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The emergence of high-throughput sequencing techniques has
revealed a primary role of microRNAs (miRNAs) in a wide
range of diseases, including cancers and neurodegenerative dis-
orders. Understanding novel relationships between miRNAs
and diseases can potentially unveil complex pathogenesis
mechanisms, leading to effective diagnosis and treatment.
The investigation of novel miRNA-disease associations, howev-
er, is currently costly and time consuming. Over the years,
several computational models have been proposed to prioritize
potential miRNA-disease associations, but with limited usabil-
ity or predictive capability. In order to fill this gap, we intro-
duce TSMDA, a novel machine-learning method that leverages
target and symptom information and negative sample selection
to predict miRNA-disease association. TSMDA significantly
outperforms similar methods, achieving an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.989
and 0.982 under 5-fold cross-validation and blind test, respec-
tively. We also demonstrate the capability of the method to un-
cover potential miRNA-disease associations in breast, prostate,
and lung cancers, as case studies. We believe TSMDA will be an
invaluable tool for the community to explore and prioritize
potentially new miRNA-disease associations for further exper-
imental characterization. The method was made available as a
freely accessible and user-friendly web interface at http://
biosig.unimelb.edu.au/tsmda/.

INTRODUCTION
MicroRNAs (miRNAs) are small regulatory non-coding RNAs with a
typical length of 21–25 nucleotides. Human mature miRNAs control
the gene expression of target messenger RNAs (mRNAs) by partially
complementary base pairing with the 30 untranslated region.1 This
interaction generally results in post-transcriptional repression, occa-
sionally leading to miRNA degradation.2 Various physiological pro-
cesses, such as cell proliferation and cell death, are regulated by a
complex network of miRNAs.2

The advent of high-throughput sequencing techniques has been
contributing to the growing evidence of associations between miR-
NAs and diseases. Deregulation of several miRNAs is correlated
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with the development of multiple diseases, such as cancers and brain
and cardiovascular diseases.3–5 For example, pancreatic carcinogen-
esis may occur from the upregulation of miR-21, miR-155, miR-
181, miR-221, and miR-222.6 Hence, understanding the relationship
between miRNAs and diseases might shed light on pathogenesis, pro-
moting miRNA-based applications such as biomarkers or drugs.7–9

Currently, a significant number of disease-related miRNAs are exper-
imentally confirmed and collected in multiple databases.10–12 Despite
these significant efforts, large-scale exploration of the potential dis-
ease-miRNA associations is unfeasible, since experimental validation
is laborious and costly. In this context, effective computational
methods are urgently needed to suggest potential associations and
guide experimental efforts.

Diverse machine-learning models have been extensively imple-
mented to assist in exploring miRNA-disease relationships.13–22

From the widely accepted assumption that phenotypically similar
diseases and functionally equivalent miRNAs tend to be associated,
experimentally confirmed associations can be used to identify
novel associations. One model in particular, miRNA target-dysre-
gulated network (MTDN), has been built to unveil potential can-
cer-related miRNAs.13 One of the posterior advances is the
random forest for miRNA-disease association (RFMDA),14 which
is based on miRNA functional similarity (MISIM)23 and disease se-
mantic similarity,23,24 as features to perform the miRNA-disease-
association predictions.

Despite the remarkable effort of currently available methods,
model performance was still limited by miRNA and disease simi-
larity estimations that did not directly reflect miRNA mechanisms
and disease pathogenesis. The performance improvement obtained
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Table 1. Selected features and corresponding biological meaning

Feature Category Meaning

1
miRNA functional
similarity (MISIM)

similarity with “hsa-miR-1180-3p”

2
miRNA functional
similarity (MISIM)

similarity with “has-miR-3179”

3
miRNA functional
similarity (MISIM)

similarity with “hsa-miR-320c”

4
miRNA functional
similarity (MISIM)

similarity with “hsa-miR-376b-3p”

5
miRNA functional
similarity (MISIM)

similarity with “hsa-miR-487a-3p”

6
target-based miRNA
similarity

similarity with “hsa-miR-127-3p”

7
target-based miRNA
similarity

similarity with “hsa-miR-184”

