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Hydrogen sulfide (H2S) is an endogenously gas transmitter signaling molecule with known
antioxidant, anti-inflammatory, and cytoprotective properties. Although accumulating
evidence shows the therapeutic potential of H2S in various hepatic diseases, its role in
cyclophosphamide (CP)-induced hepatotoxicity remains elusive. The present study was
undertaken to investigate the impact of endogenous and exogenous H2S on toll-like
receptors (TLRs)-mediated inflammatory response and apoptosis in CP-induced
hepatotoxicity. Either an H2S donor (NaHS (100 μM/kg) or an H2S blocker [DL-
propargylglycine (PAG) (30 mg/kg, i. p.)], was administered for 10 days before a single
ip injection of CP (200 mg/kg). NaHS attenuated conferred hepatoprotection against CP-
induced toxicity, significantly decreasing serum hepatic function tests and improving
hepatic histopathology. Additionally, NaHS-treated rats exhibited antioxidant activity in
liver tissues compared with the CP group. The upregulated hepatic levels of TLR2/4 and
their downstream signaling molecules including c-Jun N-terminal kinase (JNK) and nuclear
factor-kappa B (NF-κB) were also suppressed by NaHS protective treatment. NaHS
showed anti-inflammatory and antiapoptotic effects; reducing hepatic level tumor necrosis
factor-alpha (TNF-α) and caspase-3 expression. Interestingly, the cytotoxic events
induced in CP-treated rats were not significantly altered upon the blocking of
endogenous H2S. Taken together, the present study suggested that exogenously
applied H2S rather than the endogenously generated H2S, displayed a
hepatoprotective effect against CP-induced hepatotoxicity that might be mediated by
TLRs-JNK/NF-κB pathways.
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INTRODUCTION

Hydrogen sulfide (H2S) is a well-known gas transmitter that mediates various physiology and
signaling in various human tissues (Li et al., 2011). The liver is an important site for endogenous H2S
production that is mediated by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE)
which is the primary enzyme for H2S generation in the liver tissues (Fiorucci et al., 2005; Mustafa
et al., 2009). Multiple studies have shown that H2S displays a significant role in regulating hepatic
physiology and pathology (Li X. et al., 2019; Wu et al., 2019). Accumulated data pointed that the

Edited by:
Wawaimuli Arozal,

University of Indonesia, Indonesia

Reviewed by:
Lamiaa A. Ahmed,

Cairo University, Egypt
Vetnizah Juniantito,

Bogor Agricultural University,
Indonesia

*Correspondence:
Amr Amin

a.amin@uaeu.ac.ae
Rania Abdel-latif

dr_raniagalal@yahoo.com
Gehan Hussein Heeba

gehan_heeba@mu.edu.eg

Specialty section:
This article was submitted to
Gastrointestinal and Hepatic

Pharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 07 January 2022
Accepted: 11 March 2022
Published: 20 April 2022

Citation:
Abdel-latif R, Heeba GH, Hassanin SO,
Waz S and Amin A (2022) TLRs-JNK/

NF-κB Pathway Underlies the
Protective Effect of the Sulfide Salt

Against Liver Toxicity.
Front. Pharmacol. 13:850066.

doi: 10.3389/fphar.2022.850066

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8500661

ORIGINAL RESEARCH
published: 20 April 2022

doi: 10.3389/fphar.2022.850066

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.850066&domain=pdf&date_stamp=2022-04-20
https://www.frontiersin.org/articles/10.3389/fphar.2022.850066/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.850066/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.850066/full
http://creativecommons.org/licenses/by/4.0/
mailto:a.amin@uaeu.ac.ae
mailto:dr_raniagalal@yahoo.com
mailto:gehan_heeba@mu.edu.eg
https://doi.org/10.3389/fphar.2022.850066
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.850066


protective effect mediated by H2S in the hepatic pathology and
toxicity is mainly orchestrated by it is anti-oxidative, anti-
inflammatory effects (Fouad et al., 2020; Liu et al., 2020).

Hepatotoxicity is considered one of the major side effects that
limit the clinical use of cyclophosphamide (CP) as a potent
alkylating agent against various human malignancies and
immunological disorders (Taslimi et al., 2019). The
hepatotoxicity associated with CP therapy is mainly attributed
to the major toxic acrolein produced as a result of CP hepatic
bioactivation (King and Perry, 2001; Mahmoud et al., 2017).
Acrolein depletes cellular antioxidant defenses and increases the
generation of reactive oxygen species (ROS) and oxidative stress
in hepatocytes (Mohammad et al., 2012). Consequently, it is
currently believed that oxidative stress might represent the main
driver of hepatotoxicity associated with CP therapy (Mahmoud
et al., 2017; ALHaithloul et al., 2019).

