ attention [9–12]. A variety of therapeutic 
targets have been identified and validated, and some 
vital biomarkers have been successfully transformed 
into clinical applications, such as FGFR, IDH1/2, PD1, 
PDL1 [11, 13–15]. However, there are still many undis-
covered biomarkers, which play an important role in 
tumour progression; therefore, exploring additional 
prognostic biomarkers will help us better understand 
disease progression.

RNA-binding proteins (RBPs) play an important role in 
critical cellular processes, such as RNA splicing, modifi-
cation, transport, localisation, stability, degradation, and 
translation [16]. These are essential for cell development, 
differentiation, and metabolism [17]. Thus, failure of 
any one or more of the above-mentioned processes can 
lead to the development of multiple diseases, including 
cancer [18–20]. Recent studies have demonstrated that 
RBP-mediated RNA modifications are critical for can-
cer progression via various molecular mechanisms, and 
that aberrant expression of RBPs in multiple cancer types 
affects the expression and function of oncogenes and 
anti-oncogenes [17, 21, 22].

Several studies have revealed that some crucial RBPs 
regulate tumorigenesis and cancer progression. For 
instance, the Musashi proteins, including Musashi-1 
and Musashi-2, have been demonstrated as key prog-
nostic biomarkers. Elevated Musashi protein expression 
characterises a variety of solid tumours and is associated 
with metastasis, lymph node invasion, and poor progno-
sis [23]. Increasing evidence suggests that the RBP HuR 
also plays a crucial role in disease progression by target-
ing the binding sites of oncogenes, or antioncogenes, and 
by regulating the corresponding cell processes [24, 25]. 
Similarly, elevated HuR expression is positively correlated 
with malignant biological behaviour in cancer. Nota-
bly, Toyota et  al. demonstrated that high cytoplasmic 
HuR expression is closely associated with poor survival 
and the decreased efficacy of chemotherapy in patients 
with surgically resected cholangiocarcinoma [26]. Con-
sequently, increasing evidence indicates that RBPs are 
extensively involved in tumour progression in ICC. At 
present, several RBPs and their underlying mechanisms 
have been revealed in the initiation and progression of 

cancer, while more promising targets for ICC need be 
identified and verified.

In the present study, we identified and validated prog-
nosis-related biomarkers PIWIL4 and SUPT5H using 
bioinformatic methods based on multiple public data-
bases and as a result developed a risk classification model 
to predict the long-term survival of ICC patients. Nota-
bly, the biomarkers were further verified in ICC and nor-
mal tissues via laboratory experiments, which showed a 
similar expression trend to each other.

Materials and methods
Data collection
The RNA sequences regarding cholangiocarcinoma, spe-
cifically TCGA-CHOL, and clinicopathological infor-
mation were obtained from The Cancer Genome Atlas 
(https://​portal.​gdc.​cancer.​gov/) and allocated into the 
training cohort. The GSE107943 validation cohort’s tran-
scriptome and clinicopathological data was collected 
from the Gene Expression Omnibus (GEO) database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The list of 1542 
RBPs was obtained based on a previous published study 
[27]. The mRNA matrix was annotated based on gene 
transfer format files from Ensemble using the Perl lan-
guage. Tumour tissues with the pathological diagnosis of 
ICC and adjacent normal tissues were prospectively col-
lected from the Chinese PLA General Hospital. Written 
informed consent was obtained from all patients. After 
surgical resection, all the tissues were immediately col-
lected and stored at −  80  °C, awaiting further prepara-
tion for qRT-PCR analysis. The ICC tissue microarray 
for immunohistochemistry (IHC), which contained 155 
ICCs and 5 adjacent normal tissues, was purchased from 
Shanghai Outdo Biotech Company and approved by the 
ethics committee of Shanghai Outdo Biotech Company 
(Shanghai, China).

