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Abstract Several homologous domains are shared by eukaryotic immunity and programmed 
cell-death systems and poorly understood bacterial proteins. Recent studies show these to be 
components of a network of highly regulated systems connecting apoptotic processes to counter-
invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor 
domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature 
of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and 
comparative genomics methods to identify unambiguous bacterial homologs of the Death-like 
and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-
associated α-helical adaptor domains that likely mediate homotypic interactions bringing together 
diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader 
systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge 
that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-
invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point 
to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and 
cellular pathogens that might infect such communities. These TRADD-N and Death-like domains 
helped identify several new bacterial and metazoan counter-invader systems featuring underappre-
ciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and 
FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as 
nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to 
the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/
apoptotic systems of the latter.

Introduction
Evolutionary evidence favors several independent origins for multicellularity in diverse eukaryotic and 
prokaryotic lineages (Grosberg and Strathmann, 2007; Lyons and Kolter, 2015; Kysela et al., 2016; 
Dunin-Horkawicz et al., 2014). However, the emergence of this life history characteristic is accompa-
nied by specific similarities across phylogenetically distant branches of the tree of life (Grosberg and 
Strathmann, 2007; Lyons and Kolter, 2015; Rokas, 2008). One such is programmed cell death, cell 
suicide, or apoptosis of individual cells within the multicellular assemblage (Ameisen, 2002; Vaux, 
1993). Indeed, apoptosis has been observed and studied across multicellular eukaryotes, such as 
metazoans, fungi, amoebozoan slime molds (e.g., Dictyostelium), and plants as well as certain multi-
cellular prokaryotes such as cyanobacteria and actinobacteria (Ameisen, 2002; Yuan and Kroemer, 
2010; Elmore, 2007; Fuchs and Steller, 2011; Greenberg, 1996; Bidle and Falkowski, 2004; 
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Jiménez et al., 2009; Zheng et al., 2013; Filippova and Vinogradova, 2017). It is shown to occur in 
several biological contexts: (1) in routine development, where it serves as a mechanism for ‘sculpting’ 
the body forms of organisms (e.g., inter-digital cell death in tetrapods) (Chautan et al., 1999); (2) in 
responses to stress and environmental insults, where it might help eliminate cells with DNA damage or 
other defects, like misfolded proteins, that might prove deleterious to the organism (Adams, 2003); 
(3) as part of the immune response to clear moribund cells and limit infections of viruses and other 
intracellular parasites by eliminating infected cells (Imre, 2020; Hayakawa et al., 2006); and (4) self-
non-self recognition, where it serves to restrict fusion or mergers of non-kin individuals, for instance, 
in fungal heterokaryon incompatibility or allo-incompatibility in colonial animals like ascidians, bryo-
zoans, cnidarians, and sponges (Daskalov et al., 2017; Glass and Dementhon, 2006; Buss, 1990).

At first sight, the evolution of a suicidal response appears paradoxical as it effectively nullifies 
the fitness of the cell. However, such a response can be selected for due to the principle of inclusive 
fitness. Here, the cell undergoing suicide, despite dying, accrues fitness via the benefits its death 
confers on identical or closely related kin cells in a multicellular assembly (Bourke, 2014; Hamilton, 
1964). This is amply borne out by the biological contexts in which apoptosis occurs, namely those in 
which the death of individual cells is for the greater good of the multicellular assemblage of kin cells 
(Michod and Roze, 2001). In these contexts, apoptosis is initiated by specific interactions involving 
the delivery of effectors or sensing of specific stimuli that are best understood in multicellular eukary-
otes. These processes include: (1) direct delivery of initiating effectors from outside to cells targeted 
for death, such as the lysosomal granules bearing perforin and granzymes by CD8+ cytotoxic T-cells 
in jawed vertebrates (Podack, 1995); (2) extrinsic cell-death-initiating signals communicated via the 
cell-surface receptors (e.g., receptors with Death domains in metazoans; Figure 1A; Schulze-Osthoff 
et al., 1998); (3) intrinsic stimuli sensed by intracellular receptors such as pathogen molecules detected 
by LRR repeats in plants or the RIG-I viral RNA-sensing helicase module in animals (Chattopadhyay 
and Sen, 2017; Ting et al., 2008); and (4) stimuli in the form of molecules sensed at the interface 
between the mitochondria and the cytoplasm that signal deleterious metabolic (especially oxidative) 
stress (Figure 1B; Altman and Rathmell, 2012). Such triggers result in the deployment of effectors 
that enzymatically target cellular molecules leading to suicide, such as caspases that cleave proteins, 
DNases that cleave genomic DNA, TIR domains that cleave NAD+, or ADP-ribosyltransferases (ARTs) 
that modify DNA or proteins (Adams, 2003). Alternatively, effector action occurs through membrane 
perforation by transmembrane proteins (Bcl-2) or non-covalent protein-templated (prion-like) assembly 
of filamentous polymeric complexes (e.g., of CARD, Pyrin, and TIR domains) within cells (Figure 1C 
and D; Delbridge et al., 2016; Li et al., 2012; Gentle et al., 2017; Morehouse et al., 2020).

Despite apoptosis contributing to the greater good of a cooperative assemblage of cells, the 
unleashing of lethal effectors can be potentially deleterious to an organism if deployed under the 
wrong circumstances. Thus, the evolution of apoptosis has gone hand-in-hand with a striking array 
of negative regulators and switches that limits the option of apoptosis to specific situations. In their 
simplest form, these regulatory interactions involve a pair of paralogous pro-apoptotic and anti-
apoptotic proteins, for example, members of the Bcl-2 family of transmembrane (TM) proteins (Cory 
et al., 2003; Hawkins and Vaux, 1994). Increasingly complex forms of regulation are constituted by 
well-coordinated cascades of enzyme activity (e.g., proteolytic cascades mediated by the caspases 
and ZU5 domains) or energy-requiring, threshold-dependent switches mediated by different families 
of NTPases (Allen et al., 1998; Janssens and Tinel, 2012; D’Osualdo et al., 2011; Zhang et al., 
2012). Regulation is also achieved by a series of shifting non-covalent interactions involving non-
catalytic domains, often termed adaptors, that may further interface with covalent modifications of 
proteins by phosphorylation and ubiquitination (Lee and Peter, 2003; Kumar and Colussi, 1999). 
These regulatory processes controlling the ultimate unleashing of the effector often occur in the 
context of large macromolecular complexes such as the apoptosome (Riedl and Salvesen, 2007).

Studies by us and others revealed that despite the protean manifestations of apoptosis and related 
phenomena in immunity across diverse eukaryotic lineages, at the molecular level it features certain 
common protein domains mediating different steps of the process (Aravind et al., 2001; Aravind 
et al., 1999; Koonin and Aravind, 2002). On the regulatory side, these include the NTP-dependent 
switches involved in the formation of the apoptosome, inflammosome, and related complexes in 
animals, fungi, and plants in the form of the STAND NTPases (e.g., AP-ATPases, NACHT, and DAP-3; 
Figure 1B) and AP-GTPases (Leipe et al., 2004). These NTPase domains are typically coupled in the 
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same polypeptide to supersecondary-structure-forming repeats, such as the LRR, WD, and TPR that 
provide a platform for the assembly of macromolecular complexes and the recognition of cell-death 
stimulating molecules (Figure 1B; Leipe et al., 2004; Inohara and Nunez, 2001). On the effector 
side, the domains shared by disparate apoptotic systems feature a common set of executors or toxin 
domains in the form of the caspase-like peptidase (caspase, paracaspase and metacaspase, and 
their relatives; hereinafter caspase), NucA/EndoG-like endonuclease, TIR, and ART domains (Uren 
et al., 2000; Sanmartín et al., 2005; Schäfer et al., 2004; Narayanan and Park, 2015; Hassa et al., 
2006). Further, these studies also indicated that both the regulator and effector domains found across 
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Figure 1. Signaling mechanism parallels between eukaryotic Death-superfamily domains and prokaryotic effector-associated domains (EADs) in 
their biological contexts. (A) Extrinsic and (B) intrinsic pathways in eukaryotic apoptosis signaling. (C) Schematic representation of the interactions 
mediated by Death domains in various metazoan signaling processes. (D) Cartoon structural representation of the Death-Death interaction in the 
FADD-FAS complex (PDB: 3EQZ) and the Pyrin domain-based protein-templated assembly of filamentous polymeric complexes in NLRP6 (PDB: 6NCV). 
(E) Representative ternary biological conflict systems where the EADs, predicted to perform roles comparable to eukaryotic Death domains, were 
discovered. (F) Schematic representation of the interactions mediated by the EADs in prokaryotic biological conflict systems that are predicted to lead 
to a highly regulated counter-invader response.
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eukaryotic apoptotic systems have their ultimate origins in prokaryotes, where they show a prepon-
derant presence in multicellular forms (Aravind et al., 1999; Koonin and Aravind, 2002; Kaur et al., 
2020).

In eukaryotes, these domains are commonly incorporated into lineage-specific protein domain 
architectures and embedded within signaling webs that are typical of eukaryotic regulatory 
systems, such as protein kinase cascades (e.g., MAP kinases) or the ubiquitin/ubiquitin-like (Ub/
Ubl)-proteasome system (Figure 1A; Aravind et al., 2001; Orlowski, 1999; Keshet and Seger, 
2010). Until recently, potential regulatory networks in which the prokaryotic homologs of apoptotic 
proteins were situated remained unclear. As part of our program to comprehensively identify new 
molecular components mediating biological conflicts (Zhang et al., 2012; Iyer et al., 2017; Anan-
tharaman and Aravind, 2003; Aravind et al., 2012; Burroughs et al., 2015; Zhang et al., 2016; 
Burroughs and Aravind, 2020), we uncovered a class of thematically unified systems in phylogenet-
ically distant prokaryotes with a predominantly multicellular habit (e.g., actinomycetes, cyanobac-
teria, chloroflexi, and myxobacteria; Figure 1E; Kaur et al., 2020). These possess counterparts of 
eukaryotic apoptotic protein domains as part of multidomain proteins predicted to form multimeric 
signaling complexes. These complexes are often characterized by a ‘ternary’ form, that is, with three 
functional categories of components predicted: (1) to detect invaders, (2) signal their presence and 
set a threshold for effector activation, and (3) finally unleash the effectors (Figure 1E). Notably, they 
show threshold-setting components that are based on chaperone-cochaperone pairs, proteolysis, 
nucleotide signals, and/or GTPase switches (belonging to the broader septin/GIMAP-like clade) 
that present analogies to the tight regulation seen in eukaryotic apoptotic systems (Figure 1C–E; 
Kaur et al., 2020). Selection for domain architectural and sequence diversification in these systems, 
especially in terms of their effector and invader-sensing components, suggested that the apoptosis-
like processes mediated by these systems are part of the counter-invader response in multicellular 
prokaryotes.

These prokaryotic systems also brought to light a hitherto unappreciated commonality with meta-
zoan apoptotic systems, namely the use of small ‘adaptor’ domains in complex formation and effector 
recruitment (Figure 1F). In metazoa, the regulators and effectors are brought together by the interac-
tions of the adaptor domains, which are most commonly the α-helical domains of the Death-like super-
family, viz., the Death domain, Death effector domain (DED), caspase recruitment domain (CARD), 
and Pyrin domain (PYD) that have a shared six-helical bundle fold (Park et al., 2007; Figure 1C). For 
example, the C-terminal Death domains of the vertebrate tumor necrosis factor receptor (TNFR1), 
FAS, or the neurotrophin receptor p75, in response to activation by their respective ligands (TNFα, 
Fas-Ligand, and the nerve growth factor), recruit TRADD with a C-terminal Death domain, which in turn 
recruits the protein kinase Rip1 and FADD that also possess Death domains (Micheau and Tschopp, 
2003; Hsu et al., 1995; Stanger et al., 1995; Boldin et al., 1995; Yazidi-Belkoura et al., 2003). 
FADD additionally possesses a DED, which in turn recruits caspases with DEDs to induce a proteolytic 
cascade, leading to apoptosis (Figure 1A; Chinnaiyan et al., 1995). The N-terminal region of TRADD 
contains a domain (TRADD-N; Pfam PF09034) structurally related to the small-molecule-binding ACT 
domain (RRM-like fold) (Aravind and Koonin, 1999b; Park et al., 2000), which recruits the MATH 
domain of the TNFR-associated factor 2 (TRAF2), leading to activation of JNK/AP1-kinase and inflam-
matory response pathways transcriptionally controlled by nuclear factor (NF)-κB (Park et al., 2000; 
Hsu et al., 1996; Tsao et al., 2000), thus uniting apoptotic and immune signaling (Figure 1A). Our 
recent work showed that both α-helical domains (including the first examples of domains distantly 
related to the metazoan Death-like superfamily) and those related to the TRADD-N are present as 
potential adaptors in the newly described conflict systems enriched in multicellular bacteria (Kaur 
et al., 2020).