ROS triggers the activation of critical signaling molecules
including toll-like receptors (TLRs) which have a critical role
in regulating innate immunity and inflammatory responses (Li
et al., 2014; Li Y. et al., 2019). TLRs are expressed on different
hepatocytes specially Kupffer cells and their activity is strongly
correlated to the hepatic stress reaction (Gustot et al., 2006;
Ojaniemi et al., 2006). Moreover, TLRs ligation is associated
with initiating proinflammatory pathways resulting in activation
of both c-Jun N-terminal kinase (JNK) and nuclear factor-kappa
B (NF-κB) which have a prominent role in cellular apoptosis (Li
et al., 2020). Although TLRs-mediated signals have been
implicated in various liver diseases, the significance of TLRs

activation and their two different downstream pathways in
CP-induced hepatotoxicity are yet to be evaluated.

Previous reports illustrated the therapeutic potential of H2S in
several hepatic diseases, including hepatic ischemia/reperfusion (I/
R) injury (Kang et al., 2009), nonalcoholic steatohepatitis (Li et al.,
2018), liver fibrosis (Song et al., 2015), and liver cancer (Yin et al.,
2012), But in the term of CP-induced hepatotoxicity, the role of H2S
is still unclear and needs more investigation. Our recent study
showed that H2S can protect renal cells against CP-induced
oxidative damage (Waz et al., 2021). Additionally, earlier reports
showed that H2S and CSE biosynthesis during inflammation have
displayed TLR/NF-κB and TLR/JNK-dependent manner (Kandil
et al., 2010; Zheng et al., 2013; Huang et al., 2016). In this regard, the
current study aims to investigate the impact of endogenous and
exogenous H2S on TLRs pathways in CP-induced hepatotoxicity. A
pre-treatment with either NaHS, an exogenous H2S donor, or DL-
propargylglycine (PAG), an irreversible CSE inhibitor, was
investigated in CP-treated rats with hepatotoxicity in terms of
modulation of TLRs-mediated inflammatory response, oxidative
stress, and apoptosis.

MATERIALS AND METHODS

Drugs and Chemicals
CP (Endoxan®) was purchased from Baxter Oncology GmbH
(Germany). NaHS and PAG were purchased from Sigma-Aldrich
(St. Louis, MO, United States) and were freshly dissolved in

Graphical Abstract | The proposed schematic diagram illustrates a protective mechanism of NaHS (H2S donor) against CP-induced nephrotoxicity. ROS, reactive
oxygen species; TLR2/4; Toll-like receptor-2 and Toll-like receptor 4, NF-κB, nuclear factor kappa-B, JNK; Jun N-terminal kinase, TNF-α; tumor necrosis factor-alpha.
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physiological saline upon usage. Polyclonal Rabbit/anti-rat
primary antibodies against caspase-3, NF-κB were purchased
from Thermo Fischer Scientific Inc./Lab Vision (Fermont, CA,
United States). While, TLR4 and JNK (D-2) mouse monoclonal
antibodies were purchased from Santa Cruz Biotechnology (CA,
United States) and Abcam (MA, United States), respectively. All
other chemicals were of the highest available commercial grade.

Animals and Experimental Design
All experimental procedures were performed in accordance with
the international policies (Guide for Care and Use of Laboratory
Animals published by the US National Institute of Health; NIH
Publication No. 85–23, revised 1996) and approved by the
Animal Care Community, Minia University, Egypt (Permit
Number: MPH-02-20).

Wistar male rats, 220–240 g body weight (purchased from
National research center, Giza, Egypt) were kept at a temperature
of 25 ± 2°C, a humidity of 45 ± 5%, and a 12 h light-dark cycle. For
accommodation, rats were housed at the faculty of Pharmacy,
Minia University, Egypt, for 1 week and allowed free access to
standard pellet chow and tap water. After the adaptation period,
animals were divided randomly into 4 groups each of 6 rats.
Group 1, is a controlled group that received vehicle only. Group 2
(CP group); received only a single dose of 200 mg/kg, i. p on the
11th day of the experiment. The third group (NaHS group);
received 100 μM/kg/day for 10 days and a single dose of
200 mg/kg of CP on the 11th day of the experiment. The last
group (PAG group); received 30 mg/kg/day for 10 days and a
single dose of 200 mg/kg of CP on the 11th day of the experiment.
All does were selected based on our preliminary experiments and
according to previous studies (Zanardo et al., 2006; Helmy et al.,
2019).