Extraction of RBP expression and differential expression 
analysis
Based on the obtained list of RBPs and mRNA expres-
sion profiles, we extracted the RBPs with available mRNA 
expression profiles from TCGA-CHOL and GSE107943 
cohorts to construct a new matrix for subsequent analy-
ses. Then, using the “limma” package [28], we screened 
the differentially expressed RBPs (DE-RBPs), with the 
thresholds set as false discovery rate (FDR) < 0.001 and 
|log2 fold-change (FC)|> 0.5. Gene Ontology (GO) and 
the Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
enrichment analyses were used to annotate the upregu-
lated and downregulated DE-RBPs via the “clusterPro-
filer” and “GOplot” packages [29, 30]. A protein–protein 
interaction network was constructed from the DE-RBPs 
using the STRING online database (https://​string-​db.​
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org/) with a medium confidence threshold of 0.4, and was 
then visualised using Cytoscape software (version 3.7.2).

Survival‑related RBPs screening and copy‑number 
variation (CNV) analysis
The univariate Cox regression analysis was implemented 
to find the survival-related DE-RBPs via the “survival” 
package, and the threshold was set to a p value < 0.05. 
Multivariate Cox regression analysis was used to deter-
mine the optimal survival-related DE-RBPs, and regres-
sion coefficients were noted for subsequent analysis. 
Kaplan–Meier (KM) curves were used to visualise the 
prognostic value of each DE-RBP in the TCGA cohort. 
To reveal the frequency of CNV of optimal DE-RBPs, we 
downloaded the CNV data of TCGA-CHOL from UCSC 
Xena (http://​xena.​ucsc.​edu/), and revealed the RBPs 
location using the “RCircos” package [31].

Quantitative real‑time PCR
Total RNA extraction, cDNA synthesis, and qRT-PCR 
were performed according to the manufacturer’s proto-
col and our previous article [32]. h18S rDNA was used 

as an internal reference; finally, the cycle threshold (Ct) 
was recorded, and relative expression was calculated 
using the 2−ΔΔCt method. Primer sequences of PIWIL4, 
SUPT5H, and h18S rDNA are shown in Table 1.

Immunohistochemistry
All IHC staining for the tissue microarray was performed 
according to the manufacturer’s protocol. All images 
were obtained using a Leica Aperio XT digital pathology 
scanner (Leica, Wetzlar, Germany). The immunoreac-
tive score (IRS) was calculated according to the ratio of 
positive cells and the staining intensity. This was used to 
evaluate expression levels between tumour and normal 
tissues. The ratio of positive cells was defined as follows: 
0 (< 10%), 1 point (10–40%), 2 points (40–70%), and 3 
(> 70%). The staining intensity was scored as 0 (negative), 
1 (weakly positive), 2 (positive), and 3 (strongly posi-
tive). The two scores were added up to either 0–2 points 
to indicate weak expression, or 3–6 points, which was 
defined as strong expression. Detailed primary antibod-
ies used for IHC are shown in Additional file 1: Table S1. 
The mean IRS from two random images of each sample 
was used to represent the final IRS using ImageJ software 
1.53.

Development and validation of RBP‑related prognostic 
signature
By combining the coefficients and expression levels 
of PIWIL4 and SUPT5H, we generated the riskScore 
of each patient using the following formula: riskScore 
=

∑k
i=1

βiexpi . All patients were grouped into high- or 
low-risk groups based on the median riskScore. The 
KM survival curve presented the predictive power, and 

Table 1  Primers used for quantitative real-time PCR

GeneName Direction Sequences (5′–3′)

h18S Forward AAC​CCG​TTG​AAC​CCC​ATT​

h18S Reverse CCA​TCC​AAT​CGG​TAG​TAG​CG

PIWIL4 Forward CCA​AGA​CTG​GCA​GCT​ATA​CCA​

PIWIL4 Reverse ACC​GTC​GAA​TGC​TTT​TGC​TTT​

SUPT5H Forward TGA​TCC​CAC​GCA​TCG​ACT​AC

SUPT5H Reverse TGG​AGG​CCG​CTT​AAA​CTT​CTT​

Fig. 1  Differentially expressed analysis. A Heatmap of significant DE-RBPs. B Volcano plot of DE-RBPs

https://string-db.org/
http://xena.ucsc.edu/


Page 4 of 14Zou et al. Cancer Cell International          (2021) 21:657 

the area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) curve was used to verify the 
prediction accuracy using the “survivalROC” package. 
We calculated the AUC at 1, 2, and 3 years to verify the 

model accuracy. Another independent gene expression 
profile, GSE107943, was used as the testing cohort for 
model validation. Finally, gene set enrichment analysis 
(GSEA) was performed to explore potential mechanisms, 