8
target-based miRNA
similarity

similarity with “hsa-miR-516a-5p”

9
symptom-based
disease similarity

similarity with “Alopecia (D000505)”

10
symptom-based
disease similarity

similarity with “Biliary
Atresia (D001656)”

11
symptom-based
disease similarity

similarity with “Atopic
dermatitis (D003876)”

12
symptom-based
disease similarity

similarity with “Myelodysplastic
Syndromes (D009190)”

13
symptom-based
disease similarity

similarity with “Tourette
Syndrome (D005879)”

Figure 1. Feature 4 is themost contributing feature to a prediction, showing

a distinct positive correlation with a miRNA-disease association

The SHAP value for each feature in the XGBoost model was calculated. The features

are ranked based on the average impact on a model prediction. One dot represents

one miRNA-disease association. The values of features are represented by color,

red indicating high values and blue indicating low values.
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by two additional methods, latent feature extraction for miRNA-
disease association (LFEMDA)15 and distance-based sequence sim-
ilarity for miRNA-disease association (DBMDA),16 emphasize that
the introduction of biological features, such as miRNA sequence,
into similarity calculation is important. A lack of actual negative
samples was also a significant challenge, where various methods
randomly selected negative samples from miRNA-disease pairs
without confirmed associations.14,16,21 This approach likely leads
to false negatives. Two previous models, non-negative samples
extraction (NSEMDA)17 and negative sample selection strategy
and multi-layer perceptron (NMLPMDA),18 have proposed alter-
native approaches to select reliable negative samples. NSEMDA
iteratively filtered unknown samples with positive-unlabeled (PU)
learning, an algorithm designed to deal with a labeling issue, where
only a single class is available.25,26 Alternatively, NMLPMDA
utilized the miRNA-gene-disease network to remove likely
associations.18

Here we propose a novel machine-learning model that employs
target- and symptom-based similarity for miRNA-disease-association
prediction (TSMDA). In this study, miRNA target genes and disease
symptoms were introduced to enhance similarity calculation, coupled
with reliable negative sample selections based on extended miRNA-
gene-disease network and modified PU learning.
RESULTS
Feature selection

In this study, two feature selection methods, a correlation-based and
forward stepwise greedy feature selection,27,28 were employed to select
the minimal effective subset from 1,373 features to train a highly
accurate model. As a result, 13 features were chosen. This subset con-
sists of five miRNA functional similarities, three target-based miRNA
similarities, and five symptom-based disease similarities (Table 1). It
is adopted to train and validate the extreme gradient boosting
(XGBoost) model.29

Interpretation of the XGBoost model

Model interpretability is one of the essential aspects to consider before
putting a machine learning model to use.30–32 It is crucial for explain-
ing the accuracy of model prediction and guiding performance
improvement. Despite achieving high accuracy, popular complex
models, such as XGBoost and neural networks,29–33 are excessively
complex for human interpretation. Different methods have been
introduced to help understand the predictions in response to a lack
of interpretability.30–32 SHapley Additive exPlanations (SHAP) is
one of the methods designed to explain a model by examining the
contribution of each feature in terms of SHAP value to a prediction.30

SHAP value is a measure of feature importance, calculated to exhibit
the distribution of each feature’s impact on a prediction. The benefits
of SHAP values are computational efficiency and consistency with
human explanations.30

In this work, we implemented SHAP to analyze how the trained
XGBoost model makes a prediction. SHAP values of 13 selected fea-
tures were calculated and displayed in Figure 1, where features are
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 537
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Table 2. The results of TSMDA based on a blind test, 5-fold, 10-fold, and 20-

fold cross-validation in HMDD v.2.0

Methods AUC MCC bACC F1

Blind test 0.982 0.965 0.982 0.982

5-fold
cross-validation

0.989 ± 0.003 0.978 ± 0.005 0.989 ± 0.003 0.989 ± 0.003

10-fold
cross-validation

0.989 ± 0.004 0.978 ± 0.008 0.989 ± 0.004 0.989 ± 0.004

20-fold
cross-validation

0.989 ± 0.005 0.978 ± 0.010 0.989 ± 0.005 0.989 ± 0.005

Figure 2. Predictive performance of TSMDA

(A) TSMDA considerably outperformed six recent miRNA-disease-association

predictive models in terms of area under the curve (AUC). (B) Two negative sample

selections, a miRNA-gene-disease network and modified PU learning, substantially

enhance the performance of TSMDA. AUC, Matthews correlation coefficient (MCC),

balanced accuracy (bACC), and F1 of TSMDA model with and without negative

sample were assessed in 5-fold cross-validation with an extreme gradient boosting

