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Baby skyrmions in Chern ferromagnets and
topological mechanism for spin-polaron
formation in twisted bilayer graphene

Eslam Khalaf 1,2 & Ashvin Vishwanath1

The advent of moiré materials has galvanized interest in the nature of charge
carriers in topological bands. In contrast to conventional materials with
electron-like charge carriers, topological bands allow for more exotic possi-
bilities where charge is carried by nontrivial topological textures, such as
skyrmions. However, the real-space description of skyrmions is ill-suited to
address the limit of small skyrmions and to account for momentum-space
band features. Here, we develop a momentum-space approach to study the
formation of the smallest skyrmions – spin polarons, formed as bound states
of an electron and a spin flip – in topological ferromagnets. We show that,
quite generally, there is an attraction between an electron and a spin flip that is
purely topological in origin, promoting the formation of spin polarons.
Applying our results to twisted bilayer graphene, we identify a range of para-
meters where spin polarons are formed and discuss their possible experi-
mental signatures.

There has been much recent interest in narrow Chern bands that
spontaneously develop ferromagnetic order, following their
appearance in a variety of Moiré materials1–8. The bands of magic-
angle twisted bilayer graphene (MATBG) can, for example, be
viewed as complementary Chern bands residing on opposite
sublattices9–12, where spin, valley, and sublattice polarization leads
to Chern insulators as observed in experiment5,13. The key question
is, what is the nature of charge carriers associatedwith doping these
generalized Chern ferromagnets? The answer will have implications
for the entire phase diagram of various Moiré materials, and could
hold the key to explaining mysteries such as the doping depen-
dence and origin of superconductivity in MATBG and related
structures. The simplest example of a Chern band, Landau levels,
have previously been shown to exhibit a ferromagnetic ground state
at unit filling14,15. Despite the simplicity of the ground state, charge
excitations can be very nontrivial. In addition to single electron
quasiparticles corresponding to adding an electron with a reversed
spin, this system also hosts charged skyrmions—smooth textures of
the ferromagnetic order that carry an electric charge proportional
to their topological winding14,16. The smallest nontrivial limit of a

skyrmion is a quasiparticle bound to a single-spin flip, i.e., a spin-
polaron. (For a discussion of spin-polarons in non-topological fer-
romagnets, see e.g., ref. 17).

Upon passing from Landau levels to Chern bands, questions
about nontrivial charge carriers become more subtle. On the one
hand, these bands share the same topological character as Landau
level and are thus expected to realize similar charge excitations. On
the other hand, in comparison to Landau levels, Chern bands pos-
sess a rich reciprocal space structure, including band dispersion
and variation of band geometric features such as Berry curvature
over the Brillouin Zone. These features are not readily incorporated
in the standard way of treating skyrmion excitations as real space
textures. Furthermore, although skyrmions can be smoothly shrunk
to electrons, the standard description of the two excitations could
not be more different: the former is a real space texture whose
energy is computed using effective field theory14,15,18–21 or real space
variational methods22–24 while the latter is a momentum eigenstate
whose energy is obtained from momentum space Hartree–Fock.
One route to connecting real and momentum space descriptions
begins with small skyrmions, and in particular spin polarons, which
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are more naturally described as electrons dressed by spin flips25

rather than as real space textures. The former picture furnishes a
momentum space approach that can easily incorporate the reci-
procal space properties of Chern insulators and can also facilitate
the use of powerful diagrammatic techniques. However, even at the
outset, this program poses a puzzle: how is information about band
topology, necessary for electrically charged skyrmions, incorpo-
rated in the dressed electron picture, i.e., how does a localized
excitation in momentum space detect the topology of the
entire band?

In this work, we take the first step towards a momentum space
characterization of nontrivial charge excitations in Chern ferro-
magnets by studying the formation of the smallest skyrmions, the spin
polaron, consisting of an electron dressed by one spin flip. We show
that thematrix elements of an arbitrary density–density interaction Vq

between an electron-magnon state with magnon momentum q and
onewithmomentum q0 is/ iq ^ q0 2πC

ABZ
Vq�q0 at small q and q0, whereC

is the Chern number. This result can be understood by rewriting the
interaction asd ⋅ Ewhere the electricfieldE is given by E = −qVq and the
magnon dipole moment d given by d = 2πC

ABZ
e ^ q0 is a consequence of

the relationship between momentum and dipole moment in a chern
band15,26. Remarkably, this implies there is an attractive interaction
between an electron and a spin flip for any repulsive interaction V,
which takes place in the (px + ipy)-wave channel, as a consequence of
the band topology.

We further investigate the conditions under which such attractive
interaction leads to the formation of a bound state and apply the
results to models of twisted bilayer graphene. Although the spectrum
of single-particle excitations in such systems has been obtained from
self-consistent Hartree–Fock studies11,12,27,28 whose results are exact in
certain limits29,30, the existence of other low-lying charged excitations,
e.g. skyrmions or spin-polarons, implies that a single-quasiparticle
based description is insufficient to capture the physics on doping
correlated insulators. Such unconventional excitations were proposed
by the authors and co-workers to play a crucial role in the “skyrmion
mechanism” of superconductivity20,21.