Table 2  Univariate and multivariate Cox regression analysis for identifying independently prognostic biomarkers

Univariate Cox regression analysis

Gene HR HR.95L HR.95H P value

PIWIL4 0.4006 0.1856 0.8648 0.0198

EIF4ENIF1 0.1630 0.0269 0.9895 0.0487

SUPT5H 0.0046 0.0003 0.0674  < 0.001

SCAF4 0.1656 0.0277 0.9894 0.0487

Multivariate Cox regression analysis

Gene Coef HR HR.95L HR.95H P value

PIWIL4 − 0.6601 0.5168 0.2138 1.2492 0.1427

SUPT5H − 4.8675 0.0077 0.0005 0.1178  < 0.001

Fig. 2  Copy number variation (CNV) analysis and KM survival analysis. A The barplot of CNV frequency (%). B The location of PIWIL4 and SUPT5H. C 
The KM survival curve of PIWIL4. D The KM survival curve of SUPT5H
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and principal component analysis was used to efficiently 
downscale high-dimensional sequencing data.

Immune cell infiltration and chemotherapeutics efficacy 
analysis
We integrated acknowledged methods for evaluating the 
immune infiltration status in the TCGA-CHOL data-
set, including TIMER [33], CIBERSORT [34], XCELL 
[35], QUANTISEQ [36], MCPcounter [37], and EPIC 
[38]. We analysed the correlation of the riskScore with 
immune cell infiltration [39], and used the TISIDB data-
base (http://​cis.​hku.​hk/​TISIDB/) to explore the correla-
tions between two RBPs expression and tumour immune 
microenvironment and immune-related markers.

To evaluate the capability of the signature to predict 
chemotherapeutic efficacy in ICC, we compared the 
half-inhibitory concentration (IC50) difference of sev-
eral chemotherapeutics in high- and low-risk groups. 
The Wilcoxon signed-rank test and the “ggplot2” and the 
“pRRophetic” packages were used to implement this pro-
cess [40].

Optimal prognostic factors identification, clinical relevance 
analysis and nomogram construction
Univariate and multivariate regression analyses were 
performed to identify independent prognostic factors, 
including age, sex, tumour grade, American Joint Com-
mittee on Cancer (AJCC) stage, and peripheral nerve 
infiltration (PNI). Further survival analyses were also 
performed, stratified by clinical characteristics. Further, 
we generated two nomograms using the “rms” R pack-
age based on gene expression levels and clinicopathologic 
characteristics, respectively. The predictability of the 
nomograms was validated using the calibration curves.

Statistical analysis
Continuous variables were reported as medians (inter-
quartile range) and were analysed by the Student’s t-test, 
while a log-rank test was used to perform the survival 
analysis. All statistical analyses and graphics were per-
formed using R version 4.0.2 and its resource pack-
ages. Overall survival (OS) was defined as the length of 
time between surgery and death, or the last follow-up. 

Fig. 3  Validation of proteins expression. A The differentially-expressed level of PIWIL4 and SUPT5H were shown in boxplot. B The PIWIL4 and 
SUPT5H expression level was detected by qRT-PCR, h18S was used as internal control. C Representative IHC images of the PIWIL4 and SUPT5H 
expression in ICC and para-carcinoma tissues (200 × magnification). D Immunoreactive score (IRS) of the PIWIL4 and SUPT5H in ICC samples and 
normal tissues. (* P < 0.05; ** P < 0.01; *** P < 0.001, **** P < 0.0001)

http://cis.hku.hk/TISIDB/
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Two-sided p < 0.05, was considered statistically signifi-
cant in all statistical tests.