(XGBoost) classifier.
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ranked based on the average impact on model output in descending
order. The most important feature is feature 4, representing the
MISIM functional similarity with hsa-miR-376b. This miRNA is
experimentally supported to be associated with a wide type of dis-
eases, including adrenocortical carcinoma,34 cerebral ischemia,35

Graves’ disease,36 myocardial ischemia,37 Parkinson’s disease,38 and
prostate neoplasms.39 According to a widely accepted assumption
that similar miRNAs tend to be associated with phenotypically similar
diseases, miRNAs with high feature 4 values will be more likely to be
associated with these diseases or related conditions. This assumption
is in accord with a remarkable positive correlation between feature 4
values and miRNA-disease associations in the figure. Similar trends
can be clearly observed in features 6, 7, and 8 that represent target-
based miRNA similarity.

Features 10, 11, and 9 are the 2nd, 3rd, and 4th most critical fea-
tures, accounting for symptom-based disease similarities with
biliary atresia, atopic dermatitis, and alopecia. In this case, they
present an unclear correlation with miRNA-disease associations.
This finding well accords with expectations, as many disease sim-
ilarities are needed to be considered as a group to represent a
particular disease.

Performance of TSMDA

We started by assessing the ability of TSMDA to predict miRNA-dis-
ease associations using The Human microRNA Disease Database
(HMDD) v.2.0 database,10 assessed under different cross-validation
schemes. Under 5-fold cross-validation, our model achieved an
AUC of 0.989, as well as Matthews correlation coefficient (MCC),
balanced accuracy (bACC), and F1 scores of 0.978, 0.989, and
0.989, respectively (Table 2). The method obtained comparable out-
comes from 10-fold and 20-fold cross-validation, further demon-
strating the robustness of the TSMDA predictive model (Table 2).
Taking a closer look at misclassified entries in a blind test and
cross-validation, we noticed that the majority are false negatives.
The investigation exhibits that 27 out of 31 entries in the blind test
are false negatives. However, no particular miRNA or disease is found
predominantly. We further examined the contribution of each feature
to misclassified predictions in a blind test with individual SHAP
values (Table S1). Unsurprisingly, the result suggested the features
with high feature importance, especially feature 4, tend to be the
main contributors to a misclassification.
538 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
Diverse computational models have been proposed to fill the
missing knowledge of miRNA-disease relationships during the past
10 years.13–22 In this study, we compare the performance of
TSMDA with six recent miRNA-disease-association predictors:
RFMDA,14 NSEMDA,17 ICFMDA,19 BLHARMDA,20 GBDT-LR,21

and SwMKML.22 The selected methods are based on the same dataset,
HMDD v.2.0, enabling an adequate comparison. As most methods are
not publicly available for replication, only the AUC values reported in
the original article were used for a comparison. As a result, our model
considerably outperformed all six recent predictivemodels (Figure 2A).

We believe one of the reasons behind the performance of TSMDA lies in
thenovelprocedure tomeasuremiRNAanddisease similarityby consid-
ering target genes and symptoms,whichdirectly reflect the biological na-
ture of miRNAs and diseases. Moreover, unlike previous research that
randomly selected negative samples from unknown associations,14,16,21

TSMDAutilizes amiRNA-gene-diseasenetwork, followedby amodified
PU learning, to construct more reliable negative samples (Figure 2B).
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Blind test

To evaluate the generalization capabilities of TSMDA, we assessed its
performance on an independent blind test of experimentally validated
miRNA-disease associations from HMDD, providing an unbiased
evaluation of the trained model. The model reached an AUC,
MCC, bACC, and F1 of 0.982, 0.965, 0.982, and 0.982, respectively,
which were consistent with the performance obtained under cross-
validation (Table 2).

