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Abstract
In	this	study,	monolayer	drying	of	kiwi	slices	was	simulated	by	a	laboratory-	scale		hot-	air	
dryer.	The	drying	process	was	carried	out	at	three	different	temperatures	of	50,	60,	
and	70°C.	After	the	end	of	drying	process,	initially,	the	experimental	drying	data	were	
fitted	to	the	11	well-	known	drying	models.	The	results	indicated	that	Two-	term	model	
gave	better	performance	compared	with	other	models	to	monitor	the	moisture	ratio	
(with	average	R2	value	equal	.998).	Also,	this	study	used	artificial	neural	network	(ANN)	
in	order	to	feasibly	predict	dried	kiwi	slices	moisture	ratio	(y),	based	on	the	time	and	
temperature	drying	 inputs	 (x1,	x2).	 In	order	 to	do	 this	 research,	 two	main	activation	
functions	called	logsig and tanh,	widely	used	in	engineering	calculations,	were	applied.	
The	 results	 revealed	 that,	 logsig	 activation	 function	base	on	13	neurons	 in	first	and	
second	hidden	layers	were	selected	as	the	best	configuration	to	predict	the	moisture	
ratio.	This	network	was	able	to	predict	moisture	ratio	with	R2	value	.997.	Furthermore,	
kiwi	 slice	 favorite	 is	evaluated	by	sensory	evaluation.	 In	 this	 test,	 sense	qualities	as	
color,	aroma,	flavor,	appearance,	and	chew	ability	(tissue	brittleness)	are	considered.
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1  | INTRODUCTION

Kiwi	 plant	 (Actinidia deliciosa)	 is	 native	 to	 the	Yangtze	River	valley	of	
northern	China	and	Zhejiang	Province	on	 the	coast	of	eastern	China	
(http://www.crfg.org/pubs/ff/kiwifruit.html).	Annual	production	rate	of	
kiwi	has	reached	~70,617	MT	 in	2012	to	which	 Iran	has	contributed	
32,000	MT	(FAO,	2009).	This	crop	is	consumed	in	various	ways	as	fresh	
nourishing,	dried	thin	layers,	and	so	on.	Many	studies	have	been	conduct-
ed	in	field	of	drying	of	various	fruits	and	vegetables.	For	instance,	Guiné,	
Pinho,	and	Barroca	(2011)	worked	on	pumpkin	behavior	during	drying.	
In	this	research,	the	experimental	data	were	fitted	to	different	models	
for	moisture	ratio	and	it	was	concluded	that	the	best	models	were	Page	
and	modified	Page.	As	well,	Simal,	Femenia,	Garau,	and	Rossello	(2005)	
studied	kinetic	drying	of	kiwi	fruit	with	three	mathematical	models	such	
as	exponential,	page,	and	diffusion	models.	The	results	showed	that	page	
model	provided	the	best	simulation	of	kiwi	fruit	drying	curves.	Orikasa,	