These findings provided the first hints for the possible provenance of key apoptotic adaptors 
related to the Death-like and TRADD-N families in bacterial conflict systems. In this study, we expand 
these findings to show that the classical metazoan-type Death domains are found in bacterial conflict 
systems that possess a similar array of effectors as the metazoan apoptotic systems. We also identify 
several previously unrecognized families of the TRADD-N domain in bacteria and metazoans. The new 
metazoan TRADD-N families often show lineage-specific expansions (LSEs) with a remarkable diversity 
of domain architectures paralleling their contextual connections in prokaryotic conflict systems. Conse-
quently, we show that the TRADD-N domains define a widespread, conserved functional principle for 
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regulating effector deployment across diverse conflict systems. These observations helped us identify 
and explain the mechanisms of several novel components of prokaryotic and animal immunity.

Results
The ‘EAD principle’ helps identify bacterial Death-like domains closely 
related to metazoan Death domains
Despite sharing a basic ternary organization of invader sensing, threshold setting, and effector 
deployment components, the recently identified conflict systems enriched in multicellular prokaryotes 
differ in terms of the actual components that play these roles (Figure 1E; Kaur et al., 2020). One 
major class of these have a threshold-setting regulatory core comprising a MoxR-type AAA+-AT-
Pase-von Willebrand factor A (vWA) domain chaperone-cochaperone pair, with the effector domains 
typically occurring in the C-terminal region of the same polypeptide as the vWA domain (Figure 1E). 
Different versions of these systems are defined by one of several distinct third components, such as 
the vWA-MoxR-associated protein (VMAP; Figure 1E, top-left panel) or the inactive STAND NTPase 
module (iSTAND; Figure 1E, middle two panels). The system-specific third components have invader-
recognition and multimeric assembly domains further linked to N-terminal signaling domains that are 
predicted to facilitate effector activation through nucleotide-derived or proteolytic signals. Other 
ternary systems have a core GTPase-switch along with their own invader recognition and effector 
components (Figure 1E, top-right panel). Despite these disparate elements, we observed that these 
systems frequently share one or more of 12 distinct, small, non-catalytic domains showing parallel 
domain-architectural and predicted functional features. Since these domains are typically coupled 
with effector domains, we termed them the effector-associated domains (EADs) (Kaur et al., 2020). 
In the ternary systems, they are most frequently coupled to the system-specific third component, 
for example, at the N-terminus of the VMAP or iSTAND proteins (Figure 1E, F). Additional genes 
encoding EAD proteins occur in the same operon as the genes for the core ternary system or else-
where in the genomes of organisms possessing such systems (Figure 1E, lower panel). Further, the 
EADs encoded in genomic proximity to each other or by the same organism tend to be more closely 
related than their counterparts from other genomes (Kaur et al., 2020).

Thus, by tracking the EADs we were able to identify other predicted core counter-invader conflict 
systems beyond the original ternary systems. Their domain compositions pointed to diverse acti-
vating mechanisms, such as proteolysis by either trypsin-like or caspase-like peptidases (respectively 
NucA-trypsin and EACC1 systems; Kaur et al., 2020). Together, these observations helped define 
a widespread organizational feature of these conflict systems, that is, the EAD principle: the EADs 
increase the range of effector and signaling domains that can be recruited to and deployed by a core 
system via homotypic interactions (Figure 1; Kaur et al., 2020). This pointed to a functional analogy 
between the EADs in these bacterial systems and the homotypic interactions mediated by the Death-
superfamily adaptors in metazoan apoptosis/immune systems (Figure 1C and F; Park et al., 2007). 
Augmenting this equivalence, we found that 9 out of the 12 EADs are α-helical domains with structural 
parallels to the metazoan Death-like superfamily domains (Kaur et al., 2020; Supplementary file 1). 
Moreover, we found two distant bacterial homologs of the Death-like superfamily among the EADs, 
namely bDLD1 (EAD3) and bDLD2. These are present in the vWA-MoxR ternary systems respectively 
with VMAP and iSTAND modules as their third component (Kaur et al., 2020).

Instigated by these findings, we used the procedure of domain architectural analysis followed 
by iterative sequence profile searches to find any new EADs that might throw further light on their 
evolutionary and/or functional relationship to the Death-like superfamily. As a result, we retrieved 
a novel family of bacterial Death-like domains (e.g., GenBank accession: OUL31312, Nostoc sp. 
T09; Figure 2) associated with predicted counter-invader systems such as the vWA-MoxR-iSTAND 
ternary system (Figure 2A, B, C and D). We accordingly named this the bacterial Death-like domain-3 
(bDLD3). Remarkably, unlike bDLD1 and bDLD2, bDLD3 is closely related to metazoan Death domains 
(Figure 2D). For instance, sequence profile searches with a bDLD3 domain from Nostoc (GenBank: 
OUL31312.1) as query recovered the eukaryotic Death domain in iterative PSI-BLAST searches (e.g., 
the nematode Gongylonema VDN25015.1 in iteration 2, e-value 10–6). A multiple alignment of bDLD3 
showed that it shares key conserved residues with the classical metazoan Death domain including 
tryptophans in helices 2 and 4, and an RxD motif at the beginning of the terminal helix 6 (Yang 
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Figure 2. Domain and gene neighborhood contexts of the bacterial Death-like domains (bDLD). (A) Representative gene neighborhoods coding for 
bDLD3 proteins. (B) Domains architectural network of bDLD3. (C) Representative gene neighborhoods coding for bDLD1 and bDLD2 proteins. (D) 
Multiple sequence alignment (MSA) of bDLD3 and representative eukaryotic Death domains (in purple). Sequences are denoted by the organism name 
and NCBI protein accession number separated by an underscore. Domain limits are numbered. . The predicted secondary structure and the sequence 

Figure 2 continued on next page
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et al., 2005; Weber and Vincenz, 2001; Figure 2 and Figure 2—source data 2). bDLD3 is more 
widespread in bacteria and displays a broader range of domain architecture and gene neighbor-
hood associations than bDLD1 and bDLD2 (Figure  2A and C). Like the earlier described ternary 
systems, bDLD3 shows a statistically significant propensity to occur in bacteria with a multicellular 
habit, such as members of actinobacteria, proteobacteria, cyanobacteria, nitrospinae/tectomicrobia, 
and planctomycetes (p=3.179 × 10–14; calculated using the hypergeometric distribution; see Mate-
rials and methods). Predicted effector domains fused to bDLD3 include catalytic domains involved in 
NAD+/nucleotide-processing (TIR, purine/pyrimidine nucleotide phosphorylase [hereinafter PNPase]) 
(Essuman et  al., 2018; Mao et  al., 1997), protein modification (S/T kinase) (Taylor and Kornev, 
2011), proteolysis (caspase and trypsin) (Aravind and Koonin, 2002; Barrett and Rawlings, 1995), 
and hydrolysis of membrane-lipids (α/β-hydrolase) (Holmquist, 2000; Figure 2A, B). The versions 
fused to caspases are often linked in an operon to a gene encoding an AP-ATPase (a member of 
the STAND clade of NTPases typified by the animal apoptosome proteins APAF1/Ced-4; Figure 2E; 
Leipe et al., 2004; Saleh et al., 1999; Chaudhary et al., 1998). As with other EADs, bacteria (where 
complete genomes are available) frequently possess multiple copies of bDLD3, where one copy is 
fused to C-terminal effectors and the other to the N-termini of core components of the ternary system 
(Figure 2A). For example, mimicking the earlier-reported fusion in a ternary system of the bDLD1 to 
the iSTAND module (Kaur et al., 2020), in this work we recovered a fusion of bDLD3 to the iSTAND 
domain in a Thiotrichaceae proteobacterium (HID99200.1; Figure 2C). Again, like in the first system 
where an adjacent gene codes for a second copy of bDLD1 fused to a trypsin-like peptidase effector 
domain, in the current system we found a second neighboring gene coding for a bDLD3 domain 
fused to a trypsin-like peptidase domain (Figure 2C). The same organism also has two other bDLD3 
domains elsewhere in the genome, of which one is fused to a Clp-like AAA+ ATPase (Hoskins et al., 
2001).

bDLD3 helps identify two new versions of MoxR-vWA ternary systems
We next used the gene neighborhood- and domain architecture-associations of bDLD3 in conjunction 
with sensitive sequence analysis as a gateway to explore the conflict systems that contain it (Figure 
2—source data 1, see Materials and methods). Consequently, we detected systems in which the 
bDLD3-encoding gene was genomically linked to 3′ MoxR-vWA pairs typical of other ternary systems 
(e.g., Micromonospora, WP_144082196); however, in these it was fused to an unknown module that 
took the place of the third component VMAP or iSTAND modules of the previously described ternary 
systems (Figure 2F). This unknown module was additionally seen in several MoxR-vWA systems, where 
it was fused to N-terminal EAD1 or EAD8 domains that took the place of bDLD3 (Figure 2F). Through 
profile-profile comparisons with the HHpred program, we found this unknown module to be a previ-
ously unrecognized inactive STAND NTPase module (p-value 10–6 for iSTAND and p=1.2–2.2 × 10–4 
for other STAND NTPases); accordingly, we named it iSTAND2 (Figure 2F). In the known VMAP and 
iSTAND systems (Kaur et al., 2020), the effector domains are most often directly connected to the 
C-terminus of the vWA component by an α-helical linker domain, the vWA-L. In the iSTAND2 systems, 
as in a minority of iSTAND systems, the vWA-L with C-terminal effector domains is encoded by a 
separate gene adjacent to that coding for the vWA domain (Figure 2F). Using this gene neighbor-
hood template, we identified a further class of MoxR-vWA ternary systems that contain a gene coding 
for a protein with the vWA-L fused to C-terminal effector domains adjacent to the separate vWA 
gene (Figure 2G). The conserved 5′ gene of these systems codes for the third component typified 

consensus at 85% identity are depicted above and below the alignment, respectively. Coloring is as per the consensus abbreviation of residue type, 
where s: small; u: tiny; +: basic; h: hydrophobic; l: aliphatic; p: polar; b: big. In all figures, α-helices and β-strands in MSAs are depicted as cylinders and 
arrows, respectively. Insertions in the sequences are represented by the number corresponding to their length. (E) Comparable domain architectures 
of the bDLD3 and Death-superfamily domains. iSTAND2 (F) and TERNS3 (G) containing novel ternary conflict systems. Novel conflict systems utilizing 
the lectin fold domains NPCBM (H) and FGS (I). (J) Domain architectures of eukaryotic SPRY-like domains. (K) Novel conflict system with a constant core 
comprising TPR, GreA/B-C-terminal, and PIN domains.

The online version of this article includes the following source data for figure 2:

Source data 1. Comprehensive gene neighborhoods and domain architectures of systems described in the figure.

Source data 2. Multiple sequence alignments of novel domains described in this study.

Figure 2 continued
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by a novel α + β domain distinct from the third component of all other MoxR-vWA ternary systems; 
we named it TERNS3 for ternary system component 3 (Figure  2G). Both these new systems, like 
the earlier-described ternary systems, are mainly found in multicellular cyanobacteria, actinobacteria, 
chloroflexi, and proteobacteria (iSTAND2: p=2.67 × 10–3; TERNS3: p=4.106 × 10–17; Figure 2—source 
data 1, Supplementary file 2).