Predicting miRNA-disease associations in cancer

Three case studies involving prevalent cancer types (breast, prostate,
and lung cancer) were employed to evaluate the capability of TSMDA
of predicting potential miRNA-disease associations in a real-world
scenario.

The statistics reported in the 2020 annual report of the American
Cancer Society show that these cancers are among the top five cancers
with the highest estimated new cases and deaths in the US popula-
tion.40 Breast cancer is widely known as the most prevalent cancer
in females, accounting for 30% of the cases.40 Similarly, prostate can-
cer is the most commonly found male cancer, responsible for one-
fifth of the cases, while lung cancer is the second most common
type of cancer in both genders.40

In the first case study, the general predictive performance of TSMDA
was assessed by its ability to identify the breast, prostate, and lung
cancer-related miRNAs for experimentally validated associations in
dbDEMC and miRCancer.11,12 Known associations in HMDD v.2.0
were chosen as a training dataset. The top 50 cancer-related miRNAs
were ranked based on TSMDA scores and listed in Tables S2–S4.
Using TSMDA scores, 49, 50, and 50 of the predicted miRNAs asso-
ciated with breast, prostate, and lung cancer, respectively, were exper-
imentally confirmed by other databases.

The ability of TSMDA to predict potential associations for diseases
without verified associated miRNAs was evaluated in the second
case study. Known associations between the three cancer types
and miRNAs in the training set of HMDD v.2.0 were removed,
one cancer at a time. As a result, 49, 49, and 49 of the top 50 were vali-
dated with known associations in dbDEMC and miR2Cancer (Tables
S5–S7).11,12

In the third case study, miR2Disease containing 3,273 known
associations between 349 miRNAs and 163 diseases was used to
demonstrate our model performance on different datasets.41 miR2Di-
sease was used to train the model, and the top 50 potential associated
miRNAs predicted were investigated in dbDEMC and miR2Cancer
(Tables S8–S10).11,12 All associations were confirmed, indicating the
robustness of TSMDA to uncover potential miRNA-disease associa-
tions when considering different datasets.

TSMDA web server

We have made TSMDA available as an easy-to-use web server. the
TSMDA web server works according to the following procedures.
First, users are required to manually provide a list of miRNAs in miR-
Base format and a list of disease Medical Subject Heading (MeSH)
IDs. This list can be provided as a file. Users also have the possibility
to fill a single string for either miRNA or MeSH ID. The example can
be downloaded in the TSMDA server (Figure 3A). After running
TSMDA, prediction results will be provided as a table, which can
be downloaded as a comma-separated file. For each pair of miRNA
and disease, an association confidence is shown. A higher score indi-
cates a higher potential of association between miRNA and disease.
Moreover, related evidence is given as a PMID for a pair of miRNA
and disease with existing experimental support in Mammalian
ncRNA-Disease Repository (MNDR) or dbDEMC.11,42 The TSMDA
web server is available at http://biosig.unimelb.edu.au/tsmda/.

DISCUSSION
The utilization of miRNAs as diagnostic biomarkers or drugs has
received growing attention,7–9 due to their significant regulatory roles
in various physiological processes. To enable the development of
miRNA-based therapeutic applications, a wide range of studies has
validated a large number of relationships between miRNAs and
disease, which have provided a better understanding of miRNA
regulatory mechanisms.3–5 A significant proportion of potential
miRNA-disease associations are yet to be explored, and computa-
tional methods play an essential role in assisting on this task.