Tissue Sampling and Biochemical
Assessment
Euthanasia of rats by urethane (1 g/kg, i. p.) was performed 24 h
following the CP injection. Blood was collected via decapitation,
centrifuged at 1,957×g for 10 min. Serum samples were
collected and used for measuring liver function markers of
alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) using a kinetic kit (BioMed
diagnostic, Hannover, Germany).

The liver of each rat was dissected and homogenized in cold
potassium phosphate buffer (pH 7.4, 0.05 M). The homogenates
were centrifuged at 10,000×g for 10 min at 4°C, and supernatant
of each sample was collected to determine lipid peroxides by
estimating the hepatic content of thiobarbituric acid reactive
substances (TBARS) using 1,1,3,3-tetramethoxypropane as
standard (Buege and Aust, 1978). Moreover, hepatic nitric
oxide (NO) level was measured as total nitrite/nitrate, using
copperized cadmium to reduce nitrate into nitrite, followed by
color development with Griess reagent in the acidic medium
(Sastry et al., 2002). Hepatic content of reduced glutathione
(GSH) was also measured in the collected supernatant using
commercially available kits, following the instructions of the
manufacturer (Biodiagnostic, Egypt).

ELISA kits from Biomatik (DE, United States) and Abbexa
(Cambridge, United Kingdom) were used to assess TLR2 and
tumor necrosis factor-alpha (TNF-α), respectively in the liver
homogenate according to the manufacturer instructions.

Western Blot Analysis
TLR4 and JNK protein expressions were analyzed in liver
homogenate using the Western blotting method. In brief,
parts of liver tissues were homogenized in lysis buffer
(20 mMTris-HCl pH 7.5, 50 mM 2-mercaptoethanol, 5 mM
EGTA, 2 mM EDTA, 1% NP40, 0.1% SDS, 0.5% deoxycholic
acid, 10 mMNaF, 1 mM PMSF, 25 mg/ml leupeptin, 2 mg/ml
aprotinin) and centrifuged at 14,000×g at 4°C for 30 min.
Aliquots containing (20 μg/lane) total protein were boiled
with an equal volume of 2× Laemmli sample buffer
containing 10% 2-mercaptoethanol, 20% glycerol, 4% SDS,
0.004% bromophenol blue, and 0.125 M TrisHCl. The
aliquots were then loaded onto a 10% polyacrylamide gel
(SDS-PAGE) for protein separation. After electrophoresis,
the gels were transferred to PVDF membrane. To reduce
background staining, the membranes were incubated in tris-
buffered saline with 0.1% Tween 20 (TBST) buffer and 3%
bovine serum albumin (BSA) at room temperature for 1 h.
Then, membranes were incubated with primary antibodies of
TLR4 (Catalog # sc-293072 AF790, Dilution 1:200), JNK (D-2)
(Catalog # sc-7345 AF790, dilution 1:200) in a non-fat milk/PBS
buffer overnight at 4°C. The membranes were washed
extensively and then incubated with a secondary antibody
conjugated to Goat anti-rabbit IgG horseradish peroxidase
(Novus Biologicals, United States) for 1 h. Protein bands
were detected by a standard enhanced chemiluminescence
method (ClarityTM Western ECL substrate Bio-Rad, Catalog
# 170–5060). The chemiluminescent signals were captured
using a CCD camera-based imager and densitometry
measurements were made using ChemiDoc MP Imager. The
densities of target protein bands were normalized to the
corresponding density of the β-actin band and presented as a
ratio of the relative optical density (ROD).

Histopathological Examination
Parts of liver tissues were fixed in 10% neutral buffered formalin
(24–72 h), dehydrated, then embedded in paraffin cubes. Sections
were cut at 4 μm, stained with hematoxylin and eosin, and
examined under a light microscope by a specialist unaware of
the slide identity. Additionally, a semiquantitative score was used
to assess the percent of histopathological alterations of total fields
examined as follows; 0: absent; 1: mild, <25% of hepatic tissue
affected; 2: moderate, <26–50% of hepatic tissue affected; 3:
severe, <50% of hepatic tissue affected.