To solve this problem, we exploit the fact that the Hilbert
space of an electron + a single-spin flip only scales as N2 for a sys-
tem with N unit cells which allows us to solve this problem for
relatively large system sizes. Our results can be summarized as
follows: (i) In the limit of vanishing quasiparticle dispersion (i.e.,
the non-interacting dispersion + the interaction-generated dis-
persion), we find that the spin polaron is always lower in energy
than the electron, with its energy increasing as the Berry curvature
gets more concentrated. (ii) The existence of the spin polaron as a
bound state is very sensitive to band topology and it is lost if we
drive a phase transition to Chern trivial bands. (iii) We find that
there is a critical value for the effective mass of the quasiparticle
bands, beyond which the single electron is lower in energy than an
electron dressed with a spin flip. In this limit, although the spin
polaron does not exist as a stable bound state, it can still influence
physics as a resonance. Our results serve as a bridge between
momentum space single-particle excitations and real space sky-
rmion excitations, with the energy of the spin polarons computed
here providing a strict upper bound on the energy of skyrmion
excitations. Furthermore, our results show that a description in
terms of single-particle excitations, even when they are “exact”, is
generally incomplete to understand the physics of charge doping
in a Chern-ferromagnet. In the end, we discuss the implications of
these results for the phenomenology of TBG.

Results
General formalism
We consider the Hamiltonian of a density–density interaction Vq pro-
jected onto a pair of SU(2)-symmetric bands with single-particle

dispersion ϵ0(k) and wavefunctions ∣uk

�
:

H=
X

k,σ =",#
cyk,σϵ0ðkÞck,σ +

1
2A

X
q

Vqδρqδρ�q, ð1Þ

where δρq =ρq � �ρq is the projected density measured relative to a
certain reference chosen such that the interacting piece of the
Hamiltonian annihilates the ferromagnetic state at half-filling (see ref.
12 for details). The projected density operator is given by

ρq =
X
k

cyσ,kcσ,k +qλqðkÞ, λqðkÞ= uk∣uk +q

D E
ð2Þ

If the bare dispersion ϵ0 is sufficiently small, the ground state of
the Hamiltonian (1) is a ferromagnet ∣#�=Qkc

y
#,k∣0i (annihilated by

δρq for all q), with total spin S= N
2 which we choose to have Sz = � N

2.
Single-particle excitations with charge ∓ e are given by ∣k

�
e = c

y
",k∣#

�
and ∣k

�
h = c#,k∣#

�
, respectively. The state ∣k

�
e=h has Sz = � N�1

2 and total
spin S= N�1

2 and its energy is given exactly (up to an irrelevant con-
stant) by H∣k

�
e=h = ϵe=hðkÞ∣k

�
e=h. The quasiparticle dispersion ϵe/h(k)

is given by ϵe/h(k) = ± ϵ0(k) + ϵF(k) where the interaction-generated
dispersion ϵF ðkÞ= 1

2A

P
qVq∣λqðkÞ∣2 is nothing but the Fock energy,

which gives rise to a nontrivial band dispersion whenever the magni-
tude of the form factor ∣λq(k)∣ is k-dependent. In the following, we will
mainly focus on the electron bands and drop the e subscript.

We now consider a basis of states containing an electron and a
spin flip which is obtained from the ground state ferromagnet by
creating two electrons with spin up and a hole with spin down

∣ke1,ke2,kh

�
= cy",ke1

cy",ke2
c#,kh

∣#� ð3Þ

The effective Hamiltonian in the two-electron/one-hole sector is
defined as H2e1h

k0
e1 ,k

0
e2,k

0
h ;ke1 ,ke2,kh

= k0
e1,k

0
e2,k

0
h

�
∣H∣ke1,ke2,kh

�
whose expli-

cit form is provided in themethods section. The HamiltonianH2e1h acts
on the state ∣ke1,ke2,kh

�
by shifting two of the three momenta ke1, ke2

and kh such that the total momentum k =ke1 +ke2 −kh is conserved.
Thus, we can separately diagonalize the Hamiltonian for each total
momentum sector labeling the states by the two electronic momenta
ke1 and ke2. Due to fermionic anticommutation relations, these only
label NðN�1Þ

2 distinct states for a grid with N points.
Notice that the Hilbert space spanned by the states (3) corre-

sponds to states with definite Sz = � N�3
2 but with total spin S= N�3

2 or
N�1
2 . Since the Hamiltonian (1) conserves the total spin, we can label the
eigenstates of H2e1h by S= N�1

2 , N�3
2 . The explicit form of the total spin

operator in the basis (3) is provided in themethods section. Notice that
the Hamiltonian H2e1h always has an eigenstate with total spin S= N�1

2
and energy ϵ(k) generated by acting with the spin raising operator,
which commutes with H, on the single-particle excitation ∣k

�
.

Our goal is to understand the energy competition between single-
particle excitations (S= N�1

2 ) and those dressedbya spinflip (S= N�3
2 ). If

the latter is lower in energy, this indicates the existence of a bound
state of an electron and spin flip, a spin polaron. So far, our discussion
has been very general. Our model has as inputs the interaction Vq, the
bare dispersion ϵ0(k) and the form factors λq(k). It is worthmentioning
that usually, ϵ0(k) and λq(k) are generated from the same microscopic
model, so they arenot always independent. However,wewill choose to
think of them as independent inputs, which allows us to take into
account the effect of remote bands on dispersion. To study the com-
petition between single-particle excitations and spin-dressed excita-
tions, we use a class of continuum models that continuously
interpolates between the LLL and the narrowChernbands of TBG. This
class of models provides an excellent playground to study the for-
mation of spinpolarons by allowing independent tuning of bandwidth,
band topology, and band geometry.
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Twisted bilayer graphene bands
Before discussing our results, it is instructive to briefly review the
continuum model for twisted bilayer graphene (TBG)31–33, which con-
sists of twoDiracHamiltonians coupled through aMoirépotential. The
latter has a matrix structure in the sublattice space and can be para-
metrized by two hopping parameters for intra- and inter-sublattice
tunneling, denoted bywAA andwAB whose ratio has been estimated to
be around κ = wAA

wAB
≈0:5�0:834–36. A particularly interesting limit called

the chiral limit corresponds to the case κ =09. The wavefunctions of
the model in this limit are sublattice-polarized with Chern number ±1
and has been shown to be equivalent to the lowest Landau level of a
Dirac particle in an inhomogeneous periodic magnetic field37 provid-
ing a direct relation between thismodel and Landau level physics. Even
away from the κ =0 limits, we can define such a sublattice-polarized
basiswhere thebands havewell-definedChernnumbers12. This leads to
a total of 4 + 4 bands with Chern numbers +1 and −1.