Results
Data collection
In total, 1523 RBPs with available mRNA expression 
profiles were extracted for subsequent analyses. The 
gene symbols of all obtained RBPs are shown in Addi-
tional file 1: Table S2. A total of 33 patient samples were 
obtained from TCGA and allocated into the training 
cohort, while an additional 30 patient samples were col-
lected from GEO and grouped into the testing cohort. 
The detailed survival information (OS or last follow-up 
time) and the clinicopathologic characteristics of the 
patients involved in the two cohorts are shown in Addi-
tional file 1: Table S3.

Differential expression analysis
Using the screening criteria, a total of 242 DE-RBPs were 
identified, of which 116 were upregulated and 126 were 
downregulated (Fig. 1A, B, Additional file 1: Table S4). As 
expected, GO and the KEGG pathway analyses demon-
strated that DE-RBPs were correlated significantly with 
vital RNA regulatory processes, such as RNA transport 
and RNA degradation (Additional file  2: Fig. S1A–D). 
The PPI network and corresponding subgroup revealed 
associations between these DE-RBPs (Additional file  2: 
Fig. S2A–D, Additional file 1: Table S5).

Survival‑related RBPs screening and CNV analysis
Univariate and multivariate regression analyses identi-
fied two independently survival-related DE-RBPs, namely 
PIWIL4 and SUPT5H (Table  2), with the coefficients 

Fig. 4  A–D Survival condition plots, heatmap, barplot in training cohort. E Kaplan-Meier survival curve in training cohort. F Time-dependent ROC 
curves used to predict OS at 1, 2, and 3 years in training cohort
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being less than 0, suggesting that they were key protec-
tive factors in tumour progression. Then, we revealed 
the CNVs of PIWIL4 and SUPT5H, which are shown 
in Fig.  2A and Additional file  1: Table  S6. Notably, we 
also presented their location in the genome (Fig.  2B), 
which could help us understand the roles they might 
play. Finally, the KM survival curve indicated that both 
PIWIL4 and SUPT5H were protective factors for survival 
classification (p < 0.05, Fig. 2C, D).

Validation of expression of PIWIL4 and SUPT5H 
in the independent cohorts
We verified the proteins PIWIL4 and SUPT5H using 
qRT-PCR and IHC in ICC. First, we analysed the tran-
scriptomic data and demonstrated significantly upregu-
lated levels of the proteins in ICC tissues (Fig. 3A), and 
the qRT-PCR results showed similar expression trends 
(Fig.  3B). We further performed IHC to validate the 
expression of these proteins. The IHC results showed 

that PIWIL4 was located in the cytoplasm, and SUPT5H 
was located in the nucleus, while PIWIL4 and SUPT5H 
were both significantly upregulated in ICC (Fig. 3C, D).

Development and validation of RBP‑related prognostic 
signature
An optimal prognostic signature was con-
structed. The riskScore was calculated as follows: 
riskScore = (−0.660) ∗ PIWIL4 + (−4.867) ∗ SUPT5H   . 
All patients in the training and testing cohorts were allo-
cated into high- and low-risk groups using their median 
riskScore. In the training cohort, survival condition plots 
and bar plots showed the mortality difference among 
the risk groups and revealed the differential expression 
patterns of DE-RBPs (Fig.  4A–D). Moreover, the KM 
survival curve indicated that the high-risk group had 
a poorer prognosis and a shorter OS than the low-risk 
group (p < 0.01, Fig. 4E). The AUC calculated at 1, 2, and 

Fig. 5  A–D Survival condition plots, heatmap, barplot in testing cohort. E Kaplan-Meier survival curve in testing cohort. F Time-dependent ROC 
curves used to predict OS at 1, 2, and 3 years in testing cohort



Page 8 of 14Zou et al. Cancer Cell International          (2021) 21:657 

3  years to verify the model accuracy were 0.969, 0.962, 
and 0.904, respectively (Fig. 4F).