The proposed TSMDA prediction model has led to three major im-
provements for miRNA-disease-association prediction in terms of
(1) miRNA similarity calculation, (2) disease similarity calculation,
and (3) negative sample selection strategies. First, an approach for
miRNA similarity calculation called target-based miRNA similarity
was introduced. Unlike sequence or associated-disease information
used in many previous methods,13–22 individual miRNAs’ target
genes directly reflect their unique function in molecular pathways.
TSDMA has shown that by combining this method with
MISIM miRNA functional similarity, they can help improve the
model’s prediction power and reliability (Figure 4). Second, the symp-
tom-based approach was utilized to calculate disease similarity.
Several studies indicated the remarkable predictive capability of
symptom-based similarity as it is associated with several molecular
mechanisms,43–45 including shared genes, protein interactions, and
molecular origins. Finally, we designed modern negative sample se-
lection approaches on TSMDA. A lack of actual negative samples
has been a limitation of miRNA-disease-association studies for an
extended period. In this work, two reliable methods proposed in pre-
vious research, miRNA-gene-disease network18 and traditional PU
learning,17,25,26 were adopted and modified. A more comprehensive
network was obtained in comparison with previous methods by inte-
grating two datasets frommiRTarbase and Tarbase.46,47 Themodified
PU learning approach was introduced to relieve the strong depen-
dence on the chosen criteria of selecting reliable negative samples
in the original method.48

To verify the performance of TSMDA, themethod was assessed under
different cross-validation schemes, as well as through an independent
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 539
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Figure 3. The TSMDA web server interface

(A) A list of miRNAs in miRBase IDs and diseases in MeSH IDs are required as input for the TSMDA web server. (B) The result from TSMDA is provided as a table. A higher

prediction score indicates a higher probability for miRNA-disease association. If a miRNA-disease association is experimentally supported by MNDR31 or dbDEMC,11

evidence is provided as a PMID.
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blind test and three case studies. The performance levels and consis-
tency under different validation scenarios illustrate the robustness of
the method in prioritizing potential miRNA-disease associations.
Furthermore, we showed TSMDA has outperformed alternative
state-of-the-art methods (Figure 2A),14,17,19–22 indicating a substan-
tial improvement from previous efforts. The model’s reliability in a
real-world application was supported by the case studies on the three
540 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
common cancer types. To facilitate access to the method’s capabilities
and enable reproducibility, we developed a user-friendly web server to
allow easy access by other researchers.

In future works, miRNA-disease-association predictions might be
improved in many directions. One of the limitations of the current
model is the bias in data availability. A significant proportion of



Figure 4. The introduction of miRNA functional

similarity (MISIM) with target-based miRNA

similarity moderately enhances TSMDA

performance

AUC, MCC, bACC, and F1 in TSMDA models with three

sets of features—3 target-based miRNA similarities (T) with

5 symptom-based similarities, 5 MISIM similarities (M) with

5 symptom-based similarities, and 8 target-based and

MISIM miRNA similarities (T + M) with 5 symptom-based

similarities—were assessed in 5-fold cross-validation with

XGBoost classifier.
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experimentally validated miRNA-disease associations as well as
miRNA-target gene interactions has not been confirmed. Although
TSMDA has attempted to overcome this bias by introducing a unique
weighting scheme, more informative data sources, such as miRNA
expression profiles, should be taken into consideration. On the other
hand, other molecular properties of diseases, such as related biochem-
ical pathways, could be introduced to enhance predictive accuracy.
However, the disease similarity estimation is restrained by the limita-
tion of HMDD v.2.0, where some diseases are not found in the
Disease Ontology,49 a standardized ontology for human diseases
generally used for diverse disease similarity calculations.50,51

Data quality is a significant hurdle in determining the success of
miRNA-disease-association prediction models. As future work, a
practical method that utilizes other biological information to guide
a reliable negative sample selection may be proposed to increase the
model effectiveness. Furthermore, miRNA expression profiles
retrieved from public databases, such as The Cancer Genome Atlas,
can be utilized to improve data quality. Removing confirmed
miRNA-disease associations with low confidence according to dif-
ferential expression analysis may significantly improve data
reliability.