The results of this work apply to TBG under two assumptions. First,
we employ the independent Chern sector approximation by neglecting
the coupling between Chern sectors. This approximation retains the
U(4) symmetry rotating the bands within each Chern sector by ignoring
inter-Chern dispersion and inter-Chern wavefunction overlaps. These
are both relatively small perturbations of the U(4) ×U(4) model that has
comparable magnitude12. This approximation implies separate spin
conservation in each sector that allows us to sharply distinguish the
electron from the polaron (otherwise, the two can, in principle, tunnel
into each other). Second, we assume only two active bands with SU(2)
spin rotation. The remaining bands are assumed to be completely filled
or empty and only influence the problem by changing the dispersion
ϵ0(k) throughHartree corrections, as wewill discuss later. In the end, we
will discuss the validity of these assumptions.

Flat quasiparticle dispersion
We will start by focusing on the limit of flat quasiparticle dispersion
where the single-particle dispersion and the interaction-generated
dispersion exactly cancel for the electron band, ϵ0(k) = −ϵF(k). It is
important to emphasize here that this limit is distinct from the flat
band limit where the bare dispersion vanishes ϵ0(k) = 0 that occurs for
the chiral model at the magic-angle, assuming there are no other
sources of dispersion. In particular, we will show later that this limit is
realized to an excellent approximation for the electron (hole) band at
ν = −1 (ν = +1), where the Hartree contribution from the filled bands
gives rise to a single-particle term ϵ0(k) which almost exactly cancels
the interaction-generated Fock dispersion ϵF(k). Another motivation
for starting with this limit is that it allows us to isolate the effects of
band geometry and topology from those of the dispersion, which will
be added later. In general, wewill define an effectivemomentum space
magnetic field B = 2πC

ABZ
whosemomentum space integral gives 2πC. We

define the corresponding magnetic length as lB =
ffiffiffiffiffi
∣B∣
2π

q
. Unless other-

wise stated, wewill be using the parameters for TBG at themagic-angle
θ = 1.0595o with chiral ratio κ = 0.55 and unscreened Coulomb inter-
action Vq =

e2
2ϵϵ0 ∣q∣

with ϵ = 10.

From LLL to TBG Chern bands. Let us start with the simplest possible
Chern band, the lowest Landau level. To compare this model to Chern
bands defined inmomentumspace, wedefine a real spaceunit cell that
contains a single flux quantum so thatAU = 2π

B where B is the real space
magnetic field which is equal to the inverse of the momentum space
magnetic field B since B= 2π

AU
= ABZ

2π =B�1. We can connect this LLL limit
to chiral TBG using the results of ref. 37 which showed that the
wavefunctions of the latter are equivalent to the LLL of a Dirac particle
in the inhomogenousmagnetic field Beff(r) = B +B(r), for some specific
B(r) which averages to zero over the unit cell.We now consider a Dirac
particle in magnetic field Beff(r) = B + ηB(r) where η goes from 0 to 1,
interpolating between the LLL and chiral TBG. We define ΔE to be the
energy of the lowest S= N�3

2 eigenvalue ofH2e1h relative to the energy of
the lowest S= N�1

2 . Note that in the thermodynamic limit, there is a
continuum of S= N�3

2 states lying directly above the single particle
S= N�1

2 state which implies that ΔE ≤0. Numerically, we expect to get a
positive value for ΔE which scales to 0 with increasing system size
whenever a bound state is absent. Throughout this work, wewill setΔE
to zero in these cases. ΔE is shown in Fig. 1a as a function of η. We can
see clearly that its value is negative for all η indicating the formation of
a bound state of an electron and a spinflipwith binding energy around
−1.5meV for our choice of parameters. Although changing η intro-
duces variations in the Berry curvature distribution, the energy of the
bound state is essentially independent of η.

Tuning the chiral ratio. Next, we introduce deviations from the
chiral limit by considering the non-zero value for the chiral ratio κ.
Finite κ is known to alter the geometric properties of the bands and
cause the Berry curvature to be concentrated at Γ28,37. For
κ ≿ 0.7−0.8, the Berry curvature is very close to a delta function at Γ,
which can be gauged away38 leading to the loss of the band’s
topological character. As we can see in Fig. 1b, the bound state
persists for all values of κ ≲ 0.8, but its binding energy starts to
approach zero as we approach the limit of very concentrated Berry
curvature, hinting at its topological origin.

Sublattice potential. We can see the effect of topology more mani-
festly by considering a tuning parameter which alters the band
topology by inducing a phase transition to a trivial Chern band. This is
done by adding layer-dependent sublattice potential δtop/bottom, which
canbephysically realized fromaligned hBN5,39. Aswas shown in ref. 40,
the sublattice-polarized bands have vanishing Chern number when
δtop + δbottom is close to 0, and finite Chern number ±1 otherwise. In
Fig. 1c, we show ΔE as a function of δbottom for fixed δtop = 10meV. We
see that ΔE remains roughly constant on the topological side until we
approach the transition,where it rapidly increases till it vanishes on the
non-topological side.