Immunohistochemical Analysis
According to a previously described method (Maae et al., 2011),
4 μm hepatic sections were dewaxed and rehydrated through a
graded series of ethanol and rinsed in water. Sections were
mounted in 33% hydrogen peroxidase for 5 min to block
endogenous peroxidase activity. To block non-specific binding,
Ultra V block was also used. Sections were incubated with the
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primary antibodies of NF-κB (Catalog # RB-1638-P0, dilution 1:
100) or caspase-3 (Catalog # RB-1197-R7, dilution 1:100)
overnight in a humid chamber at 4°C. For detection, a
secondary antibody HRP Envision kit (DAKO) was added for
20 min followed by visualization with diaminobenzidine (DAB)
chromogen for 15 min for the development of the color reaction.

Finally, slides were counterstained with Mayer’s hematoxylin,
dehydrated, and slipped covered for microscopic examination.
Semi-quantitative analysis was performed for each sample by
determining area % of immunoexpression levels of caspase 3 and
NF-κB in six randomly selected fields within each image. All
measurements and analyzed data were obtained using a full HD

FIGURE 1 | Effect of NaHS and PAG on the serum levels of ALT (A) and AST (B) in CP-induced induced hepatotoxicity in rats. Data are represented as mean ±
SEM. *,+,° are significantly different from control, CP and NaHS groups, respectively, where n = 6 and p < 0.05. CP; cyclophosphamide,PAG; DL-propargylglycine, ALT;
alanine aminotransferase, AST; aspartate aminotransferase.

FIGURE 2 | Effect of NaHS and PAG on rats’ liver tissues stained with hematoxylin and eosin (H&E) in CP- induced hepatotoxicity (×200 and ×400). Liver tissue of
control group (A) showed normal morphological features of hepatic parenchyma with many apparent intact radiating hepatocytes. Liver tissues of rats treated with CP
(B) showed sever diffuse hepatocellular vacuolar degeneration with karyopyknosis (arrow) accompanied with moderate dilatation of hepatic blood vessels (star) and mild
records of periportal inflammatory cells infiltrates (red arrow). Liver tissues of NaHS rat group) showing intact histological structure of hepatic lobule with few
degenerative changes (black arrow) mild hepatic blood vessel dilatation (star) or inflammatory cells infiltrates (C). microscopic examination of liver tissues of PAG rat
group (D) showed wide diffuse areas of vacuolar degenerative changes of most of hepatocytes (arrow) with many dilated, congested hepatic blood vessels (star) and
mild records of focal perivascular inflammatory cells infiltrates (red arrow).
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microscopic imaging system operated by Leica Application
module for Histological analysis (Leica Microsystems GmbH,
Germany).

Statistical Analysis
Results were expressed as means ± SEM. The statistical
significance was assessed using a one-way analysis of variance
(ANOVA) followed by Tukey–Kramer post-analysis test for
comparison between groups with normal distribution. A
Kruskal–Wallis test was used for the abnormal distribution of
data then Dunn’s Multiple Comparison test was applied. p < 0.05
was considered statistically significant. GraphPad® Prism
(version 8.0.2) was used for statistical calculations (SanDiego,
CA, United States).

RESULTS

Effect on Liver Function Parameters
As presented in Figure 1, administration of a single CP dose
(200 mg/kg, i. p.) significantly elevated (p < 0.05) both serum
ALT (Figure 1A) and AST levels (Figure 1B) compared to the
control group. Administration of NaHS for consecutive 10 days
before CP treatment conferred protection against elevated

serum ALT and AST levels. Well noted, serum ALT and
AST levels showed a significant decrease in the NaHS group
compared to the CP group (33.24 ± 0.40 and 92.94 ± 6.494 vs.
49.57 ± 1.89 and 138.8 ± 3.563 U/L, respectively). Interestingly,
levels of serum ALT did not change significantly in the PAG
group compared to the CP group. However, serum levels of ALT
and AST in the NaHS group have significantly decreased
compared to that of the PAG group (92.94 ± 6.49 vs.
138.8 ± 3.56 U/L, p < 0.05).