In the testing cohort, survival condition plots and 
bar plots showed a similar difference in that the high-
risk group had higher mortality than the low-risk group 
(Fig.  5A–D). The KM survival curve showed a sur-
vival difference between the two groups even if p > 0.05 
(Fig. 5E). The AUC at 1, 2, and 3 years were 0.591, 0.691, 
and 0.725, respectively (Fig.  5F). All the above results 
demonstrated that this signature could predict the prog-
nosis of ICC patients with good predictive accuracy. In 
addition, these two RBPs were significantly correlated 
with one another in the training and testing cohorts 
(Additional file 2: Fig. S3).

Gene set enrichment analysis
The significant enrichment pathways included ABC 
transporters, glycosaminoglycan biosynthesis keratan 
sulfate, mTOR signalling pathway, other glycan degrada-
tion, and starch and sucrose metabolism (Fig. 6A, Addi-
tional file 2: Fig. S4, and Additional file 1: Table S7). The 
mTOR signalling pathway has been reported to be the 
key pathway in tumorigenesis and progression (Fig. 6B). 

The principal component analysis results showed that the 
model had a good risk classification (Fig. 6C–E).

Immune cell infiltration and chemotherapeutics efficacy 
analysis
We investigated the correlation of PIWIL4 and SUPT5H 
with the tumour microenvironment, and the results sug-
gested that the high riskScore was positively related to the 
enrichment of resting natural killer (NK) cells and acti-
vated memory CD4 + T cells. Meanwhile, the decreased 
enrichment of memory CD4 + T cells activated mye-
loid dendritic cells and resting memory CD4 + T cells 
(Fig.  7A). Notably, the immune correlation of the two 
DE-RBPs is shown in Table 3, and PIWIL4 was demon-
strated to be differentially expressed in groups with or 
without immunotherapy for melanoma (p = 0.0385)[41]. 
Subsequently, we aimed to investigate the relationship 
between the riskScore and common chemotherapeutic 
efficacy. The results showed that the low riskScore was 
positively correlated with the high IC50 of the chemo-
therapeutic agent docetaxel (p = 0.031) and low IC50 of 

Fig. 6  A Gene set enrichment analysis, B The significantly enriched mTOR signaling pathway, C–E Principal component analysis based on the 
whole genes, RBP-related genes, risk-related genes
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gefitinib and gemcitabine (Fig. 7B–D); however the latter 
two agents were not statistically significant.

Clinical relevance analysis and nomogram construction
To further reveal the clinical predictive power of 
PIWIL4 and SUPT5H, univariate and multivariate 
Cox regression analyses were performed based on all 
the clinicopathologic characteristics and riskScore. 
The results suggested that the riskScore had an inde-
pendent predictive value (Fig.  8A, B, Additional file  1: 
Table  S8). Further survival analyses stratified by clini-
cal characteristics were carried out, which showed that 
high-risk patients had poor long-term survival in all 
clinical characteristics for stratification survival analy-
ses (Additional file 2: Fig. S5).

Next, we integrated the transcriptomic data and clin-
icopathologic characteristics into two nomograms for 
predicting 1, 2, 3 years survival rates (Fig. 8C, D). The 
multivariable ROC curve showed that the riskScore had 
the best predictive accuracy (AUC = 0.993, Additional 
file  2: Fig. S6A), and the calibration curves showed a 
good agreement between predicted and actual 1, 2, and 
3 year survival rates (Additional file 2: Fig. 6B–G). The 

clinical usefulness of the two nomograms was accurate 
and steady in predicting the long-term prognosis of 
patients with ICC.