Gate screening. So far, we have been considering unscreened Cou-
lomb interaction relevant for TBG samples where the distance to the
gate is much larger than the Moiré length scale. We will now consider

Fig. 1 | Binding energy of the polaron-bound state for flat quasiparticle dis-
persion. The plot of the binding energy for flat quasiparticle dispersion (a) as we
extrapolate between the LLL in the uniformfield and chiral TBGwavefunctions,b as

a function of the chiral ratio κ, c as we tune the Chern number of the band by
changing the bottom layer sublattice potential δbottom for fixed top layer sublattice
potential δtop = 10meV, and d as a function of the screening gate distance.
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the effect of gate screening by taking Vq to be double-gate screened
Coulomb interaction VqðdÞ= e2

2ϵϵ0 ∣q∣
tanh qd with d denoting the gate

distance. Since changing d also alters the overall energy scale, we will
find it more useful to measure energy in terms of the scale
ECðdÞ= 1

2A

P
qVqðdÞe�

∣B∣
2 q

2
which reduces to half the particle-hole gap

for the LLL. The polaron binding energy is plotted as a function of d in
Fig. 1d which shows howΔE starts decreasingwhen the gate distance is
around 10 nm (roughly the Moiré scale) until it vanishes in the limit
d→0. This is consistent with what is known about skyrmion energies
which approaches the single-particle energy as the screening length is
reduced. In fact, it was shown in ref. 22 that for the LLL, the energy of
skyrmions of any size is the same as that of single-particle excitations
for a delta potential, i.e., d→0.

Topological electron-magnon coupling
To understand the existence of a bound state of an electron and a spin
flip, it is instructive to rewrite the Hamiltonian H2e1h by labeling the
Hilbert space of Sz = � N�3

2 in terms of an electron and a magnon
excitation. The latter corresponds to the eigenmodes of the Hamilto-
nian in the space of single-spin flip operators

ay
n,q =

X
k

cyk,"ck+q,#ϕn,q kð Þ, Hay
n,q∣#

�
= ξn,qa

y
n,q∣#

�
ð4Þ

where q belongs to the first BZ. The operators ay
n,q provide a complete

N-dimensional orthonormal basis for spin flip operators, which can be
used to represent any spin flip operator cyk,"ck+q,#. The lowest energy
state n =0 corresponds to the Goldstone mode of the broken SU(2)
spin symmetry whose dispersion satisfies ξ0,q→0 as q→0.

Using this basis, we can construct a non-orthogonal basis of
electron-magnon states as ∣k0;q, n

�
= cyk0+q,"a

y
n,q∣#

�
whose properties

are discussed in detail in the methods section. In this basis, the
Hamiltonian has the form

H∣k0;q,n
�
= ξn,q + ϵðk0 +qÞ
h i

∣k0;q, n
�

+
1
A

X
q0

Vq0λ*q0 ðk0 +qÞCnm
q,q0 ∣k0;q+q0,m

� ð5Þ

where Cnm
q,q0 are defined as

Cnm
q,q0 =

X
k

ϕ*
m,q +q0 ðkÞ λq0 kð Þϕn,q k+q0ð Þ � ϕn,qðkÞλq0 ðk+qÞ

h i
ð6Þ

The meaning of the different terms in the Hamiltonian above is
transparent. The first two terms correspond to the magnon and the
electron dispersion, respectively. The last term corresponds to the
matrix elements of the interaction between electron-magnon states
withmagnonmomentaq andq0. Low-lying excitations has their largest
wieght in the lowest magnon branch n = 0. If we focus on this branch
n =m = 0 and take the limit of small q and q0, we find

C00
q,q0 ≈ iq ^ q0B, B=

2πC
ABZ

ð7Þ

To see where this expression comes from, it is instructive to first
consider the case of the LLL. One simplification we can do here is
to unfold the BZ by extending q beyond the first BZ and removing
the index n. The coefficient Cq,q0 is then precisely the coefficient
of the commutator of the GMP algebra ½ρq,a

y
q0 �=Cq,q0ay

q+q0
41, which

in this case is equal to 2i sin B
2q ^ q0� �

. For a general Chern band,
the GMP algebra holds to linear order in q and q042 with the pre-
factor given by iBq ^ q0 which is precisely what we get in Eq. (7). A
more detailed derivation of this result is given in the methods
section.

Let us write a general eigenstate of (5) as

∣Ψi=
X
n,q

rn,q∣k0;q,n
�

ð8Þ

Focusing on the n = 0 component in the small q limit, we see from (7)
that themagnitude of the last term in theHamiltonian (5) ismaximized
when connecting states ∣k0;q,n

�
and ∣k0;q

0,n
�
with q and q0 ortho-

gonal, i.e., if they are related by a π/2 rotation. Furthermore, due to the
factor of i in (7), we can make this term negative by choosing r0,q to
change its phase by π/2 upon rotating q by π/2. Thus, we canminimize

this term by choosing r0,q / ei argðqx+ iqyÞ. In addition, since this term
vanishes when q or q0 vanish, the magnitude of r0,q should not vanish
too quickly with q. We can see this by expanding the first two terms in

(5) at small momenta ξ0,q ~ l
2
Bρq

2 and ϵðk0 +qÞ ~ l2B
meff

q2. Then, if we

assume that r0,qdecays formomenta larger than somecutoffΛ, wefind
that the first two terms in the Hamiltonian give a positive energy

contribution of order l2Bðρ+m�1
effÞΛ2 whereas the last term gives a

negative contribution of order ECl
3
BΛ

3. Thus, a bound state has to have

a finite extent in momentum of at least Λ ~ ρ+m�1

EC lB
. This is verified by

plotting r0,q for both the LLL and chiral TBG in Fig. 2. We see that ∣r0,q∣
decays in qwithin the first BZ and that arg r0,q winds by 2π around the
Γ point. For the LLL case, due to continuous magnetic translation, we

can unfold the BZ and write the variational state rq = e
�ξ

2∣q∣+ i argðqx + iqyÞ

whose overlap with the numerically obtained solution exceeds 99% for
appropriately chosen ξ (see supplemental material for details).