Effect on Hepatic Histopathological
Changes
Compared to the normal histological feature exhibited in the
control group, rats treated with CP showed severe histological
changes in all hepatic lobular zones in form of vacuolar along
with many figures of karyopknosis, as well as periportal
inflammatory cells infiltration. Hepatic tissues of the NaHS-
treated rats showed well-protected and better organized
histological features of hepatic parenchyma with minimal
records of degenerative changes or inflammatory cell infiltrates
compared to hepatic tissues of CP-treated rats. Comparable to the
CP group, liver tissues of the PAG group showed severe
degenerative changes in terms of congested blood vessels and
severe inflammatory cell infiltrate (Figures 2, 3).

Effect on Hepatic Oxidant Status
A dramatic depletion of the non-enzymatic \was observed in liver
tissues of rats treated with CP as compared to control rats. The
hepatic GSH content was replenished by 17 and 13% in CP-
treated rats protected by NaHS administration as compared to the
non-treated CP group and PAG group, respectively. On the other
hand, hepatic GSH content in the PAG group did not change
significantly compared to the CP group.

In parallel, a profound spike in hepatic TBARS content
(64.71%), a hallmark of lipid peroxidation, occurred in the CP
group as compared to the control group. Compared to the CP
group, hepatic TBARS was mitigated by NaHS pretreatment
(62.55 ± 3.04 vs. 96.33 ± 1.54 nmol/g tissue), while TBARS
showed a non-significant increment along with PAG
pretreatment compared to the CP group (102.7 ± 3.71 vs.
96.33 ± 1.54 nmol/g tissue). Likewise, CP-treated rats exhibited
pronounced elevation in NOx content by 1.65 folds compared to
the control group. NaHS pretreatment for 10 days led to a
significant decrease in NOx level in CP-treated rats (6.29 ±
0.54 vs. 11.62 ± 0.74 nmol/g tissue). Unlikely. PAG
pretreatment for 10 successive in CP-treated rats resulted in a

FIGURE 3 | Effect of NaHS and PAG on the severity of histopathological
lesions in CP-induced hepatotoxicity in rats. All parameters were represented
as mean score. Kruskal–Wallis and then Dunn’s test was applied for
comparison. * is significantly different from control where p < 0.05. CP;
cyclophosphamide, PAG; DL-propargylglycine.

TABLE 1 | Effects of NaHS and PAG in CP-induced hepatotoxicity in rats.

Groups GSH (mg/g Tissue) TBARS (nmol/g Tissue) NOx (nmol/g Tissue)

Control 0.822 ± 0.011 52.2 ± 1.4 4.38 ± 0.32
CP 0.633 ± 0.018* 96.33 ± 1.54* 11.62 ± 0.74*
NaHS 0.7410 ± 0.023 + 62.55 ± 3.04 + 6.29 ± 0.54 +
PAG 0.653 ± 0.015° 102.7 ± 3.71° 15.33 ± 1.34 +°

Data are represented as mean ± SEM. *,+,° Significantly different from control, CP, and NaHS, groups, respectively; where n = 6 and p < 0.05.CP; cyclophosphamide, PAG; DL-
propargylglycine, GSH; reduced glutathione, TBARS; thiobarbituric acid reactive substances, NOx; Total nitrite/nitrate.
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significant increase in hepatic NOx content compared to the CP
group (15.33 ± 1.34 vs. 11.62 ± 0.74 nmol/g tissue) (Table 1).

Effect on TLR4 and JNK Protein
Expressions
Hepatic protein expression of both TLR4 (Figure 4A) and JNK
(Figure 4B) were significantly elevated almost by 1.44 and 1.45-
fold, respectively in CP-treated rats compared to their respective
control groups. Administration of NaHS for 10 days prior to CP
treatment showed a significant reduction in the hepatic protein

expression of both TLR4 (44.92%) and p-JNK (44.3%) compared
to their respective CP groups. Hepatic protein expression of both
TLR4 and JNK did not change significantly in CP-treated rats
upon PAG pretreatment compared to the CP group. Meanwhile,
significant decreases are observed in both hepatic TLR4 and JNK
expressions in the NaHS group compared to the PAG group.