Discussion
Similar to most malignancies, the long-term survival 
and therapeutic effects of patients with ICC remain 
poor [4]. Recently, with the increasing development of 
immunotherapy and targeted therapy, exploring novel 
tumour biomarkers has become a promising field of 
study [6]. In the present study, two prognostic biomark-
ers, PIWIL4 and SUPT5H, and their corresponding 
immune-mediated status for ICC were identified and 
validated. PIWIL4 and SUPT5H were both significantly 
upregulated in ICC and had the potential to become 
prognostic biomarkers. We then developed a prognostic 
signature, which could allocate the patients into high- 
and low-risk groups to distinguish long-term survival. In 
addition, the potential mechanism of the signature was 
revealed via GSEA, which showed that the biomarkers 
are involved in the mTOR signalling pathway in tumour 
progression. Increasing evidence has also demonstrated 
that the mTOR signalling pathway plays an essential role 

Fig. 7  A Correlation analysis of signature with tumor-infiltrating immune cells. B–D The IC50 for frequently-used chemotherapeutics drugs, (B) 
Docetaxel, (C) Gefitinib, (D) Gemcitabine
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in the initiation and progression of ICC, and could be 
considered as a future therapy target [42, 43]. The prog-
nostic signature was a powerful predictor of ICC progno-
sis, with its predictive capability validated in the testing 
cohort. Notably, we constructed two nomograms based 
on different detection methods, which provided differ-
ent predictive tools for different patients. All calibration 
curves also showed an agreement between the probabil-
ity of predictive survival and actual survival in 1, 2, and 
3-year. Furthermore, the multivariate ROC curve showed 
that the riskScore had the best predictive accuracy.

PIWIL4 is a member of the P-element-induced wimpy 
testis (PIWI) protein family that was first discovered in 
germline cells [44]. PIWIL proteins bind a unique type of 
non-coding small RNA called piRNAs (PIWI-interacting 
RNAs) to form the piRNA/piwi complex, which influ-
ences protein regulation and epigenetic regulation, etc. 
[45]. Recently, PIWI family proteins have been consid-
ered as  prognostic markers for various malignancies. A 
systematic review and  meta-analysis showed that PIWI 
family proteins have the potential to indicate the progno-
sis of various cancer, and lower PIWIL4 expression levels 
indicate worse prognosis in cancer [46]. Iliev et al. dem-
onstrated that decreased expression levels of PIWIL4 
indicated worse long-term survival in patients with renal 

cell carcinoma [47]. Li et  al. also revealed that patients 
with low levels of PIWIL4 protein expression had a poor 
prognosis, and that PIWIL4 plays an important role in 
maintaining pancreatic cell homeostasis [48], which are 
results that are all consistent with our study. Notably, 
Mishra, N. K et al. study identified that PIWIL4 involve 
in DNA methylation and predict the prognosis, and can 
be used as a key prognostic biomarker in ICC [49]. In 
the present study, we explored the prognostic value of 
PIWIL4 based its RNA-binding protein mechanisms, 
and elucidated prognostic power of PIWIL4 from new 
perspective. thus, PIWIL4 should be considered and veri-
fied as an important biomarker in ICC. Recent evidence 
indicates that SUPT5H is a vital transcription promoter-
binding protein involved in transcriptional elongation 
[50–52]. Lone et  al. revealed a vital role of SUPT5H in 
regulating the expression levels of genes that control pro-
liferation, migration, cell cycle, and apoptosis in breast 
cancer cases [53]. However, no study to the best of our 
knowledge has demonstrated the relationship between 
SUPT5H expression levels and the prognosis of patients 
with malignancies; our study being one of the first to 
identify SUPT5H as a prognostic biomarker in ICC, with 
low expression levels of SUPT5H reflecting poor progno-
sis, and it can be considered as a protective factor. This 