Finite quasiparticle dispersion
Let us now consider the limit of dispersive quasiparticle bands. Moti-
vated by the energetics of TBG bands, we will choose ϵ0(k) = νϵH(k)
where ϵHðkÞ= 1

A

P
GVGλGðkÞ

P
k0 λ�Gðk0Þ is the Hartree

potential11,28,30,43–45. This form of the dispersion directly allows us to
compare our results to TBG since the quasiparticle dispersion ϵν(k) =
νϵH(k) + ϵF(k) describes the dispersion of electron (hole) bands for a
correlated insulator at integer filling ν (−ν) in the independent Chern
sector approximation12,44. Although the expression for ϵν(k) is only
valid for integer ν, we will choose to take ν to be a continuous variable
which allows us to continuously tune the band dispersion. It also
makes our results less sensitive to uncertainty in model parameters.
For instance, while our model is particle-hole symmetric, we can
phenomenologically incorporate particle-hole asymmetry by shifting
ν, which approximately captures the effects discussed in ref. 46. ϵH(k)
is characterized by a dip at the Γ point and thus have a qualitatively
similar shape to the Fock term ϵF(k) up tooverall scaling. Thus for ν >0,
the two terms add, leading to a large bandwidth, while for ν <0, they
subtract, leading to a reduced bandwidth11,30,44,45. The minimum
bandwidth is realized for ν ≈ −1 to −1.5 depending on the value of κ as
shown by the dashed line in Fig. 3a. The details of the dispersion are
reviewed in the methods section.

We can investigate the existence of a bound state as a function of
dispersion parameterized by ν. We find that there is a critical value νc,
indicated by the solid line in Fig. 3a, such that a bound state exists iff
ν < νc. We see that this value is always negative and ranges fromaround
−0.5 in the chiral limit to around −1.2 at κ =0.7. The implication for TBG
is that, generally, polaron formation is favored on electron (hole)
doping the ν <0 (ν >0) insulators, i.e., doping towards neutrality. On
doping away from neutrality, we always find the single-particle exci-
tations to be the lower in energy. We note that for ν sufficiently large
and negative, the Hartree term dominates and we get a peak rather
than a dip at Γ. In this case, we always find a polaron-bound state even
though the bandwidth can be quite large. This rather surprising results
can be explained by examining the wavefunction of the Γ polaron in
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Fig. 2c. We see that, compared to the case of flat quasiparticle dis-
persion, the wavefunction has suppressedweight at small q enabling it
to avoid the energetically costly region around Γ.

This suggests that the formation of a bound state is mostly sen-
sitive to the effective mass at the bottom of the band, which is rela-
tively large at the band minimum for ν large and negative, rather than
the total bandwidth. The effective mass has the added advantage of
being an experimentally accessible quantity, e.g., from quantum
oscillations1,2, allowing us to make phenomenological comparisons
with experiments that are not tied to theory parameters. In Fig. 3b, we

show the effectivemass for different values (ν, κ) and compare it to the
phase diagram in Fig. 3a. We find that, quite remarkably, the phase
boundary where the polaron-bound state is lost can be described very
well by the expressionme/meff ≈ 3 as shown in Fig. 3b. This value is not
far off the experimentally extracted value meff/me ≈0.2−0.3 from
quantum oscillations for small hole doping of the ν = −2 state where
superconductivity was first seen1. This suggests that the experimental
regime for superconductivity can be close to the phase boundary
where a bound state would form even when the lowest charged exci-
tation are single-particle-like.

Fig. 2 | Polaron wavefunctions. Color plot of the polaron wavefunction as a function of the magnon momentum q (cf. Eq. (8)) for a the LLL, TBG bands (b) with flat
quasiparticle dispersion, and c for the electron (hole) doping the ν = −3 (ν = +3) insulator.
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Finally, we investigate the dispersion of the spin polaron state in
the limitwhen it is the lowest energy excitation.Weconsider twocases:
(i) electron (hole) doping the ν = −1 (ν = 1) insulator where the disper-
sion minimum is at Γ and (ii) electron (hole) doping the ν = −3 (ν = +3)
insulator where the dispersion maximum is at Γ. The resulting disper-
sion is shown in Fig. 3c, d. We see that the polarons have much flatter
bands with significantly larger effective mass that can be as large as 30
times the electron’s effective mass.

Discussion
Implications for TBG
Before discussing potential implications for our results, let us point
out a few caveats. First, the lowest energy charged excitations we
obtain here are just among single particle states and those dressed
by a single-spin flip. This does not rule out the possibility that states
with more spin flips are lower energy excitations (which is known to
be the case for the LLL14,15) even in the cases the spin polaron is not
lower in energy than single particle excitations. This means that our
results establish a parameter regime where the electron is not the
lowest energy charge e excitation but cannot make a strong state-
ment about the precise number of spin flips or the nature of charge
e excitations outside that regime. We note, however, that once we
are in the domain of stability of polarons, we expect significant
modification of the physics compared to single electrons, even if we
cannot determine precisely the number of of bound spin flips. In
other words, we believe that once spin polarons are formed, no
matter the precise size, their properties are well approximated by
the simplest nontrivial one studied here e.g., they will have very flat
dispersion. We note here that by applying a Zeeman field, the

energy of a spin polaron with n spin flips is increased by
ΔESz = ðN�1Þ=2�n = ðn+ 1=2ÞEZeeman. This disfavors larger polarons/sky-
rmions and it can be chosen such that the single-spin flip polaron
n = 1 is the lowest energy excitation if it is already lower in energy
than the electron at zero fields provided that the energy as a func-
tion of the number of spin n flips is a convex function. This means
that the energy difference between the single-spin flip polaron and
the electron exceeds the difference between the polaron with
n + 1 spin flips and that with n spin flips for any n > 0. EZeeman can be
realized via in-plane magnetic field if these are spin skyrmions or via
sublattice potential if these are pseudospin skyrmions.