Effect on Hepatic Levels of TLR2 and TNF-α
Figure 4 depicts ELISA measures for TLR2 (Figure 5A) and
TNF-α (Figure 5B) levels in the liver tissues of the different study
groups. CP-treated rats showed a significant elevation in hepatic

FIGURE 4 | Representative Western blot analysis of the effect of NaHS and PAG on hepatic TLR4 (A) and p-JNK (B) protein expressions in CP-induced
hepatotoxicity in rats, showing protein bands of each group (upper panel) and graphs present their densitometric analysis (lower panel). Data are represented as mean ±
SEM. *,+,° are significantly different from control, CP and NaHS groups, respectively, where n = 6 and p<0.05. CP; cyclophosphamide, PAG; DL-propargylglycine, TLR4;
Toll-like receptor4, p-JNK; phosphorylated Jun N-terminal kinase.

FIGURE 5 | The effect of NaHS and PAG on hepatic level of TLR-2 (A) and TNF-α (B) in CP-induced hepatotoxicity in rats. Data are represented as mean ± SEM.
*,+,° are significantly different from control, CP and NaHS groups, respectively, where n = 6 and p<0.05. CP; cyclophosphamide, PAG; DL-propargylglycine, TLR2; Toll-
like receptor 2, TNF-α; tumor necrosis factor-alpha.
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levels of TLR2 and TNF-α compared to control groups.
Pretreatment with NaHS markedly mitigates both TLR2 and
TNF-α elevation observed in CP-treated rats, while PAG
pretreatments did not show significant changes in the

aforementioned measures compared to the CP group.
Compared to the PAG group, significant decreases in
hepatic levels of both TLR2 and TNF-α were detected in the
NaHS group.

FIGURE 6 | Representative photomicrographs of immunohistochemical analysis of hepatic NF-κB protein expression (A) Control group, (B) CP group, (C) NaHS
group, (D) and PAG group. All reactive hepatocytes are labeled with red arrows, while black arrows indicate negative reactive hepatocytes. (E) A semi-quantitative
analysis of NF-κB in rat’s liver tissue. Data are represented as mean ± SEM. *, +, ° are significantly different from control, CP and NaHS groups, respectively, where n = 6
and p < 0.05. CP; cyclophosphamide, PAG; DL-propargylglycine, NF-κB; nuclear factor kappa B.

FIGURE 7 | Representative photomicrographs of immunohistochemical analysis of hepatic caspase-3 protein expression (A) Control group, (B) CP group, (C)
NaHS group, and (D) PAG group. All reactive hepatocytes are labeled with red arrows, while black arrows indicate negative reactive hepatocytes. (E) A semi-quantitative
analysis of caspase-3 in rat’s liver tissue. Data are represented as mean ± SEM. *, +, ° are significantly different from control, CP and NaHS groups, respectively, where n
= 6 and p < 0.05. CP; Cyclophosphamide, PAG; DL-propargylglycine.
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Effect on the Immunostaining of NF-κB and
Caspase-3
CP administration induced a significant (p < 0.05) increase in
both NF-κB (Figure 6) and caspase-3 (Figure 7)
immunoexpression levels in the liver when compared with the
control rats. On the contrary, CP-induced rats pre-treated with
NaHS showed a significant decrease in hepatic NF-κB levels by
69.61 and 68.39% compared to CP and PAG groups, respectively
(Figure 6). Similarly, a significant decrease in hepatic caspase-3
expression was detected in the NaHS group by 82.64 and 81.58%
compared to CP and PAG groups, respectively (Figure 7). Worth
mentioned, hepatic expression of either NF-κB or caspase-3 did
not show any significant changes in the PAG group compared to
the CP group.

DISCUSSION

Hepatotoxicity is one of the major side effects that limit the
therapeutic use of CP in the clinical setting. Hepatotoxicity
associated with CP antineoplastic action is mainly attributed
to acroline, the toxic CP hepatic metabolite, which evolves
ROS and highly interferes with the antioxidant defense system.
Indeed, oxidative stress is the main detrimental factor that has
been formerly incriminated in the pathogenesis of liver injury and
dysfunction induced by CP. Findings from the present study
showed that CP-treated rats showed a liver injury evident by
altered hepatic histological structure and increased serum liver
markers. The observed liver injury in CP-treated rats is associated
with increased oxidative stress in terms of increased MDA and
NOx

− levels along with decreased GSH levels in the liver.
Accumulating evidence supported the beneficial effect of

H2S-based therapy in different models of liver injury (Kang
et al., 2009; Zhang et al., 2013; Wu et al., 2015; Wu et al.,
2019; Fouad et al., 2020). Current data showed that
pretreatment with H2S donor (NaHS) suppressed lipid
peroxidation and elevated levels of GSH in liver tissues of CP-
induced rats. The potent anti-oxidant effect that is recorded in the
NaHS group went along the marked improvement in liver
function and pathological changes. The current results are
consistent with previous reports showed H2S regulation of
redox reaction and exert ROS scavenger effect (Mani et al.,
2011; Huang et al., 2016). Lee et al., 2014) showed that
activation of cysteine/cystine transporters mediated by H2S
leads to elevating GSH production which protects against
ROS-mediated damage.