MATERIALS AND METHODS
TSMDA general workflow

The proposed pipeline consists of five main steps (Figure 5). First,
confirmed miRNA-disease associations were obtained from HMDD
v.2.0.10 In the following step, feature engineering is performed and
three sets of similarities constructed: MISIM,23 target-based miRNA
similarity, and symptom-based disease similarity. These were inte-
grated into feature vectors, representing pairs of miRNA-disease asso-
ciations. Subsequently, reliable negative samples were selected using
miRNA-gene-disease network and modified PU learning. Following
that, a subset of relevant features is chosen by correlation-based
and forward stepwise greedy feature selection.27,28 An extreme
gradient boosting classifier (XGBoost) was employed to create a pre-
diction model for potential associations. The method’s performance
was assessed using both internal (5-fold, 10-fold, and 20-fold cross-
validation) and external validation (blind test and three case
studies).52
Data collection: Human miRNA-disease associations

Experimentally validated human miRNA-disease associations were
retrieved from HMDD v.2.0.10 The dataset contains 5,430 associa-
tions between 495 miRNAs and 383 diseases. Given this dataset, a
vector V was built to describe the associations between miRNA and
disease as follows:

V =
�
Ai;j;Ai+ 1;j;Ai+ 2;j;.;AM�D

�
; (Equation 1)

where M and D are the number of miRNAs and diseases in HMDD
v.2.0, respectively, and Ai;j is equal to one (1) if miRNA i and disease
j are experimentally associated, and zero (0), otherwise.

miRNA functional similarity

The MISIM used in this research was proposed by Wang et al.23 due
to its relative simplicity and decent capability to represent miRNA
similarity in a number of studies.14–22 The data of knownmiRNA-dis-
ease associations was utilized to assess miRNA similarity based on the
assumption that miRNAs with similar functions are more likely to be
associated with pathologically similar diseases. We retrieved miRNA
functional similarity of miRNAs found in HMDD v.2.0 from the Cui
Lab repository. The miRNA functional similarity matrix (MFS)
describing the pairwise similarities among 495 miRNAs was
constructed.

Target-based miRNA similarity

Despite a satisfactory contribution to miRNA-disease predictions,
incomplete data of validated associations still limited the performance
of MISIM. To address this limitation, other data types should be
considered to enhance miRNA similarity representation and mitigate
biases. Two modern methods, LFEMDA and DBMDA, proposed
sequence-based approaches to estimate miRNA similarity. The
improved accuracy indicated the usefulness of biological features.15,16

In this work, biological information of miRNA targets was introduced
to determine miRNA similarity. miRNAs perform a regulatory func-
tion via complementary base pairing with several mRNAs. Thus,
miRNAs with similar target genes are more likely to have similar
functions in molecular pathways. Here, we utilized the numbers of
shared target genes to assess miRNA similarity. The experimentally
validated miRNA-target interactions were available at miRTarBase
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 541
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Figure 5. TSMDA: Predicting miRNA-disease associations

The development of TSMDA is divided into five steps: (1) data collection, (2) feature vector construction, (3) negative sample selection, (4) feature selection, and (5) model

training and evaluation.
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and TarBase.46,47 miRTarBase consists of 553,168 interactions be-
tween 3,775 miRNAs and 22,336 target genes, whereas TarBase con-
tains 422,614 interactions between 1,084 miRNAs and 20,790 target
genes. The interactions related to miRNAs found in HMDD v.2.0
were extracted and merged, producing the dataset of 397,402 interac-
tions between 489 miRNAs and 21,284 genes. Across all 495 miRNAs
in the HMDD v.2.0, six missing miRNAs were proved by miRBase to
be experimental errors.53
The information of shared target genes between miRNAs was utilized
to calculate miRNA similarity. The 21,284-dimensional vector M
described target genes for miRNA i was created as:

Mi =
�
si;1; si;2; si;3;.; si;j

�
; (Equation 2)

where si;j denotes the strength of the interaction between miRNA i
and target gene j. It is calculated by taking the prevalence of target
genes in the dataset into consideration. The strength of interaction be-
542 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
tween a pair of miRNA i and target gene j is equal to log 2 of term
frequency of target gene if they are interacting, otherwise equal to
zero as follows:

si;j =

(
log2Fj Mi and Tj are interacting
0 otherwise

: (Equation 3)

In the equation, Fj is a term frequency of a target gene.Mi and Tj refer
to miRNA i and target gene j:

In the end, cosine similarity was employed to assess the target-
based miRNA similarity between the arrays representing the miR-
NAs.54 Cosine similarity is a standard metric used to compute the
directional similarity between two vectors by capturing orienta-
tional differences. The advantage of the cosine similarity is the
computation irrespective of vectors’ sizes. miRNA similarity was
calculated as stored in a target-based miRNA similarity matrix
ðTMSÞ.
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Symptom-based disease similarity

Several studies demonstrated a close correspondence between the
resemblance of molecular pathogenesis (e.g., shared gene, protein-
protein interactions, and molecular origin) and the phenotypic simi-
larity in clinical symptoms.55,56 On this basis, Zhou et al.43 proposed
the novel symptom-based disease similarity calculation that can be
applied to create a phenotype network profile for discovering molec-
ular targets for drug repurposing.44,45 This approach has displayed a
robust correlation between calculated similarity and molecular-level
disease components. The unique advantage of this method is a wide
availability of directly observable clinical phenotypes in various dis-
eases. For this reason, TSMDA aimed to implement a symptom-based
approach to measure disease similarity.

The co-occurrences of diseases and symptoms in PubMed were used
to characterize each disease in terms of clinical phenotypes. First, the
383 diseases from HMDD v.2.0 were mapped to 328 MeSH identi-
fiers.57 For each disease, its MeSH ID was used as a query to search
for co-occurrences with 481 symptoms (2020th updated), categorized
by PubMed. Disease i can be described by a 481-dimensional vector as
follows:

Di = ðwi;1;wi;2;wi;3;.;wi;481Þ: (Equation 4)

wi;j quantifies the intensity of the co-occurrence between disease i and
symptom j. According to the bias where some symptoms such as pain
are comparatively more abundant, the intensity was estimated
considering the term frequency-inverse document frequency (TF-
IDF).43 It is calculated from absolute co-occurrence Wi;j as the
following equation:

wi:j = Wi;j log
N
nj
; (Equation 5)

where N denotes the number of diseases in HMDD v.2.0, while nj
represents the number of diseases where symptom j appears. Same
as target-based miRNA similarity, the cosine similarity was also
employed to measure the directional similarity between symptom-
described vectors for each disease.54 The symptom-based disease
similarity among 495 diseases was represented as a symptom-based
disease similarity matrix ðSDSÞ.

miRNA and disease similarity integration

We obtained 1,373-dimensional feature vectors describing 189,585
possible pairs of miRNAs and diseases in HMDD v.2.0 from the inte-
gration of MISIM miRNA functional similarity, target-based miRNA
similarity, and symptom-based disease similarity. The feature vectors
Fi;j representing miRNA i and disease j were constructed as follows:

Fi;j =
�
mmsi;1;.;mmsi;nM ; tmsi;1;.; tmsi;nM; sdsj;1;.; sdsj;nD

�
:

(Equation 6)

Here, mmsi;m and tmsi:m denote MISIM and target-based miRNA
similarity between miRNA i and miRNA m, whereas sdsj;d is the
symptom-based disease similarity between disease jand disease d.
nMand nD are numbers of miRNAs and diseases in HMDD v.2.0.
Negative sample selection

Negative sample selection is undeniably one of the most crucial pro-
cesses in miRNA-disease-association modeling due to the absence of
true negative samples in the database. A variety of negative sample se-
lection strategies have been explored to address this issue.

The general standard procedure is to obtain negative samples by a
random selection from unlabeled miRNA-disease associations.14,16,21

This approach expects the ideal situation where unconfirmed pairs
can be arbitrarily considered as not existing, which may not be valid,
negatively affecting the reliability of negative samples. NSEMDA17

has proposed alternative strategies that utilize a traditional PU
learning model25,26 to train the model and remove unreliable negative
samples iteratively. In contrast, NMLPMDA suggested a distinct
method that focused on the construction of a miRNA-gene-disease
network.18 Pairs of miRNA and disease that show no relationship
were selected as reliable negative samples. The remarkable accuracy
of these methods illustrates the potential to prioritize reliable negative
samples. However, there is still room for improvement.