Both iSTAND2 and TERNS3 are linked to some of the same signaling domains associated with the 
VMAP and iSTAND modules, either via direct N-terminal fusions or via fusions to EADs (Figure 2F, 
G; Kaur et  al., 2020). In the case of iSTAND2, this linked domain is predominantly a trypsin-like 
domain and infrequently a cNMP cyclase domain (Murzin, 1998), which are fused to either the same 
EADs or bDLD3 corresponding to that found at the N-terminus of iSTAND2 (Figure 2F, G). In the 
TERNS3-containing systems, the most common association is with the TIR domain and less commonly 
with proteases (e.g., the circularly permuted transglutaminase-like peptidase; Anantharaman et al., 
2001), both showing direct fusions. These contextual connections suggest subtle differences in the 
predominant regulatory mode of the iSTAND2 and TERNS3 ternary systems, with the former prob-
ably mainly depending on a proteolytic activation step and the latter typically using a NAD+-derived 
signal with a ADP-ribose (ADPr) moiety generated by the TIR domain (Burroughs and Aravind, 2020; 
Essuman et al., 2018).

In addition to the effectors fused to the vWA-L domain, some of these systems contain genes 
coding for additional effectors fused to the cognate EADs (Figure 2F and G). The classes of effector 
domains found in the iSTAND2- and TERNS3 systems overlap with those in the VMAP and iSTAND 
ternary systems (Kaur et al., 2020). These include restriction endonuclease fold (REase) (Steczkiewicz 
et al., 2012), supersecondary structure forming α-helical repeats, small-molecule kinase (related to 
aminoglycoside kinases) (Hon et al., 1997), S/T/Y protein kinases, TIR, FtsK ATPases (both active and 
inactive copies) (Iyer et al., 2004), and the cyanobacteria-specific tetrapyrrole-binding GUN4 and 
FGS domains (Davison et al., 2005; Doulatov et al., 2004; Figure 2F,G). Both iSTAND2- and TERNS3 
systems, like the previously described VMAP-ternary systems, also feature receiver domains occurring 
independently of histidine kinases as potential effectors. We predict a role for these comparable to 
the recently described versions of the receiver domain in biological conflict systems that might func-
tion independently of histidine kinases as nucleotide-responsive switches (Burroughs and Aravind, 
2020; West and Stock, 2001; Pao and Saier, 1995; Gao et al., 2019; Iyer et al., 2021). Unique to 
the iSTAND2 systems are effectors containing a modified nucleic-acid-binding PUA domain fused to 
a STAND NTPase and inactive zincin-like metalloprotease domains (e.g., Varivorax; WP_077000516.1; 
Figure 2F; Iyer et al., 2006a; Stöcker et al., 1995). Unique to certain TERNS3 systems are effector 
modules with the RNA-binding OST-HTH domain fused to multiple OB fold S1 domains (Anantha-
raman et al., 2010; Figure 2G). These point to the potential recognition of both modified and unmod-
ified nucleic acids as part of the response to the invasive elements by these systems. In some TERNS3 
systems, we observed a unique signaling ensemble in the form of a Ubl-conjugation system (Iyer 
et al., 2006b; Burroughs et al., 2012a) with an E1 ligase coupled to Ubl and E2 components, both 
fused to EAD1s (Figure 2G). These are likely recruited to the core TERNS3 domain that is furnished 
with its own N-terminal EAD1.

bDLD3 and EAD10 help identify counter-invader systems respectively 
with lectin fold and RNA polymerase-association modules
EADs link biochemically disparate effector domains to the regulatory core of counter-invader conflict 
systems. These effector domains might also be found independently of EADs as part of other (often 
simpler) counter-invader systems. Thus, the EAD-linked domains help define potential novel effectors 
and conflict systems that possess them. This postulate helped us identify multiple previously unrec-
ognized sets of conflict systems, two of which utilized lectin fold domains (Figure 2H,I) and were 
uncovered via bDLD3, and another one predicted to associate with the RNA polymerase (RNAP) that 
was discovered via EAD10.

The first of these are typified by the NPCBM (novel putative carbohydrate binding module; Pfam: 
PF08305) (Rigden, 2005), a member of the discoidin-like fold that includes numerous carbohydrate-
binding (lectin) domains (Baumgartner et  al., 1998). We observed loci with tandem genes (e.g., 
WP_052086955.1 of Nocardia seriolae) specifying proteins wherein bDLD3 is fused to either NPCBM 
or PNPase domains (Figure 2H, top panel). Closely related NPCBM domains are frequently fused to 

https://doi.org/10.7554/eLife.70394
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known effectors such as TIR and S/T/Y-type kinases and are encoded in conserved gene neighbor-
hoods coding for an AP-ATPase fused to TPR repeats and caspases (Figure 2H, bottom panel). The 
second of these systems are centered on the FGS domain (the so-called ‘Formylglycine-generating 
enzyme sulfatase’ in Pfam: PF03781) (Alayyoubi et al., 2013), which has the same protein fold as 
another large class of lectin domains, the C-type lectins (Figure 2I; McMahon et al., 2005). In the 
cyanobacterium Symploca (NET60851.1), we found bDLD3 in an identical configuration as the above-
described fusion with the NPCBM domain, except that the latter domain was replaced by the FGS 
domain (Figure  2I, top panel). Further, a conserved gene neighborhood found in certain proteo-
bacteria and nitrospinae codes for a pair of bDLD3 proteins: one of the bDLD3 domains is fused to 
STAND NTPase and FGS domains (acc: WP_089718394.1) and the other to a TIR domain (Figure 2I). 
This similarity in the domain architectural and contextual connections of NPCBM and FGS domains 
suggests that these are indeed functionally comparable.

The above-noted STAND NTPase-FGS combination is also found widely across several bacterial and 
archaeal lineages independently of its association with bDLD3 (Figure 2I). In these cases, the N-ter-
minal bDLD3 is often displaced by a slew of other EADs (EAD1, EAD2, EAD7, and EAD8) or effector 
domains belonging to diverse functional classes: for example, nucleotide and NAD+-processing 
domains (TIR, DRHyd, calcineurin), peptidases (caspase, trypsin), and protein phosphorylation-related 
domains (S/T/Y-kinase, FHA) (Burroughs et al., 2015; Aravind and Koonin, 1998a; Durocher and 
Jackson, 2002). The central NTPase also shows some diversity – it might either belong to the NACHT 
clade or the MNS clade (Npun2340/2341 family) (Leipe et al., 2004) or a novel STAND NTPase clade 
that we term nSTAND1 (sometimes also present in the previously described EACC1 conflict systems; 
Kaur et al., 2020; Figure 2I). The STAND NTPase domain might also be displaced by other types of 
NTPase domains, namely the KAP ATPase (Aravind et al., 2004), which was previously described as a 
player in anti-bacteriophage immunity (Clark et al., 2014) or the AP-GTPase, a small GTPase domain 
of the Ras-like clade (Figure 2I), which is found in animal apoptotic proteins (e.g., the DAP protein 
kinase [Kawai et al., 1999]). As in the ternary conflict systems, the EAD genes associated with these 
systems are typically found in multiple copies. Here again, one copy of the EAD is fused to the N-ter-
minus of aforesaid NTPases and the rest to distinct effectors (Figure 2H,I). We had earlier noted the 
FGS domain as an effector in several ternary conflict systems (Kaur et al., 2020). As in those systems, 
here too the FGS genes are often associated with the components of the diversity generating system 
(DGR) (Wu et al., 2018), namely a reverse transcriptase and the four-helical domain accessory protein 
(Figure 2I). These occur as either a neighboring locus or elsewhere in the genome. Hence, it is likely 
that as in the classical DGR and ternary systems, the FGS domain is diversified by the error-prone 
action of the reverse transcriptase (Alayyoubi et al., 2013). Further, organisms often have two or 
more copies of the NTPase-FGS system, each with distinct NTPase types and N-terminal EADs or 
effectors suggesting selection for diversification to cover for resistance on the side of the invaders.

The recruitment of two distinct lectin fold domains, NPCBM and the FGS, to conflict systems, 
along with their similar contextual connections (Figures 2H and 1) is reminiscent of the SPRY-like 
domains (SPRY, PRY, and Neuralized repeat) with the concanavalin lectin fold (Ponting et al., 1997) 
that are prominent in eukaryotic immunity (D’Cruz et al., 2013). In eukaryotes, the SPRY-like domains 
are coupled to effectors such as the RING finger or HECT domain E3 Ub-ligase (the TRIM proteins) 
(Reymond et al., 2001), or the NACHT clade of STAND NTPases or different members of the Death-
like superfamily (e.g., Death, Pyrin, and CARD) (Papin et al., 2007; Chae et al., 2006; Figure 2J). In 
several stramenopiles, the above-mentioned Ub-ligases might additionally possess a NPCBM domain 
(Figure 2J). In the well-studied TRIM systems, SPRY domains directly recognize viral molecules (Perez-
Caballero et al., 2005; James et al., 2007) (e.g., the glycosylated HIV capsid protein [Yap et al., 
2005]). Based on these parallels, we propose that the NPCBM and the FGS domains directly interact 
with invasive molecules (viral nucleic acids or proteins) and recruit other catalytic effectors to evince 
downstream action, such as apoptosis, to limit the invader. Since lectin domains can recognize glyco-
sylated macromolecules, these could be one possible target (see below). In the case of the FGS 
domain, the associated DGR suggests that these could be potential analogs of vertebrate adaptive 
immunity receptors that undergo hypermutation to bind a wide diversity of invader molecules (Boehm 
et al., 2018; Flajnik and Kasahara, 2010). Further, the significant preponderance of both NPCBM 
(actinobacteria) and FGS (cyanobacteria) systems in multicellular bacteria (p=2.7 × 10–36 and p=3.7 × 
10–5, respectively) implies that they are part of the unique immune processes of such organisms, which 

https://doi.org/10.7554/eLife.70394


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Kaur, Iyer et al. eLife 2021;10:e70394. DOI: https://doi.org/10.7554/eLife.70394 � 10 of 36

are regulated by the associated NTPase domains, ternary systems, or other fused signaling domains 
(Kaur et al., 2020).

In a similar vein, EAD10 led us to a previously unrecognized prokaryotic conflict system that is 
widespread in bacteria and sporadic in archaea. The archetypal member of this system features an 
EAD10 domain fused to a constant (but rapidly evolving) C-terminal region comprised of TPR repeats 
a GreA/B-C domain, and a hitherto undetected version of the PIN domain (WP_017307658.1 from the 
cyanobacterium Fischerella sp.; Figure 2K). In other examples of this system, EAD10 is replaced by 1 
of 13 different effector domains, such as DNase (REase, HNH), NAD+/nucleotide-targeting (PNPase, 
TIR, SIR2), and peptidase (trypsin, papain fold transglutaminase-like domain: BTLCP) domains, and an 
uncharacterized effector domain also found at the N-terminus of certain fungal heteroincompatibility 
HetE proteins.

The GreA/B-C is a domain related to the FKBP-like peptidyl prolyl isomerases that occurs in the 
bacterial transcription elongation factors GreA and GreB (Stebbins et al., 1995) and transcription 
inhibitors like Gfh1 (Tagami et  al., 2010). This domain engages the universally conserved coiled-
coil segment that forms part of the RNAP secondary exit channel in the β′ subunit, which is needed 
to accommodate the 3′ end of the back-tracked transcript and the diffusion of soluble nucleotide 
substrates (Abdelkareem et al., 2019). Given that these systems mostly occur as standalone genes, 
with few conserved gene neighbors, we predict that they act by themselves on the RNAP complexes 
that have been hijacked to transcribe viral DNA. It is conceivable that the GreA/B-C domain of these 
proteins engages the RNAP β′ coil-coil as in conventional transcription elongation and causes the 
transcript to be extruded into the secondary channel. It can then be cleaved by the C-terminal PIN 
domain. However, if this action on the transcript were to fail due to viral inhibition or the overwhelming 
of this line of defense, the N-terminal variable effector could be activated either directly or via EAD-
EAD interaction to unleash an apoptotic response.