Interestingly, pretreatment with PAG, an irreversible inhibitor
of CSE, in CP-injured rats did not show any alterations in liver
function, structure, or oxidative status compared to CP-treated
animals. Although hepatic expression of CSE exceeds that of CBS
by nearly 60 folds (Singh and Banerjee, 2011), a study by Mani
et al. (2011) showed that CSE knockouts were not associated with
any indices of hepatic disorders including ALT, AST, and
albumin levels. The neutral effect of CSE inhibition in CP-
treated animals on hepatic function could be justified by the
insignificant role of CSE on oxidative status. Previous results

showed that increased plasma homocysteine levels are associated
with CBS deletion in the liver but not CSE deletion (Robert et al.,
2005; Yang et al., 2008). As elevated homocysteine plasma
triggers ROS production and impairs GSH-related anti-oxidant
defense (Liu et al., 2013), reduced hepatic oxidative stress is
suggested to be linked to CBS, not CSE.

In the liver tissues, TLRs are extensively expressed in
hepatocytes and other cells, and they showed a critical role in
liver physiological function (Schwabe et al., 2006; Chen and Sun,
2011). The most prominent hepatic TLRs are TLR2 and TLR4
have been shown to be important for the production of the
inflammatory response observed in different models of
experimental hepatic injury such as hepatic ischemia,
inflammation, and acute hepatic failure (Tu et al., 2012;
Mahmoud et al., 2014; Qiu et al., 2018). Importantly,
activation of TLRs signaling pathways is reported to be
regulated during oxidative stress (Gustot et al., 2006).
Additionally, it was reported that intracellular ROS production
is a potential activator for TLR2/4 expressions (Huang et al.,
2011). In our data, the hepatic level of TLR2/4 showed a
significant increase upon CP-treatment. These elevated levels
were detected along with oxidative stress exhibited in this
group, which conceivably showed that ROS may be the trigger
for TLR4/2 expression. Equally important, previous studies
showed that TLR2/4, mediated inflammatory and oxidative
stress activities, are initiated in response to damaged cells in
the liver tissue (Chang and Toledo-Pereyra, 2012; Mahmoud
et al., 2014). Hence, it is suggested that liver injury induced by CP-
toxicity may be a direct stimulator for TLR2/4 expression which,
in turn, can induce ROS production and causes oxidative stress.
However, this hypothesis requires further investigation.

In conjunction with oxidative stress, previous studies reported
significant increments of inflammatory cytokines including NF-
κB and TNF-α in the serum of CP-treated rats (Mahmoud et al.,
2017). It is well known that TLR2/4 induced MyD88-dependent
and independent signaling cascade to initiate translocation of NF-
κB and subsequent activation of TNF-α (Matsumura et al., 2000;
Chang and Toledo-Pereyra, 2012). These findings went along
with our results which showed elevated levels of NF-κB and TNF-
α in the liver tissues of CP-treated animals along with increased
hepatic TLR2/4 detected in the same group.