Second, our analysis focused on a single Chern sector. While we
took into account Hartree–Fock interaction-generated dispersion,
which is mainly diagonal in the Chern index, we have neglected the
part of the interaction and the dispersion connecting different Chern
sectors. The inter-Chern part of the interaction vanishes in the chiral
limit and is otherwise a relatively small correction that gives rise to an
inter-Chern pseudospin coupling λ ≈0.4 −0.6, which is anti-
ferromagnetic in-plane and ferromagnetic out-of-plane12,20,38. This
gives rise to a Zeeman term with EZeeman = λ which only affects pseu-
dospin polarons. The inter-Chern part of the dispersion comes from
the intrinsic dispersion of the BM model as well as the subtraction
scheme employed when projecting out the remote bands to avoid
double counting (see refs. 11, 12, 28, 47). It takes the form of tunneling
between opposite Chern sectors, which influences physics in several
ways. First, the electron and polaron are no longer distinguished by
their spin quantum number since the spin is no longer conserved in a
given Chern sector, and thus, they can tunnel into each other. Second,
such tunneling perturbatively generates an antiferromagnetic

Fig. 3 | Polaron energetics in twisted bilayer graphene. a Binding energy as a
function of “filling” ν and chiral ratio κ. The dashed lines indicate integer fillings ν
where our dispersionmatches theHFdispersion for electron doping. A bound state
is only found for ν <0, indicating doping towards neutrality. The solid black line
indicates the boundary where the bound state is lost, the dashed gray line

corresponds to the minimum bandwidth, and the gray shaded area is where bands
overlap and our analysis becomes invalid. b The corresponding inverse effective
mass at the bottom of the band. The phase boundary is well approximated by the
value me/meff ≈ 3. c, d are the spectra for electron doping the ν = −1 and ν = −3
insulators, respectively.
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“superexchange” coupling J ≈0.5 −1meV12,20,38 between the Chern sec-
tors, which alters the energetics of magnons and plays a crucial role in
the skyrmion pairing scenario20,21. We expect these terms to favor
charge 2e polaron pairs (bipolarons) over single charge e polarons
since they act as a Zeeman field EZeeman = J for spin or pseudospin
polarons but do not affect the energy of polaron pairs. We leave a
detailed analysis of the effect of these terms in futureworks. Finally, we
have only focused on SU(2) polarons which assume there are only two
active bands while the remaining bands are frozen. This approach can
be phenomenologically justified by the observation of flavor polar-
ization ‘cascade’ features at relatively high temperatures48,49 suggest-
ing these polarized flavor degrees of freedom becomes frozen at low
temperature. However, based on energetics alone, we cannot role out
more complicated SU(4) skyrmion/polaron textures.

Our findings suggest the following picture for charge excita-
tions in TBG: (i) On doping a correlated insulator at integer ν ≠ 0
towards charge neutrality, charge enters the system as polarons or
large skyrmions. This is consistent with the observed absence of
quantum oscillations for this doping range1,2,50 and also explains the
rapid loss of flavor (spin/valley) polarization (cascade transition)48,49

with doping. Combined with the observations that polarons are
disfavored by reducing the screening length, this leads to the pre-
diction that the cascade features should become weaker as the
screening length to the gate is reduced4,51. (ii) On doping away from
neutrality, charge likely enters the system as single-particle excita-
tions consistent with the observation of Landau fans. Finally,
Although we have focused on charge e excitations, let us make a few
observations about pairing, i.e. the charge 2e excitations. Pairing
between stable spin-polarons, the analog of the skyrmion pairing
mechanism proposed by the authors in ref. 20 (see also refs. 21, 52)
can be naturally associated with doping towards neutrality where
superconductivity has been observed in some samples1,3,4. On the
other hand, on doping away from neutrality (where super-
conductivity is seemingly more ubiquitous), spin polarons can
remain relevant as finite energy long-lived excitations whose pairing
correlations can be induced to the electrons, evenwhen they are not
the lowest charge excitations. This suggests a BEC-to-BCS scenario
with increasing dispersion where the bound state is lost while
superconductivity persists53. A detailed theory of spin-polaron
pairing will be the topic of future work.

In summary, we have identified a general tendency for the for-
mation of a polaron-bound state between an electron and a spin flip in
a Chern band that is purely topological in origin. We have studied the
formation of such bound states over a wide range of parameters for
the Chern bands of twisted bilayer graphene. This lead us to identify
the experimental parameter rangewhere spinpolarons are formedand
discuss their possible experimental consequences. Our results high-
light the surprising fact that although the ground state is well
approximated by a Slater determinant, a description in terms of
electron-like single-particle excitations, whether approximateor exact,
is insufficient to describe the charge physics in Chern bands. Fur-
thermore, our analysis serves as a bridge between real space skyrmion
textures and single-particle excitations.

Note. We would like to point out a parallel work54 which gives an
extensive report of the energetics of TBG skyrmions, both charge
“e” and charge “2e”, using variational Hartree–Fock. The results of
that work, which is suited to study the limit of large skyrmions, is
complementary to our momentum space approach. In addition,
After the appearance of our work on arXiv, ref. 55 appeared, which
also studied spin polarons in the specific context of TBG and
focused on the limit of short screening gate distance. In the chiral
limit, their calculations agree with ours for the same parameters
(after accounting for a difference in the notation for screening

length, which is defined in ref. 55 as twice the distance between gate
and sample). Away from the chiral limit, our work, and ref. 55 adopt
different approximations.

Methods
Explicit form of the Hamiltonian and total spin operators
The explicit formof the HamiltonianH2e1h can be easily obtained from
the action of the HamiltonianH, Eq. (1), on ∣ke1,ke2,kh

�
, defined in Eq.