Bacterial and metazoan immunity systems with a vast array of 
TRADD-N domains
TRADD is a versatile adaptor protein that interacts via its Death domain with the cytoplasmic Death 
domains of multiple members of the TNFR family, activating different apoptotic pathways (Micheau 
and Tschopp, 2003; Hsu et  al., 1995). It recruits the Ub E3 ligase TRAF2 through an interaction 
between its N-terminal domain (TRADD-N) and the β-sandwich MATH domain of the TRAF (Hsu 
et al., 1996; Figure 1A). The TRADD-N domain was until recently only known from vertebrates. We 
recently reported bacterial TRADD-N domains that were recovered via their fusion to EAD1 and EAD4 
(Kaur et al., 2020). In the current study, analysis of the bDLD3 proteins led us to another bacterial 
homolog of the TRADD-N domain with fusions to an N-terminal PNPase and C-terminal caspase (e.g., 
AMV23994 from Gemmata sp. SH-PL17; Figure 3A, first architecture). In a closely related organism 
Gemmata massiliana, the TRADD-N domain is instead fused to N-terminal nucleotide cyclase and FGS 
domains and a C-terminal caspase domain (Figure 3A, second architecture). The fusion to effector 
domains or EADs and the diversity of architectures in closely related species supports a role for these 
TRADD-N proteins in counter-invader conflicts. Accordingly, we systematically investigated these 
TRADD-N domains to identify new homologs.

Using bacterial TRADD-N homologs as queries in PSI-BLAST searches against the nr50 and the nr90 
databases (see Materials and methods), we recovered novel TRADD-N families across several bacteria 
and animals. For example, PSI-BLAST searches initiated with a TRADD-N domain of Anaerolineales 
bacterium (GenBank: MBE0669634.1, region 141.232), in addition to numerous bacterial sequences, 
recovered several metazoan sequences with significant scores (e = 10–5-10–12 within five iterations; e.g., 
amphioxus XP_035660412.1 e = 10–8 in iteration 4). This search also recovered borderline hits to two 
starfish proteins (XP_022106408.1; Acanthaster planci; region 58.150, e = .08; XP_033636006.1, Asterias 
rubens; region 300.388, e = 0.09, iteration 6). Their relationship to the bacterial proteins was confirmed 
by reciprocal searches: for instance, a PSI-BLAST search seeded with the above region from the A. planci 
recovered significant hits to bacteria homologs (e.g., NEP55853.1 from the cyanobacterium Symploca, 
e = 10–5). Also recovered in these searches were the DNA-binding Death effector domain-2 (DEDD2/
FLAME3) proteins of metazoans. Further, a profile-profile search initiated with an alignment gener-
ated from these echinoderm sequences and their bacterial homologs unified them with the vertebrate 
TRADD-N domains (HHpred probability 95.45%), thereby confirming them as TRADD-N domains.

https://doi.org/10.7554/eLife.70394
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Figure 3. Structure, alignment, phylogeny, and contextual analysis of the TRADD-N domain. (A) The bacterial TRADD-N domains that were initially 
recovered in searches. (B) Topology diagram of TRADD-N. Arrows and helices represent β-strand and α-helical regions, respectively. The conserved 
serine residue at the β2-β3 turn is indicated. (C) Multiple sequence alignment (MSA) of TRADD-N. Refer to Figure 2 legend for details of the MSA 
rendering. (D) The interaction of TRADD-N with the MATH domain (PDB: 1F3V). Residues mediating the non-covalent interactions are indicated. (E) 
Phylogenetic tree of representative TRADD-N domains showing the major clades . Domain architectures of (F) and gene neighborhoods coding for (G, 
H) bacterial TRADD-N domain proteins.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Comprehensive gene neighborhoods and domain architectures of the bacterial TRADD-N domains.

Figure supplement 1. TRADD-N phylogenetic tree showing the names of the branches.

https://doi.org/10.7554/eLife.70394
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Among the hits recovered in the first of the above-mentioned searches were the animal nuclear 
receptor coactivator 6 (NCOA6, e.g., XP_033127223.1 from the feather star [Echinodermata] Anneissia 
japonica, e-value: 10–5, iteration 5). This hit overlapped with a model termed ‘Nucleic_acid_bd’ in the 
Pfam database (PF13820) defined by animal-specific proteins homologous to NCOA6. Their relation-
ship was confirmed by a profile-profile search with the TRADD-N domain from the cyanobacterium 
Nostoc (PHJ73282.1, region 103.194) that also recovered the same NCOA6-derived Pfam profile 
(HHpred probability 98.2%). A multiple sequence alignment helped define the correct boundaries 
of this conserved domain in the animal NCOA6 proteins and secondary structure prediction along 
with a sampling of the conserved sequence motifs (see below) showed a complete congruence to 
the TRADD-N domain structure. Further, profile-profile searches with representatives of each of the 
newly recovered groups also hit versions of the conventional ACT and structurally related domains 
(e.g., Dystroglycan DAG1 and acylphosphatases; HHpred probability 68–72%) consistent with the 
previously established shared presence of a RRM-like fold in these domains and TRADD-N (Figure 3B 
and C; Park et al., 2000; Tsao et al., 2000). Additional transitive searches with these newly detected 
sequences recovered vast expansions of TRADD-N domains in several animals, such as the sponge 
Amphimedon, starfishes and the amphioxus Branchiostoma, the human DEDD2 protein, and its verte-
brate homologs (Figure 4—source data 1).

The RRM-like fold of the TRADD-N domain is a two-layered α + β sandwich characterized by the 
kinking of its two α-helices and the exposed face of its four-stranded antiparallel β-sheet that forms 
a prominent interaction surface (Figure  3B; Park et  al., 2000; Tsao et  al., 2000). A comprehen-
sive multiple sequence alignment revealed a strongly conserved uS motif (where u is a tiny residue, 
usually glycine) in the turn between β2 and β3, with the serine residue occasionally substituted by a 
cysteine (Figure 3C, Figure 2—source data 2). The crystal structure of the TRADD-N-TRAF2-MATH 
complex (PDB: 1F3V) shows that the corresponding Ser67 is a key determinant of the interaction of 
the TRADD-N domain with a proline in its partner, the MATH domain (Figure 3D; Park et al., 2000). 
The conservation of this residue suggests that it is part of a conserved interaction interface across 
the newly defined TRADD-N superfamily. We used a comprehensive multiple sequence alignment 
of the recovered TRADD-N domains to construct a phylogenetic tree (Figure 3E). Despite being a 
small domain, it showed multiple well-separated metazoan LSEs within them. The bacterial sequences 
appear to form a basal group from within which two distinct metazoan clade clades have emerged. 
The first of these encompasses the NCOA6 and related LSEs of metazoan proteins. The second 
encompasses the DEDD2, vertebrate TRADD, and related LSEs from various metazoa (Figure 3E). We 
describe each of the clades below in greater detail.

The bacterial TRADD-N proteins
The bacterial homologs of the TRADD-N domain are significantly over-represented in bacteria showing 
multicellular habit or complex developmental cycles, namely cyanobacteria, certain proteobacteria, 
bacteroidetes, nitrospirae, planctomycetes, and actinobacteria (p=1.942 × 10–40). The bacterial 
TRADD-N domains are found in multidomain proteins, usually occurring in-between distinct N- and C- 
terminal domains. The N-terminal domains tend to vary greatly even between closely related organ-
isms (Figure 3—source data 1, Figure 3F) and include enzymatic ones such as TIR, PNPase, HNH, 
REase, calcineurin-like phosphoesterase, caspase, or a novel nucleotidyltransferase domain of the 
DNA polymerase-β superfamily (Aravind and Koonin, 1999a) or non-enzymatic domains, viz., extra-
cytoplasmic sigma-factor (ECF)-like HTH (Heimann, 2002) or EADs (EAD1, EAD4, EAD7). The overlap 
in these domains with effector domains and EADs found in other counter-invader conflict systems 
suggests that they are the likely effector components of these systems (Figure 3F). However, the ECF-
like HTH domain points to a transcriptional response as a unique aspect of some of these systems. 
The C-terminal region typically contains supersecondary-structure-forming repeats such as pentapep-
tide, TPR, and HEAT (Das et al., 1998; Groves et al., 1999; Bateman et al., 1998), or other enzy-
matic (STAND NTPase, caspase), small-molecule-binding (PAS [Ponting and Aravind, 1997], GUN4), 
adaptor (bDLD3), or DNA-binding (HTH) globular domains (Aravind et al., 2005; Figure 3F). Some of 
these TRADD-N proteins are encoded in conserved gene neighborhoods with a further gene coding 
for a STAND NTPase of the AP-ATPase clade fused to C-terminal TPR repeats (Figure 3G).

Another group of the bacterial TRADD-N proteins are also encoded in conserved two-gene neigh-
borhoods (Figure 3H), whose second gene codes for a protein with a constant N-terminal module 

https://doi.org/10.7554/eLife.70394


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Kaur, Iyer et al. eLife 2021;10:e70394. DOI: https://doi.org/10.7554/eLife.70394 � 13 of 36

comprised of a novel α + β domain followed by a caspase domain. We termed the former domain 
EACC2 (Effector-associated Constant Component 2) by analogy to the similarly organized, previously 
described EACC1 systems with a comparable constant component (Kaur et al., 2020). The C-terminus 
of this protein is highly variable and contains one of several domains that might be either extracel-
lular with accompanying TM helices (e.g., CHASE2 – a small-molecule receptor domain; Zhulin et al., 
2003) or intracellular (e.g., PDZ, Doyle et al., 1996, S/T/Y-type protein kinase, and STAND NTPase 
domains; Figure 3H). Versions of this second gene also occur independently of the TRADD-N compo-
nent, and in those instances the C-terminal region is again highly variable with fusions to several small-
molecule-binding domains, supersecondary forming repeats, ADP-ribose-processing macro domains 
(Slade et al., 2011; Peterson et al., 2011), trypsin-like peptidases, and multi-TM domains that might 
form membrane pores (Figure 3H). In the majority of these neighborhoods that are independent 
of the TRADD-N gene, there are additional genes encoding an ECF sigma factor and a TPR protein 
(Pfam: DUF1822). Given that the organization of these systems with the constant EACC2 and caspase 
domains is reminiscent of the previously described EACC1 systems (Kaur et al., 2020), we propose 
that these proteins might sense stimuli that then induce an autopeptidase activation of the system 
via the action of the constant caspase domain. The organization of these systems indicates that the 
sensory aspect of this system would involve an interplay with the C-terminal variable domains, and an 
additional ultimate step involving the TRADD-N gene product and/or the coupled ECF sigma factor 
that can mediate the transcription regulation of a multiplicity of genes.

The closest eukaryotic homologs of the bacterial TRADD-N domains are found in most meta-
zoan lineages except the vertebrates. These show a conserved N-terminal extension with a predicted 
caspase-cleavage site in the form of a DEhD motif (h is a hydrophobic residue in 80% of the sequences) 
(Song et al., 2012). Additionally, these TRADD-N domains are fused to a C-terminal ‘FAM124 domain’ 
(Pfam: PF15067; Figure 3F, inset; see below).
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Figure 4. Domain architectures of NCOA6, classical TRADD-N, and DEDD2-like TRADD-N domains. (A) Domainarchitectures of representative 
TRADD-N proteins from the NCOA6 clade. Lineage-specific domain architectures of NCOA6 clade TRADD-N proteins from (B) Crassostrea, (C) 
Branchiostoma, and (D) Amphimedon. (E) Domain architecture of the classical TRADD-N protein. (F) Domain architectures of representative DEDD2 
TRADD-N proteins.

The online version of this article includes the following source data for figure 4:

Source data 1. Eukaryotic TRADD-N domain architectures and phyletic distribution.