Data of the present study showed substantial decrease of
TLR2/4 and NF-κB expressions in the liver tissue of the NaHS
group that could be explained by the ROS quenching effect of
exogenous H2S. The current data is supported by previous studies
showed that H2S exert an anti-inflammatory effect via multiple
mechanisms including upregulation of antioxidant defense and
regulating inflammatory signal transduction (Pan et al., 2011; Li
et al., 2016). Hence, it is also plausible to attribute the insignificant
change in hepatic TLR2/4 levels observed along with PAG
pretreatment to it is neutral effect on the oxidative status of
CP-treated rats. Furthermore, the results of (Huang et al., 2016)
consolidate the data of the present study as it concluded that
exogenous H2S can mediate its anti-inflammatory effect via a
direct suppression of activated TLR4/NF-κB pathway in
hyperglycemic-injured cardiomyocytes (Huang et al., 2016).
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A recent study by Mohammed et al. (2020) showed the
involvement of basic inflammatory pathways such as JNK in
an animal model of CP-induced hepatotoxicity (Mohammed
et al., 2020). The aforementioned study showed that oxidative
and nitrosative stress induced by CP contributes to JNK
activation in the liver tissues, which results in piling up the
ROS in the cell. Moreover, other previous results showed that
JNK is activated by ROS generated as a result of GSH-depleted
mitochondria and peroxynitrite formation in liver-injured animal
models (Hanawa et al., 2008; Kandil et al., 2010). On the other
hand, other studies suggested that TLR2/4-induced JNK
stimulates the production of pro-inflammatory cytokines
mainly TNF-α, besides ROS which is believed to be a major
contributor to liver injury (Chang and Toledo-Pereyra, 2012; Li
W. et al., 2019; Gong et al., 2019). Here, we demonstrated an
upregulation of JNK expression in CP-injured liver tissues along
with increased hepatic TLR2/4 protein levels and oxidative stress.
More importantly, the results of the present study showed a
significant decrease in hepatic JNK expression along with NaHS
pretreated CP-induced injured rats. The accumulated data point
to the role of exogenous H2S in modulating mitogen-activated
protein kinases (MAPKs) signaling and JNK as a dominant
effector of MAPKs in liver tissues. In fact, the reported data
showed an ameliorating effect on oxidative stress and cell injury
along with H2S supplement that may be secondary to alleviating
MAPK/JNK signaling pathway (Xu et al., 2011; Yuan et al., 2017;
Li X. et al., 2019). In harmony, NaHS pretreatment showed
protection against oxidative stress in CP-treated animals along
with decreased hepatic protein expression of p-JNK. Although
CSE is responsible for more than 90% of hepatic biosynthesis
capacity (Singh and Banerjee, 2011), it is interesting to find out
that hepatic p-JNK expression in the PAG group did not change
in comparison to CP-treated rats. Such findings reinforced the
probability that endogenous H2S may not be adequately abated
due to the existence of alternative routes of H2S production
including the action of CBS and 3-mercaptopyruvate
sulfurtransferase (3-MST).

ROS and pro-inflammatory cytokines could potentially trigger
apoptosis and cell death in liver tissue (Heeba and Mahmoud,
2014; Hamza et al., 2020). Here, CP treatment induced apoptotic
cell death as shown by increased hepatic caspase-3 expression
along with enhanced oxidative stress which coincided with
previous studies (Caglayan et al., 2018; Aladaileh et al., 2019).
The present results showed that CP-mediated excessive ROS
levels are associated with activated TLR2/4 signaling pathways
which are suggested to have a central role in initiating an
apoptotic response. Indeed, it is believed that TLR2/4 can
activate the initiator of the apoptotic cascade via interaction
with the Fas-associated death domain protein (FADD)
through MyD-88 which leads to ultimately activated caspase-3
(Li et al., 2014; Liu et al., 2015). The anti-apoptotic effect of H2S
donner was emphasized in our work via detecting a significant
reduction of hepatic caspase-3 expression in the NaHS-treated

group. In harmony, Tan et al. (2015) reported the anti-apoptotic
and anti-inflammatory actions of H2S in renal I/R injury via
ameliorating the activated TLR2/4 (Tan et al., 2015).
Conspicuously, inhibiting TLR2/4 signaling averts
translocation of NF-κB and activation of JNK which would
eventually lead to preventing cell apoptosis (Li et al., 2014).
Additionally, another study showed that the anti-apoptotic
and anti-inflammatory effects of exogenous H2S may be
mediated by inhibiting JNK phosphorylation (Li X. et al.,
2019), downregulation of NF-κB (Li et al., 2016), or by direct
inhibition of ROS production (Spassov et al., 2017).
Consequently, it is possible that the neutral effect of PAG
pretreatment on hepatic caspase-3 expression might be linked
to its non-significant effect on the oxidative status of CP-
treated rats.

CONCLUSION

Taken together, these findings suggested that exogenous H2S
plays an important role in the protection against CP-induced
hepatotoxicity via alleviating oxidative stress, inflammatory and
apoptotic responses in liver tissues of CP-treated animals. The
present study also indicated that ameliorating ROS generation
and suppression of TLRs-JNK/NF-κB signaling pathways are the
proposed molecular mechanisms underlying the
hepatoprotective effect of NaHS in this model. Further
investigations are warranted to explore the clinical application
of H2S donors against CP-induced hepatotoxicity.
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