(3), using the commutation relations

δρq, c
y
σ,k

h i
= λ*�qðkÞcyσ,k�q, δρq, cσ,k

h i
= � λqðkÞcσ,k +q ð9Þ

leading to

H∣ke1,ke2,kh

�
=
h
ϵeðke1Þ+ ϵeðke2Þ+ ϵhðkhÞ

i
∣ke1,ke2,kh

�

+
1
A

X
q

Vq

n
λ*qðke1Þλ*�qðke2Þ∣ke1 +q, ke2 � q, kh

�

� λ*qðke1ÞλqðkhÞ∣ke1 +q, ke2,kh +q
�

� λ*qðke2ÞλqðkhÞ∣ke1,ke2 +q, kh +q
�o

ð10Þ

To express the total spin operator in the basis ∣ke1,ke2,kh

�
, we

start the standard expression

S2 = S2x + S
2
y + S

2
z , ð11Þ

Sx =
1
2

X
k

cyk,"ck,# + c
y
k,#ck,"

� �
, ð12Þ

Sy = � i
2

X
k

cyk,"ck,# � cyk,#ck,"
� �

, ð13Þ

Sz =
1
2

X
k

cyk,"ck," � cyk,#ck,#
� �

ð14Þ

The state ∣ke1,ke2,kh

�
= cyke1 ,"c

y
ke2,"ckh ,#∣#

�
is an Sz eigenstate with

eigenvalue � N�3
2 . The action of Sx and Sy can be obtained using the

commutations relations

Sx , c
y
k,"

h i
=
1
2
cyk,#, cyk,#, Sx

h i
= � 1

2
cyk,", ð15Þ

Sx , ck,#
h i

= � 1
2
ck,", ck,", Sx

h i
=
1
2
ck,# ð16Þ

Sy, c
y
k,"

h i
=

i
2
cyk,#, cyk,#, Sy

h i
=

i
2
cyk,", ð17Þ

Sy, ck,#
h i

= � i
2
ck,", ck,", Sy

h i
= � i

2
ck,# ð18Þ

which leads after straightforward but tedious calculations to

S2x ∣ke1,ke2,kh

�
=
1
4

h
� 3∣ke1,ke2,kh

�

+2
X
k

�δke1 ,kh
∣ke2,k,k

�
+ δke2,kh

∣ke1,k,k
�� �i

+ cyke1 ,"c
y
ke2,"ckh ,#S

2
x ∣ #

�
ð19Þ
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S2y ∣ke1,ke2,kh

�
= � 1

4

h
3∣ke1,ke2,kh

�

+2
X
k

δke1 ,kh
∣ke2,k,k

�� δke2,kh
∣ke1,k,k

�� �i

+ cyke1 ,"c
y
ke2,"ckh ,#S

2
y ∣#

�
ð20Þ

Which leads to

S2∣ke1,ke2,kh

�
=

N � 1
2

	 

N � 3
2

	 

∣ke1,ke2,kh

�

+ M̂∣ke1,ke2,kh

�
,

ð21Þ

M̂∣ke1,ke2,kh

�
=
X
k

�δke1 ,kh
∣ke2,k,k

�
+ δke2,kh

∣ke1,k,k
�� �

ð22Þ

It is easy to verify that the operator M̂ defined on the second line
satisfies M̂

2
= ðN � 1ÞM̂, hence its eigenvalues are 0 and N − 1. The for-

mer yields S2 eigenvalue N�1
2

� �
N�3
2

� �
which corresponds to a total spin

S= N�3
2 whereas the latter yields S2 eigenvalue N�1

2

� �
N + 1
2

� �
which cor-

responds to a total spin S= N�1
2 .

Properties of the electron-magnon basis
In this section, we discuss the properties of the electron-magnon basis
introduced in the main text, repeated here for completeness

∣k0;q,n
�
= cyk0 +q,"a

y
n,q∣ #

�
ð23Þ

First, note that the state ∣k0;0, 0
�
is a single-particle state with S= N�1

2
since ay

0,q=0 is simply the generator of a uniform spin rotation which
increases Sz of the ground state by 1. We note that the basis (23)
contains N2 states for a given k0 which is more than the size of the
Hilbert space given by NðN�1Þ

2 . The reason is this basis is that it is not
orthonormal. Instead, the overlap of states is given by

gnm
q,q0 k0

� �
= hk0;q,n∣k0;q

0,mi
= δmnδq,q0 � ϕ*

mq0 k0 +q
� �

ϕnq k0 +q
0� � ð24Þ

This overlap can be identified with the matrix elements of the operator
1� F̂ where F̂ is the operator that exchanges twoelectrons. TheN2 basis
states for a givenk0 include

NðN�1Þ
2 fermionic (antisymmetric) stateswith

g(k0) eigenvalues 2 and NðN + 1Þ
2 bosonic (symmetric) states with g(k0)

eigenvalues 0. Since the exchange operator F̂ commutes with the
Hamiltonian, we can obtain the physical Hilbert space (3) simply by
restricting to the eigenstates of theHamiltonianwithg(k0) eigenvalue 2.