Source data 2. Non-redundant counts of TRADD-N domains in eukaryotic lineages.

https://doi.org/10.7554/eLife.70394
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NCOA6 clade
In this study, we identified a previously unrecognized version of the TRADD-N domain in the metazoan 
transcription regulator NCOA6 (also known as ASC-2/AIB3/NRC/PRIP/RAP250/TRBP), a component of 
SET domain histone methyltransferase complexes such as the ASCOM coactivator, involved in nuclear 
hormone receptor transactivation (Goo et al., 2003; Lee et al., 2009b; Lee et al., 2009a; Hillmer 
and Link, 2019; El-Gebali et al., 2019). While this TRADD-N domain is the only recognizable globular 
domain (Figure 4A) in the large NCOA6 protein from most animals (El-Gebali et al., 2019; Mahajan 
and Samuels, 2005; Mahajan and Samuels, 2008), hymenopteran insects additionally possess a 
C-terminal KH domain (e.g., KYN23013.1, XP_012351037.1; Figure 4A, Figure 4—source data 1) 
that might interact with the RNA component of these histone methylase complexes (Siomi et al., 
1993). Beyond this well-conserved single-copy version, this clade of TRADD domains also shows LSEs 
of 4–357 proteins in several animals. 25–50% of these proteins possess unique domain architectures 
(Figures 3E and 4A–D). Cnidarians show LSEs of up to four TRADD-N-containing proteins where the 
domain is typically fused to an N-terminal DED and a variable C-terminal region, which is either a vWA 
domain or ankyrin repeats related to the substrate-binding region of Fem1 Cullin-E3 ligase complexes 
(Figure 4A; Dankert et al., 2017).

In contrast to other molluscs that possess only the NCOA6 ortholog, bivalves (e.g., genus Cras-
sostrea) show LSEs of at least 50–66 NCOA6 clade TRADD-N proteins corresponding to 17–20 
unique architectural themes (Figure 4B and Figure 4—source data 1). Comparison of the two related 
bivalve species with complete genome sequences, Crassostrea gigas and Crassostrea virginica, shows 
notable divergence in the architectures of their respective expansions. In C. virginica, the primary 
LSE (~50 proteins) displays a N-terminal region constant region with a cysteine-rich extracellular 
domain followed by a transmembrane helix, and an intracellular module with a DED and a NCOA6 
TRADD-N domain (Figure 4B). This is followed by a variable C- terminal region containing one or 
more of several domains commonly seen in apoptotic/immune proteins (Figure  4B): (1) domains 
of the Death-like superfamily, (2) STAND NTPases, (3) HEPN RNases (Anantharaman et al., 2013), 
and (4) AIG-GTPases, previously studied in plant immunity (Leipe et  al., 2002), supersecondary-
structure-forming repeats (e.g., ankyrins [Mosavi et al., 2004] and β-propellers [Thirup et al., 2013]; 
B-box [Massiah et al., 2007; Burroughs et al., 2011]; and HSP70 domains [Bracher and Verghese, 
2015]). The remaining set of the C. virginica LSE (~10 proteins) consists of proteins with an N-ter-
minal DED-TRADD-N dyad fused to RNA binding KH and RRM domains and multiple macro and 
C-terminal ART domains resembling PARP-14 that is implicated in antiviral response (Figure  4B; 
Daugherty et al., 2014). In contrast, C. gigas has only four and two copies respectively of the above 
architectural themes (Figure  4B). Instead, their LSE is dominated by a distinct architecture, with 
an N-terminal region comprising a HEPN RNase, immunoglobulin repeats, and a DED-TRADD-N 
combination. C-terminal to these are either WD40 β-propellers (Chaudhuri et al., 2008) or in some 
versions a Mab-21 like cyclic-GMP-AMP synthetase (cGAS) domain (acc: XP_011454060.1), a key 
component of the cGAS-STING pathway activated by the presence of invasive DNA, followed by 
TPRs (Burroughs and Aravind, 2020; Figure 4B).

The cephalochordate Branchiostoma is another genus with LSEs of the NCOA6 clade TRADD-N 
domains; different species show 13–129 proteins (Figures 3E and 4C). These are characterized by 
an N-terminal region with a DED followed by the TRADD-N domain; these in turn are connected by 
a flexible, low-complexity linker to C-terminal WD40 β-propellers (Figure 4C and Figure 4—source 
data 1). The β-propellers vary in number of repeats and show high-sequence variability pointing to 
their diversification via recombination. The most spectacular expansion of NCOA6 TRADD-N domains 
(357 proteins) is seen in the sponge Amphimedon with up to 50% of the proteins having unique 
domain architectures (Figure 4D and Figure 4—source data 1). Thematically, the majority of these 
architectural types are unified by the presence of an N-terminal unit with 1–3 copies of domains of the 
Death-like superfamily followed by the TRADD-N domain. This unit is followed by a variable, often 
fast-evolving, C-terminus with domains belonging to different functional categories (Figure 4D). The 
most common C-terminal domains are ankyrin repeats or a peptide-binding SH3 domain followed by 
LRRs (Kay, 2012; Kobe and Deisenhofer, 1994). Alternatively, this region features other signaling 
and peptide-binding adaptor domains (S/T/Y- protein kinase, MATH, SH2, PDZ; Tong et al., 1996; 
Zapata et al., 2007) or potential enzymatic effector domains (caspase, PNPase, the nucleotide phos-
phodiesterase HD domain; Aravind and Koonin, 1998b).

https://doi.org/10.7554/eLife.70394
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The DEDD2 and TRADD-like TRADD-N domains
The classic TRADD-N domain clade defined by TRADD is confined to vertebrates (Figure 3E and 
Figure 4E). Other than NCOA6 and TRADD, vertebrates typically possess a TRADD-N domain in 
DEDD2/FLAME-3, a nucleolar protein that interacts with cFLIP, a protein with DED and an inactive 
caspase domain, to negatively regulate nuclear events during apoptosis (Zhan et al., 2002). In both 
TRADD and DEDD2, the TRADD-N domain is coupled to domains of the Death-like superfamily; 
in the case of TRADD, it is a C-terminal Death domain, whereas in DEDD2 it is an N-terminal DED 
(Zhan et al., 2002; Valmiki and Ramos, 2009). We found a more extensive but sporadic presence 
of the DEDD2 clade of TRADD-N domains in certain metazoans paralleling the phyletic spread of 
the NCOA6 clade (Figure 4F, Figure 4—source data 1; Anantharaman et al., 2010). Other than 
vertebrates, DEDD2 orthologs are also found in echinoderms, molluscs, brachiopods, and arthropods 
(however, they are lost in insects). Beyond these, LSEs of this DEDD2-clade TRADD-N domains are 
seen in cnidarians (17–168 copies), Crassostrea (14–16 copies), brachiopods (33 copies), echinoderms 
(18–23 copies), hemichordates (22 copies), and cephalochordates (46–71 copies). Notably, these 
invertebrate proteins show several domain-architectural parallels to the NCOA6 TRADD-N proteins, 
and like them, the LSEs of DEDD-2 TRADD-N proteins are also characterized by constant regions 
combining a Death-like superfamily domain (usually DED) with the TRADD-N domain and variable 
flanking regions (Figure 4F and Figure 5A). This clade of TRADD-N domains is also fused to some of 
the same C-terminal variable domains as those of the NCOA6 clade, which are predicted to function 
as effectors, albeit in different organisms. For example, in cnidaria, these TRADD-N domains are fused 
to C-terminal Macro and PARP domains in addition to N-terminal HEPN domains (Figures 4 and 5).

However, this clade is characterized by an even greater set of unique domain architectures not 
observed in the NCOA6 clade (Figure 4—source data 1 and Figure 5A). One architectural pattern, 
found in several distantly related animals, namely cephalochordates, hemichordates, and cnidarians, 
features a glycosyltransferase domain of the GT4 family (Lairson et al., 2008) preceding the TRADD-N 
domain and LRRs following it (Figure 4F and Figure 5A). This clade of TRADD-N domains also shows 
fusions to the AIG and GBP GTPases, TTC28-like TPR (Izumiyama et al., 2012), the oligoadenylate 
synthase, sacsin, STING, polyubiquitin, and TRIM Ub E3 ligase domains, all which have all been previ-
ously observed in other antiviral conflict systems (Kristiansen et al., 2011; Anderson et al., 1999; 
Xue et al., 2018; Arimoto et al., 2010Figure 4F). Similarly, we also observed fusions to known medi-
ators of apoptosis, like the Bcl2 domain, FIIND, and the UPA-Zu5 module (D’Osualdo et al., 2011; 
Cleary et al., 1986; Pathan et al., 2001; Tschopp et al., 2003). Interestingly, other representatives 
of this clade are fused to a wide range of RNase/RNA-binding domains in cnidarians and brachiopods 
such as the Piwi module, NYN RNase, HEPN RNase, the interferon-induced SF2 helicase DDX60, the 
RNAi pathway helicase Mov10, and RLR-like viral RNA receptors (Anantharaman and Aravind, 2006; 
Burroughs et al., 2014; Miyashita et al., 2011; Kowalinski et al., 2011; Figure 4—source data 1, 
Figures 4F and 5A).

This pattern of LSEs accompanied by great domain-architectural diversity even between closely 
related organisms (Figure 5A) is largely unprecedented among eukaryotic immune proteins. Hence, 
we closely examined the genomic neighborhood of these TRADD-N genes and found that in the 
DEDD2 clade there are several associations with retrotransposons. Moreover, there are certain exam-
ples with direct fusions of the TRADD-N-coding genes to retrotransposons and cut and paste DNA 
transposons related to Mutator/Mule (Figure 4F; Dupeyron et al., 2019). Hence, we propose that 
this diversity of architectures with novel fusions is at least in part generated by the transposition of 
retrotransposons carrying reverse-transcribed segments of conflict-related genes or by the integra-
tion of reverse-transcribed transcripts into neighborhoods of TRADD-N coding genes. The resulting 
gene fusions are then likely to be selected if they provide an advantage against invasive elements. 
This might explain fusions to whole conflict-related genes that otherwise occur independently of 
TRADD-N domains in other organisms. Thus, these systems might be seen as paralleling the diversity 
generated via reverse-transcription in the prokaryotic DGR systems or the immune receptor diversifi-
cation in Branchiostoma (Wu et al., 2018; Huang et al., 2008).

https://doi.org/10.7554/eLife.70394
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Mechanistic implications of the bacterial Death-like domains and 
TRADD-N domains
The discovery of unambiguous bacterial versions of the Death-like superfamily and the characteriza-
tion of the diversity of the TRADD-N domains helps clarify general, unifying mechanisms at the heart 
of apoptosis and immunity. Although both superfamilies of domains show similar architectural and/or 
genome contextual linkages to a formidable array of distinct effectors in both prokaryotes and eukary-
otes (Figures 2B and 5A), they appear to define two distinct mechanistic principles. A key obser-
vation in this work is the identification of a common organizational principle unifying the Death-like 
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Figure 5. Domain architectures and analysis. (A) Architectural networks of TRADD-N domains proteins from various metazoan lineages. Nodes 
represent domains and edges connecting them indicate their adjacency in the same polypeptide with the arrowhead pointing to the C-terminal domain 
. The thickness of the edge represents the frequency of co-occurrence of the connected nodes in different architectural contexts. (B) EAD-EAD search-
retrieval network. The network was derived by using the results of various profile-profile (HHpred) searches using the individual nodes (EADs or Death-
like domains) as queries. An edge was drawn between two nodes if they were recovered with p-values<0.0001 with the arrowhead pointing to the node 
recovered in the search. The edge thickness is scaled using the -log10(p-value). The network shows that several EADs recover each other and also Death-
like domains in searches. (C) Chi-squared statistics of the positional bias of the specified domains in their domain architectures. The left three columns 
show the frequency of domain in the said positions in unique architectures, and the rightmost column gives the probability of this occurring by chance. . 
(D) Boxplot comparing position-specific entropy of sequences from MSAs of various TRADD-N clades. The t-test was used to determine the significance 
of the difference in mean entropy between the clades under comparison (indicated by the red line above the clades). (E) Histogram of the distribution 
of polydomain scores (PDS) of TRADD-N proteins. Outliers with high PDS, mostly marine organisms, are marked in red. Organism abbreviations are 
as follows: Sacc. kow.: Saccoglossus kowalevskii; Exai. pal.: Exaiptasia pallida; Ling. ana.: Lingula anatina; Crass. gig.: Crassostrea gigas; Crass. vir.: 
Crassostrea virginica; Orbi. fav.: Orbicella faveolata; Acro. dig.: Acropora digitifera; Bran. bel.: Branchiostoma belcheri; Styl. pis.: Stylophora pistillata; 
Bran. flo.: Branchiostoma floridae; Amph. que.: Amphimedon queenslandica.

https://doi.org/10.7554/eLife.70394


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Kaur, Iyer et al. eLife 2021;10:e70394. DOI: https://doi.org/10.7554/eLife.70394 � 17 of 36

domains and the bacterial EADs, thereby placing the former within the spectrum of the radiation of 
EADs in prokaryotic counter-invader conflict systems. Indeed, in profile-profile searches we were able 
to recover hits between certain EADs, bDLDs, and members of the metazoan Death-like domains 
(Figure 5B). In bacteria, the common organizational principle is reflected in both the genomic context 
and domain architectures of the EAD and bDLD proteins. Regarding genomic context, EADs or bDLDs 
are encoded in multiple copies in the same locus or genome. With respect to domain architectures, 
they show a statistically significant tendency (p=3.177 × 10–47, χ2-test) to be N- or C-terminally posi-
tioned domains that are coupled to other effector and signaling domains (Figure 5C).