TSMDA employed a miRNA-gene-disease network, followed by
modified PU learning to form a robust negative sample selection.
The methods were further improved by extending the size of the
network and replacing the original PU learning with a modified
algorithm. In details, 115,891,964 verified gene-disease associations
between 21,671 genes and 30,170 diseases were acquired fromDisGE-
NET v.7.0.58 They were integrated with the aforementioned miRNA-
target gene interactions from miRTarbase46 and Tarbase,47 forming
the miRNA-gene-disease network. Pairs of miRNA and disease
sharing the same gene in the network were considered as potential
miRNA-disease associations. Unknown associations in our dataset
were then mapped to the network to filter out the potential associa-
tions. From 184,155 unknown associations, only 20,716 associations
(�10%) are selected as promising negative samples.

To increasingly refine the negative samples, modified PU learning48

employing an iterative pruning strategy was introduced. It was initially
proposed to mitigate the heavy dependence on the chosen criteria of
reliable negative sample selection,48 resulting in more reliable negative
samples. In this work, 20% of known associations inHMDD v.2.0 were
separated from the dataset and used as positive samples in PU learning
to prevent overfitting from a bias toward a dataset, while the remaining
negative samples were negative samples. Random forest (RF) classi-
fier59 was selected to train a model in an iterative manner because of
the robustness to overfitting and less requirement for parameter tun-
ing. Negative samples with low confidence scores were removed in
each turn, otherwise retained in the dataset.

During the first loop, the RF classifier was trained to remove a large
proportion of negative samples that were highly likely to be positive
samples. Merely 1% of negative samples classified as positives or neg-
atives, but with a probability lower than 95%, they were eliminated.
Due to this strict condition, the remaining negative samples will be
comparatively more reliable and suitable for training subsequent
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models. In the following loops, we aimed for a slight reduction of
negative samples in each loop. An RF classifier was similarly imple-
mented; however, the hyperparameter was set in order to limit the
model complexity, allowing iterative pruning. The numbers of esti-
mators and maximum depth were reduced to 20 and 3. Only negative
samples classified as positives were removed each step. The process
was run until the number of reliable samples was the same as known
associations.

Feature selection

After the negative sample selection, feature selection was used to
define a better set of features, so redundancy and noise are removed
or diminished, computation time and model complexity are reduced,
and overfitting is less likely to happen.52 In several miRNA-disease-
association models, employing a proper feature selection technique
leads to a substantially increased predictive performance.60–62

TSMDA utilizes two feature selection means, a correlation-based27

and forward stepwise greedy feature selection.28,63–65

Initially, Pearson’s correlation coefficients (PCCs) between every pair
of features were calculated and represented as a heatmap in Figure S1.
It was apparent that multiple features are redundant, so some can be
discarded without reducing model accuracy. We conducted a perfor-
mance evaluation to examine the optimal cutoff for PCC values (Fig-
ure S2). As a result, the cutoff of 0.6 was selected. If a PCC between
features is higher than 0.6, only one feature is randomly retained.
Consequently, the number of features was drastically reduced from
1,373 to 97.

Forward stepwise greedy feature selection was used to scale down the
remaining dimensions by selecting the best combination of features.28

The process begins with zero features selected. The most useful
feature contributing the most to the performance was included one
at a time. In each step, 10-fold cross-validation with XGBoost29 was
performed, then evaluated with MCC (Figure S3). At the end, 13 fea-
tures (Table 1) were chosen as the best combination required to train
a highly accurate model. The subset of features contained five miRNA
functional similarities, three target-based miRNA similarities, and
five symptom-based disease similarities.

XGBoost classifier

XGBoost29 is one of the most widely used tree-based boosting algo-
rithms, where a set of weak classifiers are combined to form a strong
classifier sequentially. In each iteration, misclassification errors of a
previous classifier were corrected to create a more accurate model.
In contrast to other boosting algorithms, XGBoost has several en-
hancements in regularization, parallelization, handling missing
values, dropout methods, and others.

In this work, this algorithm has been shown to be the one with best
performances in terms of miRNA-disease-association predictions in
preliminary experiments (see Table S11). The final feature vectors
represented by the selected 13 features are adopted to train and vali-
date the XGBoost classification model.
544 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
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