Table 3  Immune-related markers and mechanism analysis of PIWIL4 and SUPT5H

Res The numbers of responders, NRes The numbers of non-responders

Gene Types Target Spearman correlation 
analysis

p value Survival p value

PIWIL4 Chemokin CCL24 − 0.434 p < 0.001 p = 0.00626

receptor CCR9 0.344 0.0408

SUPT5H Chemokin CXCL5 − 0.419 0.0116 p = 0.0234

CXCL12 0.405 0.0148

CXCL16 − 0.359 0.0321

Immunoinhibitor IL10RB 0.44 0.00775

PVRL2 0.52 0.00133

Immunostimulator CD276 0.357 0.0331

CXCL12 0.405 0.0148

ENTPD1 − 0.364 0.0297

TMEM173 − 0.334 0.0473

TNFSF4 − 0.337 0.0447

TNFSF13 − 0.382 0.0222

CHOL_MHC HLA-DOB − 0.367 0.0282

CHOL_TIL_TEM Tem CD4 cells − 0.349 0.0376

CHOL_TIL_Th2 Th2 cells

CHOL_TIL_Th17 Th17 cells − 0.421 0.0112

PIWIL4
Cancer type Drug Group Res vs N-Res Log2(FC) p value

Melanoma Anti-PD-1(pembrolizumab and 
nivolumab)

All 14 vs 12 − 0.524 0.0385
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study provides novel research targets in tumour progres-
sion and prognosis of ICC.

To date, several prognostic signatures have been devel-
oped for predicting the survival of patients with ICC. In a 
previous study, Guo et al. comprehensively analysed and 
identified prognostic signatures, including seven mRNAs, 
for predicting recurrence in cholangiocarcinoma [54]. 
Mishra et  al. identified nine genes which could also be 
strongly considered as prognostic markers of cholangio-
carcinoma [49]. Huang et  al. also identified three genes 
as pivotal tumour antigens of cholangiocarcinoma, which 
could benefit mRNA vaccine development [15]. Further-
more, our team and Xie et al. developed and validated a 
prognostic signature based on lncRNA-seq data [32, 55].

However, even though RBPs have been identified to 
have a crucial effects [20, 23, 56], a vital RBP-related 
risk model for ICC has not been reported yet. To our 
knowledge, we are the first to identify and construct 
the risk signature in ICC patients using two key RBPs. 
Notably, in the present study, this signature was verified 
in independent real-world cohorts.

In addition, the tumour immune microenvironment 
plays a pivotal role in the response to tumour immuno-
therapy [57]. Recently, a variety of studies has reported 
that immune cell infiltration and expression of immune 

checkpoints directly affect patient prognosis [58–60]. 
Therefore, we further investigated the relationship 
between immune cell infiltration and the risk signa-
ture. The results suggested that the high riskScore had 
more enrichments of resting NK cells and activated 
memory CD4 + T cells. We also revealed the relation-
ship between the immune landscape and each RBP. 
Therefore, this signature was able to depict the immune 
landscape in ICC. This signature could also predict 
the efficacy of chemotherapeutic agents like docetaxel. 
Consequently, the signature could be considered as 
an indicator of ICC patients who may benefitted from 
immunotherapy and some chemotherapeutic drugs.

Although these findings and our model had a good 
capacity to predict the long-term survival of ICC 
patients, there are some limitations to this study. First, all 
transcriptomic data was obtained from a public database, 
and retrospective analysis was performed. Thus, selection 
bias was inevitable. Notably, we validated that PIWIL4 
and SUPT5H expression pattern in ICC using the labo-
ratory experiments, which indicated that both PIWIL4 
and SUPT5H might involve tumour progression of ICC. 
Furthermore, we tentatively explored whether PIWIL4 
and SUPT5H were highly related to the mTOR signal-
ling pathway; however, the transcriptional regulation 

Fig. 8  A–B Forest plot of univariate and multivariate regression analyses. C–D Two nomograms for predicting OS at 1, 2, and 3 years
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mechanism of PIWIL4 and SUPT5H still needs to be 
revealed, as well as their effect on tumour progression 
and long-term survival needs to be clarified. Thus, fur-
ther laboratory experiments for validation of the mecha-
nism are required.

Conclusion
PIWIL4 and SUPT5H were identified and validated as 
novel prognostic biomarkers via bioinformatics and 
laboratory experiments, and a signature was devel-
oped to predict the prognosis and risk classifiers of 
ICC patients. We also identified the immune landscape 
of the two markers in the ICC immune microenviron-
ment. This study offers a promising perspective for 
exploring biomarkers in ICC.
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