This terminal positional bias in the domain architectures is also reflected in the metazoan Death-like 
superfamily (p=6.6 × 10–56; Figures 2B and 5C, Supplementary file 3). Thus, it points to a common 
role for these domains in bridging different proteins of the apoptotic or immune systems via homotypic 
interactions to allow the stepwise or aggregated unfurling of the response cascade (Figure 1C and 
F). Alternatively, certain versions of the Death-like superfamily, like the Pyrin domains, self-assemble 
into large multimeric complexes through a prion-like templating mechanism, resulting in cell death 
(Figure 1D). Comparable filament formation has recently been observed with other effectors (e.g., 
the TIR domain) and sensors (e.g., the cyclic oligonucleotide-binding STING) in eukaryotic and bacte-
rial immunity, suggesting that it is a more widespread phenomenon (Li et al., 2012; Gentle et al., 
2017; Morehouse et al., 2020). Thus, our findings imply that the spectrum of interactions ranging 
from bridging of effectors and regulators to the self-templated assembly of polymeric complexes is a 
common function of the EADs and Death-like domains, which has been repeatedly and independently 
exploited by immune/apoptotic systems of both bacteria and metazoa (Figure 1C and F).

The TRADD-N domain shows a rather contrasting positional bias, with a significant tendency to 
occur between two other globular domains in a single copy within multidomain architectures (p=6 × 
10–68; Figure 5C, Supplementary file 3). Further, the newly identified TRADD-N proteins frequently 
show constant regions combined to regions showing variability in the types of their constituent 
domains, with the TRADD-N domain usually lying at the junction of the constant and variable parts 
(Figure 5A). As noted above, a Ser residue, which in TRADD-N plays a key role in interacting with its 
MATH domain partner, is conserved across bacterial and eukaryotic TRADD-N domains (Figure 3D; 
Park et al., 2000; Hsu et al., 1996). However, the MATH domain is absent in bacteria and there 
are no corresponding expansions of MATH domains in the organisms with expansions of TRADD-N. 
Hence, despite the conserved aspect of the interface, the MATH domain is not a universal partner for 
the TRADD-N domains. Analysis of the Shannon entropy plots of the different families of TRADD-N 
domains suggests that other than NCOA6 proper, TRADD, and DEDD2 proper, the remaining 
members of the superfamily have significantly higher mean column-wise entropies. This is an indica-
tion that they are under selection for diversification (Figure 5D, Supplementary file 4). This diversifi-
cation tracks the variability in the types of domains in the flanking regions. These observations point 
to a unified model for the action of the TRADD-N domain across these systems that operates via the 
reconfiguration of protein-protein interactions. Based on the precedence of its role in TRADD and 
its bridging position in-between flanking domains (Figure 5C), we posit that it interacts with both 
flanking domains to keep them in an inactive state under normal conditions. Upon the reception 
of an invader- or apoptotic signal, which is either directly sensed by one of the flanking domains or 
transmitted to it by upstream interactions, the interaction interface of the TRADD-N domain is recon-
figured with the flanking domains assuming different conformations. We predict that this switch is 
mediated by the conserved Ser.

The consequence of these shifting interactions is likely to be twofold: first, it allows recruitment of 
the TRADD-N protein to a larger complex of apoptotic/immune-related proteins by favoring certain 
protein-protein interactions (e.g., recruitment of TRADD to the TNFR and in turn the TRAF2 Ub E3 
ligase; Hsu et al., 1996). This model is also consistent with the repeated, independent association 
of the TRADD-N domain with the Death-like superfamily domains (more generally EADs) that we 
observe in both bacteria and eukaryotes. These are likely to recruit the TRADD-N proteins to larger 
complexes via their homotypic interactions. Second, it is likely to unleash the associated effector 
domains to attack either self or non-self macromolecules. In some cases, the effector deployment 
could directly ensue from reconfigured interactions of the TRADD-N domain. In other cases, it might 
result from a cascading process such as proteolysis. In this regard, it is notable that we found the 
TRADD-N domain in polypeptides with the FIIND. This predicts that the TRADD-N proteins with ZU5/

https://doi.org/10.7554/eLife.70394
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FIIND likely undergo autoproteolysis akin to the ZU5 protein PIDD (D’Osualdo et al., 2011), which 
might be critical for effector deployment. Further, the astonishing diversity of effector domains that 
we find fused to the TRADD-N domains (Figure 5A) points to a potentially diversified ‘output’ that 
could tackle a wide range of invaders.

‘Institutionalized’ systems and marine ecology-specific immune 
responses based on the TRADD-N domain
The transcriptional coactivator NCOA6 is the only TRADD-N protein that is retained in a single copy 
across most of metazoa and also does not contain any conflict-related domains (Figures  3E and 
4A). Its conservation pattern, including the characteristic Ser residue, suggests that it mediates a 
switch through protein-protein interactions similar to that proposed for the other TRADD-N domains. 
However, its above-noted features suggest that, early in metazoan evolution, this TRADD-N domain 
was coopted and ‘institutionalized’ for a conserved role in transcription, probably acting as a switch 
during the recruitment of the histone methylation complex to specific transcription factors. This tran-
scriptional role is paralleled by the prokaryotic versions associated with ECF-sigma factor HTH domain 
(Heimann, 2002).

The apoptosis/immune-related TRADD-N domains show a contrasting phyletic pattern between 
vertebrates and invertebrates. The former show low numbers of TRADD-N domains (Kysela et al., 
2016; Dunin-Horkawicz et al., 2014; Rokas, 2008; Ameisen, 2002), and those involved in apoptosis/
immunity are nearly always the orthologs of DEDD2 and TRADD. In contrast, phylogenetically distant 
lineages of invertebrates show expanded repertoires of diverse TRADD-N domains, which are typified 
by striking lineage-specific differences in domain architectures, even between closely related species. 
Further, such expansions are restricted to marine species, namely cephalochordates, hemichordates, 
echinoderms, molluscs, brachiopods, cnidarians, and sponges (Figures 3E and 5E). Beyond this, it is 
notable that every marine group showing such LSEs of TRADD-N domains are either largely sessile 
as adults (e.g., sponges, cnidarians, brachiopods, bivalve molluscs, and hemichordates) or show slow-
moving massive herding behavior (e.g., sea cucumbers and starfishes) or dense seasonal aggregation 
(amphioxus) in marine environments (Könnecker and Keegan, 1973; Marquet et al., 2018; Craey-
meersch and Jansen, 2019; Kenchington and Hammond, 2009; Frankenberg, 1968; Piper, 2015). 
This is exemplified by the fact that arthropods or cephalopod molluscs, which, like vertebrates, tend to 
be highly motile, have very few (e.g., DEDD2) or no TRADD-N domains. We quantified this tendency 
using the previously devised metric the polydomain score (PDS) (Schäffer et al., 2020) that captures 
both the prevalence (tendency to occur as LSEs) and the domain architectural complexity of a class of 
proteins in a given organism as a single number (Figure 5E; see Materials and methods). Whereas the 
majority of organisms show TRADD-N proteins with comparable PDS, the above-mentioned marine 
metazoans are dramatic outliers, with significantly higher PDS than the mean of 74 (often orders of 
magnitude greater; range of 300–9000; p<10–6; Figure 5E; Supplementary file 5). Together, these 
observations suggest that the TRADD-N proteins are a feature of a peculiar form of immune response 
that is strongly selected in certain marine environments, like reefs or shallow ocean floors, where these 
animals aggregate (Palmer and Traylor-Knowles, 2012).

The diversification of the TRADD-N-associated variable effector domains, between even closely 
related species (e.g. Figure 5A, first two networks), is notable. More specifically, we observed that 
they feature (1) known RNA receptors (e.g., RLR), RNA-binding domains (e.g., KH, RRM), and RNA-
targeting endonucleases (e.g., HEPN, NYN). These suggest RNA viruses or retroviruses/mobile retro-
transposons to be potential stimulating signals as well as targets for these proteins (Figures 4 and 
5A). (2) Superstructure-forming repeats (e.g., β-propellers and ankyrins) associated with the TRADD-N 
domains suggest that they might directly recognize invader molecules to activate the TRADD-N 
conformational switch to unleash associated effectors (Figures 4 and 5A). (3) TRADD-N proteins in 
receptor-like architectures in the bivalve Crassostrea. This suggests that external stimuli in the form of 
direct adherence of pathogens or activated immunocytes might also trigger the TRADD-N switch. In 
this case, the pathogens could also include cellular forms, including infectious tumor cells that have 
been reported in these molluscs (Collins and Mulcahy, 2003; Metzger et al., 2015; Oprandy et al., 
1981). (4) Ub-system domains like Ub and Ub-ligases (Burroughs et al., 2012a; Burroughs et al., 
2012b): these suggest responses involving ubiquitination of invader proteins as well as recognition 
of invader proteins ubiquitinated by other E3 ligases involved in anti-invader defense. This array of 

https://doi.org/10.7554/eLife.70394


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Immunology and Inflammation

Kaur, Iyer et al. eLife 2021;10:e70394. DOI: https://doi.org/10.7554/eLife.70394 � 19 of 36

effector domains is consistent with both direct targeting of invader molecules and containment of 
the invader via apoptosis. Moreover, their variability also indicates an arms-race scenario potentially 
driven by rapidly evolving resistance to the effectors in the invaders either from sequence divergence 
in the targets or due to the effectors being nullified by invader-derived inhibitors.

Finally, it is notable that the TRADD-N domains are shared not just between disparate metazoans 
with similar ecology but also disparate multicellular bacteria with similar sessile aggregations or colo-
nies (Figures 3 and 4). Hence, they are likely to mediate a mechanism of immunity that was likely 
acquired by animals from these multicellular bacteria and fixed due to similar selective pressures. Given 
the above observations, we posit that marine aggregations might be susceptible to a variety of patho-
gens that might rapidly spread through them. In these animals, the TRADD-N proteins were probably 
selected for as a confluence for a diversified repertoire of immune mechanisms of disparate prove-
nance that function independently in other metazoans. Intriguingly, these phylogenetically disparate 
metazoans also uniquely share certain domain architectures of TRADD-N proteins to the exclusion of 
the rest. For example, the glycosyltransferase GT4-TRADD-N combination (see below) is shared by 
cnidarians, cephalochordates, and hemichordates and no other metazoan species (Figures 4 and 5A). 
This raises the possibility of some of these immune genes spreading through lateral transfer in marine 
environments. This possibility is strengthened by the above-noted association with retrotransposons, 
some which have been noted to jump between different marine species (Metzger et al., 2018).

TRADD-N proteins help identify novel effector-deployment systems
Spurred by the observation that the metazoan TRADD-N proteins bring together a wide array of 
potential effector domains, we carefully analyzed these to detect previously unrecognized effector-
deployment systems. We present below two interesting examples that were identified by this analysis.