Derivationof the topological electron-magnoncoupling at small
momenta
Our purpose in this section is to derive the form of the electron-
magnon coupling at small momenta, Eq. (7). The magnon creation
operator is defined in Eq. (4), repeated here for completeness

ay
n,q =

X
k

cy",kc#,k +qϕn,qðkÞ ð25Þ

whereϕn,q(k) is the complete orthonormal set of eigenfunctions of the
soft mode Hamiltonian defined as

Hqðk0,kÞ= cy#,k0 +q
c",k0HV c

y
",kc#,k +q

D E
, ð26Þ

X
k0

Hqðk,k0Þϕn,qðk0Þ= ξn,qϕn,qðkÞ ð27Þ

We notice that gauge invariance requires that ϕn,q(k) transforms the
same way as λq(k) under gauge transformations. That is, under
ck,σ 7! ck,σe

iθk ,ϕn,qðkÞ 7! e�i½θk+q�θk �ϕn,qðkÞ. Thismeans we can define a
gauge invariant ~ϕn,qðkÞ via

ϕn,qðkÞ= ~λqðkÞ~ϕn,qðkÞ, ~λqðkÞ=
λqðkÞ
∣λqðkÞ∣

ð28Þ

where we used the phase of the form factor ~λqðkÞ rather than its full
value to maintain the normalization of the wavefunctions. It is easy to
show that in the limit q→0, ϕ0,qðkÞ ! 1ffiffiffi

N
p . This is nothing but the

statement that the Goldstone mode in the limit of long wavelength
reduces to the spin raising operator. Thus, we can write

~ϕ0,qðkÞ≈
1ffiffiffiffi
N

p ½1 + iq � vðkÞ+Oðq2Þ� ð29Þ

Crucially, we can show that the Hamiltonian
~Hqðk0,kÞ= ~λ*qðkÞHqðk0,kÞ~λqðkÞ is periodic and smooth in k, and so is
~ϕn,qðkÞ and v(k). This can be seen by writing the transformed Hamil-
tonian ~Hqðk,k0Þ= ~λ*qðkÞHqðk,k0Þ~λqðk0Þ and noting that it only depends
on gauge-invariant combinations of ~λqðkÞ which can be written in
terms of the Berry curvature, which is periodic and smooth in k.
Substituting (28) and (29) in Eq. 6 in themain text andusing the smallq
expansion of the form factor λq(k) ≈ 1 + iq ⋅A(k) +O(q2) yields

C00
q,q0 =

i
N

X
k

n
q0μ½AμðkÞ � Aμðk+qÞ�

+ qμ½Aμðk+q0Þ � AμðkÞ�+ qμ½vμðk

= iqμq
0
ν

Z
d2k
ABZ

½∂μAνðkÞ � ∂νAμðkÞ�

= iq ^ q0
Z

d2k
ABZ

ΩðkÞ= i 2πC
ABZ

q ^ q0

ð30Þ

On going from the first to the second line, we used the periodicity of
v(k) to shift the momentum summation leading to

P
kv

μðk+q0Þ �P
kv

μðkÞ=0 (notice that this does not work for Aμ(k), which cannot be
periodic in a band with finite Chern number). In the last equality, we
used the definition of the Chern number ∫d2kΩ(k) = 2πC.

Dispersion
Here,wediscuss somedetails about thedispersionweused in themain
text. At integer fillings and if we ignore the inter-Chern part of the
dispersion (the decoupled Chern sector approximation), the single
particle dispersion is given29,30 by diagonalizing the Hartree–Fock
Hamiltonian12,28 which takes the form

HHF½Q�ðkÞ=
1
2A

X
G

VGΛGðkÞ
X
k0

trΛ�Gðk0ÞQk

� 1
2A

X
q

VqΛqðkÞQk+qΛqðkÞy
ð31Þ

Here,Qk is amatrixwith eigenvalues ±1 describing a Slater determinant
state such that ±1 correspond to full/empty electronic states.Λq(k) is a
matrix for form factors with spin (s), sublattice (σ), and valley (τ)
indices which can be transformed into a Chern (γ), spin (s), and
pseudspin (η) basis (see refs. 12, 20, 38). Since our analysis focuses on a
single Chern sector, we are going to neglect the Chern off-diagonal
terms in the form factor Λ, which was shown in ref. 12 to be relatively
small (they vanish identically in the chiral limit). In this limit, Λq(k)
takes the simple formΛqðkÞ= s0 � η0 � diagðλqðkÞ, λ*qðkÞÞγ where λq(k)
are the form factors for a single Chern band. At integer filling ν and
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ignoring inter-Chern dispersion, the family of the ground state is
describedQk can be chosen to bek-independent and to satisfy trQ=2ν
and [Q,Λq(k)] = 0, which is equivalent to the condition thatQ is Chern-
diagonal, i.e., [Q, γz] = 012. Under these conditions, the Hamiltonian
simplifies to

HHF½Q�ðkÞ= ϵν, ± ðkÞ= ± ϵF ðkÞ+ νϵHðkÞ, ð32Þ

ϵHðkÞ=
1
A

X
G

VGλGðkÞ
X
k0

λ�Gðk0Þ, ð33Þ

ϵF ðkÞ=
1
2A

X
q

Vq∣λqðkÞ∣2 ð34Þ

where the positive (negative) sign is for the electron (hole) bands. We
note that ϵ−ν,± = −ϵν,∓ due to particle-hole symmetry so that electron
(hole) bands on the ν > 0 side map to hole (electron) bands on the
ν <0 side. That is, doping away from charge neutrality is the same
whether for positive and negative ν and similarly for doping towards
neutrality. The Hartree and Fock potentials are plotted in Fig. 4a, and
we can see that both are characterized by a dip at Γ. Thus, for doping
away from neutrality, the two are going to add, while on doping
towards neutrality, they subtract. In the main text, we used ν as an
interpolation parameter that also takes non-integer values as a proxy
for tuning the bandwidth. We can see in Fig. 4b the bandwidth as a
function of ν, andwe see that there is aminimum in the range ν∈ [−1.5,
−1] depending on the chiral ratio κ. The value of ν = νmin for which the
bandwidth isminimum is shown in Fig. 4c.Wenote that for ν > νmin, the
band minimum is at Γ whereas for ν < νmin, the band maximum is at Γ.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
All numerical codes in this paper are available upon request to the
authors.
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