Glycosyltransferase-4 (GT4) domains
The first of these is the glycosyltransferase GT4 domain, with two Rossmann fold subdomains 
(Martinez-Fleites et al., 2006), that shows numerous associations with the TRADD-N domain across 
diverse invertebrates (Figure 4F). GT4 domains are also found independently of the TRADD-N domain 
in a massive LSE of over 500 paralogs in the coral Acropora digitifera. Beyond the GT4 domain, these 
proteins display high variability of domain architecture with fusions to several other domains sugges-
tive of roles in biological conflicts (Figure 6A, Figure 6—source data 1). We found that the meta-
zoan GT4 domains are closest to the versions found in a range of bacterial conflict-related contexts 
(Figure 6B) such as the above-noted GreA/B-C systems. Homologous GT4 domains are also found in 
the effector position in the recently described MoxR-vWA-dependent VMAP and caspase-dependent 
CATRA ternary conflict systems (Kaur et al., 2020; Burroughs and Aravind, 2020). Other than these 
associations, GT4 domains occur in specialized giant actinobacterial secreted toxins related to the 
effectors from polymorphic toxin systems deployed in inter-bacterial conflicts (Figure 2—source data 
1, Figure 6B, bottom row, Figure 6—source data 1; Zhang et al., 2012). Here, the GT4 domains are 
combined with an array of HTH domains, other toxin domains such as ARTs and metallopeptidases, 
and SecA-like ATPase and major facilitator superfamily (MFS) transporter domains that are predicted 
to facilitate their secretion (Sharma et al., 2003; Marger and Saier, 1993).

Our analysis revealed several further bacterial GT4 domains that are predicted effectors in counter-
invader conflict systems. Several of these are found frequently fused to various classical STAND NTPase 
modules, such as AP-ATPase, NACHT, and SWACOS (Leipe et al., 2004), often in a C-terminal position 
comparable to the above-reported fusions of related STAND NTPases to different lectin fold domains 
(Figure  2H,I). A subset of these STAND NTPase-GT4 proteins also contain additional N-terminal 
effector domains, namely TIR and caspase (Figure 6B, last column). Beyond these, the GT4-STAND 
NTPase domain fusions sometimes occur as part of proteins encoded by a distinct, mobile, bacterial 
two-gene operon (Figure 6C). The constant core of both proteins encoded by this operon are STAND 
NTPase modules. These STAND NTPases define a novel family that is closer to the recently reported 
CR-ATPases (Zhang et  al., 2016), the mitochondrial apoptotic ribosomal protein S29/Dap3 (Kim 
et al., 2007), and another mitochondria-associated STAND NTPase RNA12 (Hanekamp and Thors-
ness, 1996) than to the above-mentioned classic STAND domains (Zhang et al., 2016). While both 
proteins possess a conserved arginine finger, suggesting that they form a toroidal hetero-multimer, 
the NTP-binding motifs of one of these STAND proteins have eroded, indicating that it is inactive like 
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the iSTAND and iSTAND2 versions (Figure 2—source data 2). This inactive STAND module is fused to 
variable, predicted effector modules that are most commonly either a GT4 domain or a HEPN RNase 
domain (Figure 6C).

The GT4 domain is also found in the effector position of another prokaryotic conflict system 
centered on the AP-GTPase proteins (Figure 6D, Figure 6—source data 1), which are homologs of 
their metazoan counterpart, the apoptotic DAP protein kinase (Kawai et al., 1999; Bialik and Kimchi, 
2012). In these proteins, the AP-GTPase and associated COR domain are fused to rapidly evolving 
N-terminal leucine-rich repeats akin to those found in the intracellular pathogen-recognition module 
of the NACHT clade in animals and the AP-ATPase clade in plants (Figure 6D; McHale et al., 2006; 
Correa et al., 2012). Their C-terminal region shows an assortment of variable domains, which is a 
kinase in the case of the metazoan DAP. In bacteria, this position is occupied by at least 24 different 
domains (Figure 6D), which, in addition to the GT4 domain, include the usual array of frequently 
found effectors from conflict systems such as the TIR, DRHyd, caspase, trypsin and FGS domains, 
or different EADs. A single bacterium can possess multiple copies of these proteins, each with a 
different effector domain (e.g., Haliscomenobacter hydrossis, a filamentous bacteroidetes possess 11 
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Figure 6. Domain architectural associations of the GT4 glycosyltransferase domain in (A) representative metazoans and (B) prokaryotes. (C) Predicted 
counter-invader two-gene systemwith each gene encoding a novel STAND NTPase (nSTAND2). (D) Prokaryotic counter-invader systems centered on the 
AP-GTPase proteins. (E) Topology diagram of the structural fold of an individual repeat unit of the vicinal oxygen chelate superfamily illustrating its core 
secondary structure units.

The online version of this article includes the following source data for figure 6:

Source data 1. Gene neighborhoods and domain architectures of the GT4 glycosyltransferases, the nSTAND2 and prokaryotic AP-GTPases.
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paralogous copies), suggesting a broad-based strategy to counter immune evasion and inhibition of 
effectors by the invaders.

Together, these observations suggest that the GT4 domain is a potential effector that is used in a 
variety of bacterial conflict systems both in intracellular counter-invader and inter-organismal conflict. 
Via lateral gene transfer, it has also been ‘drafted into’ and expanded in the immune systems of certain 
metazoans. Biochemically characterized metabolic versions of the GT4 family modify a variety of 
substrates such as glycoproteins, lipids and sugars, and metabolites like mycothiol (Campbell et al., 
1998; Vetting et al., 2008). This, along with the expansion in animals, indicates that they might act 
in anti-pathogen conflicts via modification of the invader molecules to either directly neutralize their 
interactions or render them available to binding by lectin-like domains of conflict systems (see above). 
Alternatively, they could block interactions between invader and host molecules by glycosylation of 
residues at the interface.

FAM124-type VOC superfamily domains
We found the approximately 500-amino-acid-long, so-called FAM124 domain coupled to the 
TRADD-N domain in metazoans (El-Gebali et  al., 2019; Figure  3F). Several of these contain a 
conserved extension with a predicted caspase site, indicating that they are possibly regulated as part 
of a proteolytic cascade by cleavage at this site. The prototypic member of this family, FAM124B, 
which only has the FAM124 domain, is a nuclear protein that interacts with SWI2/SNF2 ATPase-driven 
chromatin-remodeling complexes such as CHD7 and CHD8 (Batsukh et al., 2012). Secondary struc-
ture prediction based on a multiple alignment indicated that the FAM124 domain is made of up of 
two subdomains with comparable secondary structure (Figure—source data 2, Figure 6E). Of these, 
the C-terminal β-α-β-β-β subdomain retrieves vicinal oxygen chelate (VOC) superfamily dioxygenase/
glyoxylase domains in iterative sequence-profile searches (e = 2 × 10–4, iteration 3). Members of this 
superfamily have two homologous tandem β-α-β-β-β structural units, with the β-sheets of two units 
(derived from the same or different polypeptides; Figure 6E, Figure 2—source data 2) dimerizing 
to form an incomplete barrel-like structure (He and Moran, 2011; Gerlt and Babbitt, 2001). Given 
that FAM124 shows a N-terminal region with a comparable secondary structure to the C-terminal unit 
that can be unified with the VOC superfamily, as well as the conserved motifs that interact with the 
linker between the two tandem subdomains, we propose that the N-terminal region represents the 
first repeat (Figure 6E).

In most VOC superfamily members, the tandem units cooperate to coordinate divalent metal ions 
through residues in β1 and β4 of the two units and two vicinal oxygen atoms in the substrate. While 
these residues differ between VOC families, their positions are conserved across the families (He and 
Moran, 2011; Gerlt and Babbitt, 2001; Armstrong, 2000). Many FAM124 domains possess a highly 
conserved histidine and glutamate in the regions corresponding to β1 of the N- and C-terminal struc-
tural units, and glutamines in the β4 of the N- and C-terminal structural units (Figure 2—source data 
2). Hence, the versions with these residues have the potential to coordinate a metal ion and exhibit 
catalytic activity. The VOC superfamily catalyzes diverse enzymatic reactions such as isomerizations, 
epimerizations, and oxidative ring cleavage (extradiol dioxygenase) (Gerlt and Babbitt, 2001). Due 
to this diversity, the precise activity of FAM124 remains unclear. Based on its association with the 
CHD7 and CHD8 complexes, it is tempting to suggest that its enzymatic activity might be directed 
towards chromatin proteins, such as in the isomerization or restoration of glyoxalated amino acid side 
chains. Those TRADD-N-fused FAM124 domains, which lack the above-noted conserved residues 
(Figure 6E), could still bind target proteins like the active versions.

Discussion
The newly identified conflict systems provide insights regarding the 
evolution of immune and apoptotic systems
In prokaryotes, highly regulated conflict systems, such as those described here and previously, are 
strongly correlated with a multicellular habit across phylogenetically distant lineages (Kaur et  al., 
2020). The thematically similar but lineage-specific domain architectures in both bacteria and multi-
cellular eukaryotes suggest that a basic ‘vocabulary’ of apoptosis-related domains (Dunin-Horkawicz 
et al., 2014; Aravind et al., 2001; Kaur et al., 2020; Hofmann, 2019) was recombined with each 
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other and with other immune-related domains to constitute domain architectures with similar syntax in 
each of the disparate lineages that possess them. The presence of similarly expanded complements of 
TRADD-N and Death-superfamily proteins across distantly related aggregating marine invertebrates 
is one such case (Figures 4 and 5). This argues for both the existence of a grammar of functional inter-
actions between these domains and strong selective advantages for coupling immunity and apop-
tosis, especially in multicellular organisms across the tree of life. More specifically, our observations 
also elucidate the emergence of specific types of components in the tangled history of immune and 
apoptotic systems. We consider these in greater detail below.

NTPase switches, sensors and adaptors
More than two decades ago, it was observed that the STAND NTPases are a common denominator 
of the apoptotic systems in animals, plants, and fungi, which are shared with bacteria (Aravind et al., 
1999). The vast radiation of these NTPases in bacteria, along with the nesting of the eukaryotic versions 
within these bacterial radiations, indicated that they have been repeatedly acquired by eukaryotes 
(Aravind et  al., 2001; Koonin and Aravind, 2002). Some examples like the NACHT telomerase 
subunit TLP1 and the mitochondrial ribosomal protein S29/Dap3 were early acquisitions (Koonin and 
Aravind, 2000; Kissil et al., 1999), whereas other acquisitions are limited to certain lineages (Koonin 
and Aravind, 2002). Over this period, structural studies revealed how the metazoan AP-ATPases 
and NACHTs form toroidal complexes, such as the apoptosome and the inflammosome, that form 
a platform for NTP-regulated effector deployment in related processes in apoptosis and immunity 
(Riedl and Salvesen, 2007; Duncan et al., 2007; Latz, 2010; Cain et al., 2000). In another direction, 
these studies also established that STAND NTPases belong to the CDC6/Orc clade of AAA+ NTPases, 
whose archetypal members mediate the assembly of the replication origin complexes in the archaeo-
eukaryotic lineage (Leipe et al., 2004). Further, the recent study of the CR-ATPases, which are ATPase 
domains found in secreted effectors deployed in eukaryotic inter-organismal conflict, revealed the 
evolutionary trajectory of the STAND NTPases from CDC6/Orc-related ATPase domains of the trans-
posases of certain mobile DNA elements and Mu-like bacteriophages (Zhang et al., 2016). Similarly, it 
has also become clear that other NTPase regulatory domains, namely AP-GTPases and AIG-GTPases, 
also have an ultimately bacterial origin (Aravind et al., 2001; Leipe et al., 2002).

In bacteria, STAND NTPases are widely distributed and are implicated in several functions other 
than apoptosis proper, for example, as sensory switches in transcription regulation and antiviral 
defense (Leipe et al., 2004). Recently, we uncovered a class of highly regulated prokaryotic conflict 
systems, the ternary systems, which are enriched in multicellular bacteria (Kaur et al., 2020). These 
systems, together with those reported in the current work, firmly establish the connection of a subset 
of bacterial STAND proteins to immunity-linked apoptotic responses. A notable point emerging from 
these studies is the deployment of both active and inactive versions that span the evolutionary range 
of the STAND clade of NTPases from the more basal clades closer to the transposase ATPases and 
CR-ATPases to the well-known classical clades such as AP-ATPase, NACHT, and SWACOS (Leipe 
et al., 2004; Kaur et al., 2020; Zhang et al., 2016). The active versions show all the hallmarks of 
forming apoptosome/inflammosome-like toroidal complexes for effector deployment, akin to their 
eukaryotic counterparts.

In contrast, the inactive versions do not have functional precedents in the well-studied eukary-
otic STAND systems. However, in the related hexameric ORC complex of eukaryotes, only two of 
the ATPase domains are active, though both the active and inactive versions bind DNA (Foss et al., 
1993). Other STAND NTPases like the ribosomal S29/Dap3 GTPase have been shown to bind single-
stranded RNA as monomers (Kissil et al., 1999; Waltz et al., 2019; Berger et al., 2000), an activity 
also probably possessed by the eukaryotic RNA12 STAND protein. We found at least three distinct 
versions of inactive STAND domains, two in the ternary systems (iSTAND and iSTAND2) and one in the 
system with GT4 and HEPN effectors (Kaur et al., 2020). In the case of iSTAND and iSTAND2, they 
are predicted to form the invader-sensing component. Hence, we propose that more generally the 
inactive STAND domains retain the ancestral nucleic-acid-binding role to act as nucleic acid receptors. 
Thus, they are predicted to function as the bacterial counterparts of metazoan nucleic acid receptors 
such as the RLRs and the superfamily-2 RNA helicase receptors (e.g., IFIH1) (Chattopadhyay and 
Sen, 2017; Kowalinski et al., 2011; Yu et al., 2018). Therefore, the STAND NTPases appear to have 
taken two trajectories – first, as NTP-dependent switches for regulating the assembly of multimeric 
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apoptotic/immune complexes and, second, as nucleic acid sensors, echoing the nucleic acid-binding 
capabilities of their ancient ORC/CDC6-like predecessors. In contrast, the AP-GTPases appear to have 
remained only as switches in both bacteria and metazoa.

This thematic equivalence among the invader-sensing modules of prokaryotic and eukaryotic 
conflict systems is also reinforced by our discovery of distinct multiple lectin fold sensors, viz., NPCBM 
(Rigden, 2005) and FGS (Alayyoubi et al., 2013), in prokaryotic conflict systems (Figure 2H,I). These 
parallel the use of the SPRY domain with the concanavalin lectin fold in the widespread eukaryotic 
TRIM conflict systems (D’Cruz et al., 2013; Perez-Caballero et al., 2005). While we have not yet 
observed any prokaryotic conflict systems deploying SPRY-like domains, it is notable that, like the FGS 
domain which was first reported in variable tail proteins of phages such as BPP1 (Liu et al., 2002), 
the SPRY domain too has its origin in bacteriophage tail proteins (Iyer et al., 2021; Mackrill, 2012; 
Figure 2—source data 2).

Bacterial provenance of apoptotic adaptor domains
As with the regulatory NTPases, studies over the past two decades have shown that much of the 
core ‘domain vocabulary’ of eukaryotic apoptotic systems, like TIR, PNPases, CIDE (CAD/DFF40)-like 
HNH endonucleases, caspases, ZU5 autopeptidases (e.g., in PIDD1) and components of the meta-
zoan ASK signalosome, have their ultimate origins in bacterial conflict systems (Zhang et al., 2012; 
Aravind et al., 1999; Koonin and Aravind, 2002; Burroughs et al., 2015; Burroughs and Aravind, 
2020; Zhang et al., 2011; Aravind et al., 2000). This work and the earlier-reported ternary systems 
(Kaur et al., 2020) again show that these domains are likely to be used comparably to the eukary-
otic versions in bacterial counter-invader systems, especially in multicellular bacteria. However, the 
provenance of the adaptor domains such as those of the Death-like superfamily and TRADD-N, which 
are so critical to metazoan apoptosis (Park et al., 2007; Park et al., 2000), remained mysterious. 
Here, we show that the eukaryotic Death-like and TRADD-N domains are found in bacteria. Notably, 
they possess domain architectures comparable to their counterparts in metazoan apoptotic/immune 
systems (Figures 3–5). Moreover, the Death-like domains are part of a larger radiation of bacterial 
EADs that are adaptor components of bacterial counter-invader systems (Kaur et  al., 2020). This 
establishes that not just the enzymatic effectors but also key non-enzymatic adaptors were already in 
place in the bacterial systems that couple immunity and apoptosis.

Conclusions
The findings presented in this work offer a more complete picture of the intertwined evolutionary 
connections between immune and apoptotic systems of eukaryotes and prokaryotes. Phylogenetically 
distant multicellular or social forms are threatened by intracellular invaders/pathogens that can rapidly 
spread from cell to cell across the ensemble. This, coupled with inclusive fitness due to their clonal 
nature or close relatedness, favors the origin of apoptotic mechanisms of defense that limit the inva-
sions to the initially infected cells. Other components of the metazoan toolkit, such as components 
of the calcium stores system and adhesion molecules, have also been reported to have their roots 
in bacteria with multicellular tendencies (e.g., cyanobacteria) (Schäffer et al., 2020; Aravind et al., 
2003). Hence, special habitats that bring together colonial eukaryotes and bacteria (e.g., stromato-
lites) might have been the epicenters of the origin and spread of multicellularity (Lyons and Kolter, 
2015; Schirrmeister et al., 2011; Bosak et al., 2013).

The tracing of the classical metazoan Death-like domain to the bacteria and the identification of 
the TRADD-N diversification adds to the functional understanding of these adaptor domains. Specifi-
cally, the predictions made regarding the mode of action of the TRADD-N domain could help under-
stand the poorly understood immune systems of invertebrates. The prediction of shared immune 
mechanism across diverse invertebrates with comparable ecological features could help understand 
epidemics in marine ecosystems. Finally, we also believe that the predicted nucleic acid sensor and 
catalytic domains such as GT4 described here might help develop unique biochemical reagents to 
detect and modify biomolecules.

https://doi.org/10.7554/eLife.70394
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Materials and methods
Comparative genomics
The NCBI Taxonomy database was used to obtain the names and ranks of taxa. For contextual 
analysis of prokaryotic gene neighborhoods, the GenBank genome files corresponding to unique 
GenBank genome assemblies (GCA ids) were used as the starting material. Specific neighborhoods 
were extracted using a Perl script that reports upstream and downstream genes of the anchor gene. 
Proteins encoded by these genes were then clustered using BLASTCLUST (https://ftp.ncbi.nih.gov/​
blast/documents/blastclust.html) (RRID:SCR_016641) to identify conserved gene neighborhoods 
based on conservation between different taxa. Additional filters were then used to output valid neigh-
borhoods for further analysis: (1) nucleotide distance constraints (generally 50 nucleotides), (2) conser-
vation of gene directionality within the neighborhood, and (3) presence in more than one phylum.

Sequence-based analysis
PSI-BLAST (RRID:SCR_001010) (Altschul et al., 1997) and JACKHMMER programs (RRID:SCR_005305) 
(Eddy, 2009) were used to carry out iterative sequence profile searches. The BLASTCLUST program 
was used for clustering for classification or filtering of nearly identical sequences. The program takes 
both the length of the pairwise alignment (L) and measure of similarity, that is, bit-score (S), as inputs; 
these were changed as per the degree of required clustering. As an example, the length (L) and bit-
score (S) parameters for clustering near identical proteins were set at L = 0.9 and S = 1.89.

HMMsearch with an HMM constructed from an alignment or iteratively built using JACKHMMER 
from single sequences were used as an alternative search strategy. The searches were run against 
either (1) the non-redundant (nr) protein database of the National Center for Biotechnology Informa-
tion (NCBI) frozen at October 1, 2020; or (2) the same database clustered down to 90, 70, or 50% simi-
larity using the MMseqs program (RRID:SCR_008184) (Hauser et al., 2016); or (3) a custom database 
of 7423 complete genomes extracted from the NCBI RefSeq database.

Profile-profile searches were run using HHpred (RRID:SCR_010276) (Zimmermann et al., 2018) 
against (1) HMMs derived from PDB, (2) Pfam A models (Finn et al., 2016), and (3) a custom database 
of alignments of diverse domains curated by the Aravind group. The boundaries of several domains 
in Pfam were corrected and expanded with additional divergent members that were not found by 
the original Pfam models to improve detections. Given the rapid sequence divergence of proteins in 
biological conflict systems, improved detection of homology both in terms of range (i.e., detection 
of more homologs) and depth (i.e., detection of more distant homologs) is an important issue. The 
former can be problematic because of the continuum of sequence divergence between homologs; 
hence, a single starting point might not be sufficient to detect all homologs in iterative sequence 
searchers. The latter arises from absence of ‘bridging’ sequences in the current database between 
two distant homolog groups. Hence, to achieve ‘sensitivity’ on both these accounts we used curated, 
successively constructed multiple alignments that encompass an increasing diversity of sequences to 
construct the profile for RPS-BLAST, HMM, and profile-profile HHpred searches. All new alignments 
that were used or generated in this study are provided in Figure 2—source data 2. Multiple sequence 
alignments were built using the Kalign (RRID:SCR_011810) (Lassmann et al., 2009), HMM3 or Muscle 
(Edgar, 2004) programs, and manually improved based on profile-profile and structural alignments. 
Secondary structure prediction was done using the JPred program (RRID:SCR_016504) (Cole et al., 
2008).

As significant patterns in sequence divergence help identify proteins in conflict systems, we used 
statistically significant differences in mean column-wise Shannon entropy of alignments as a measure 
tested using the t-test (Krishnan et al., 2018; Burroughs et al., 2017). Position-wise Shannon entropy 
(H) for a given column of the multiple sequence alignment was calculated using the equation

	﻿‍
H = −

M∑
i=1

Pi log2 Pi
‍�

where P is the fraction of residues of amino acid type i, and M is the number of amino acid types.

Phylogenetic trees were constructed using the FastTree (Price et al., 2010) (RRID:SCR_015501) 
and the IQ-TREE (Nguyen et al., 2015) (RRID:SCR_017254) programs. For the former, the JTT model 
was used with 10 rate categories of sites and the -slow option for an exhaustive tree search. For the 
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latter, an exhaustive model search determined the WAG model with four gamma-distributed rate 
categories and empirical state frequency determined from the alignment as the most appropriate for 
tree construction.

Other data analysis
Structure similarity searches were conducted with the DaliLite program (RRID:SCR_003047) (Holm, 
2019) run against the PDB database clustered at 75% sequence identity. Structure-based trees were 
constructed by converting Z-scores from an all-vs-all search of the compared structures into a distance 
matrix and performing average linkage clustering. Structures were visualized rendered with the PyMol 
(http://www.pymol.org) (RRID:SCR_000305) and MOL* programs (http://molstar.org). All other data 
processing (knitr and dplyr libraries), network analysis (igraph libraries), and graph visualization were 
done in the R language. Delimited datasets used in these analyses are available in the source data 
files and at ftp://ftp.ncbi.nih.gov/pub/aravind/Death_TRADDN/. PDS were computed thus (Schäffer 
et al., 2020): organism PDS were calculated as follows: if 
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 counts the number of proteins of a 
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The hypergeometric test was used to test for association of systems described herein with multi-
cellularity in prokaryotes thus (Kaur et al., 2020): each prokaryotic organism in the above-mentioned 
complete genome database assembled from NCBI GenBank/RefSeq was systematically assessed 
and assigned a multicellularity flag (True, False, NA: when not known) using all available information 
obtained from the Bergey’s Manual of Systematic Bacteriology (Whitman, 2015) and the available 
publications on the individual taxon. This allowed scoring of 7538 organisms in the database (Supple-
mentary file 6) accounting for almost all prokaryotes except the candidate phyla radiation for which 
there is no information (Lyons and Kolter, 2015). This gave us the background frequency of organ-
isms with or without a multicellular habit, which we used to test significance of the associations of 
the systems reported here for multicellularity using the hypergeometric distribution implemented in 
the phyper function of the R language. For this test, the four input values were: q = the number of 
organisms containing a copy of a given system that score as multicellular; m = the total number of 
multicellular organisms in the database; n = the total number of non-multicellular organisms in the 
database; and k = the total number of organisms with the given system drawn without replacement 
from the total set in the database. The χ2 test for the bias in location of the domains in architectures 
was performed using its implementation in the R language in form of the ​chisq.​test command.
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