Wu,	 Shiina,	 and	Tagawa	 (2008)	 studied	 characteristics	 of	 kiwi	 drying	
at	 four	 different	 temperatures.	 The	 highest	 hardness	 of	 surface	 and	
destruction	of	l-	ascorbic	acid	were	evaluated	during	convective	hot-	air	
drying.	Doymaz	and	Ismail	(2011)	studied	modeling	of	sweet	cherry	dry-
ing	characteristics.	The	result	showed	that	Page	model	was	presented	
as	the	best	model	to	describe	cherry	drying	characteristics.	Nowadays,	
neural	network	has	an	important	role	as	a	powerful	tool	in	predicting	
process	parameters.	Artificial	neural	networks	(ANNs)	are	modern	cal-
culating	methods	 to	 predict	 output	 response	 from	 complex	 systems.	
The	main	 idea	of	 these	network	species	was	adapted	from	biological	
neural	system	functions	in	data	processing	for	extending	knowledge	and	
information	(15).	A	group	of	Iranian	researchers	applied	multilayer	per-
ceptron	(MLP)	and	radial	basis	function	(RBF)	networks	for	prediction	
drying	kinetic	parameters	of	pumpkin	during	hot-	air	drying	(Mokhtarian	
&	Koushki,	2012).	The	other	groups	of	researchers	studied	ANNs	and	
Genetic	algorithms	 to	predict	 free	 fat	content,	 lactose	crystallization,	
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and	particle	size	mean	during	whole	milk	powder	with	spray	drying	(Koc,	
Heinemann,	&	Ziegler,	2007).	Goni,	Oddone,	Segura,	Mascheroni,	and	
Salvadori	(2008)	utilized	ANNs	to	predict	food	freezing	time	and	thaw-
ing.	Poonnoy,	Tansakul,	and	Chinnan	(2006)	predicted	temperature	and	
moisture	content	of	tomato	slices	during	drying	by	microwave-	vacuum	
dryer.	Momenzadeh,	Zomorodian,	and	Mowla	(2011)	predicted	drying	
time	 of	 corn	 shell	 during	 drying	 by	 concurrent	 microwave-	fluidized	
bed	dryer	by	ANNs.	Madadlou	et	al.	 (2009)	predicted	casein	micelles	
size	 by	 combinative	 approach	 ANNs-	RSM.	 Mateo,	 Gadea,	 Mateo,	
and	 Jiménez	 (2011)	 used	 ANNs	 for	 predicting	 rate	 of	 accumulating	
Deoxynivalenol	 in	 infected	barely	seeds	to	Fusarium	culmorum	fungi. 
Fernandes	 et	al.	 (2011)	 determined	 anthociyanin	 concentration	 in	
whole	grape	skin	by	ANNs	and	image	processing.	Lertworasirikul	and	
Saetan	(2010)	used	artificial	neural	network	modeling	to	predict	mass	
transfer	parameters	of	kaffir	 lime	peel	 (i.e.,	water	 loss	and	solid	gain).	
ANNs	were	utilized	to	predict	moisture	ratio	of	dried	potato	slices	by	
different	drying	methods	in	this	project.

The	aim	of	this	research	was	studying	kinetic	drying	of	kiwi	slices	
and	investigating	organoleptic	characteristics	of	products	during	drying.	
Also	feasibility	prediction	of	kiwi	moisture	ratio	with	ANN	was	studied	
and	the	obtained	results	were	compared	with	experimental	models.

2  | MATERIAL AND METHODS

2.1 | Raw material preparation

In	this	research,	 fresh	kiwi	samples	 (Monty	variety)	were	purchased	
from	 local	market.	Then	samples	were	sorted	as	 to	color,	diameter,	
and	weight	(wg:	135	g	and	diameter	was	4–5	cm).	In	order	to	reduce	
respiration	intensity	and	physiological	and	chemical	changes,	all	sam-
ples	were	preserved	in	refrigerator	at	temperature	of	5–6°C.	At	the	
beginning	of	each	experiment,	kiwi	was	washed	with	fresh	water	to	
remove	the	kiwi	fines	adhered	to	the	fruit	surface	and	cut	 into	ring	
with	a	diameter	of	5	cm	and	thickness	of	3	±	0.1	mm.	The	initial	mois-
ture	 content	 was	 determined	 by	 drying	 in	 hot-	air	 convective	 oven	
(Memmert,	model	UNE	400	PA,	Scheabach,	Germany)	at	105°C	for	
48	hr	(AOAC,	1990).

2.2 | Drying equipment

A	 laboratory	 convective	 hot-	air	 dryer	 (Model	 Of-	02G;	 JEIO	 TECH,	
Seoul,	 Korea)	 was	 applied	 in	 the	 experiments.	 The	 experiments	
were	carried	out	at	 three	temperatures	50,	60,	and	70°C.	The	rela-
tive	 humidity	 of	 the	 ambient	 air	 (∼30°C)	was	 around	 62–65%.	 The	
dryer	was	adjusted	to	a	congenial	temperature	and	became	constant	
for	1.5	hr	before	the	outset	of	a	conduct	test.	When	the	fan	motor	
switch	was	turned	on,	air	passing	an	air	inlet	would	distribute	inside	
the	chamber	and	then	passed	through	an	air	outlet.	The	weight	loss	
was	monitored	by	means	of	a	digital	balance	 (Jewelry,	AND,	model	
FX-	CT	SERIES,	FX-	300	CT;	Tokyo,	Japan)	 through	a	sampling	 inter-
val	 of	 30	min	 and	 an	 accuracy	 of	 ±0.001	g	 undergoing	 drying.	 The	
final	weight	and	moisture	content	of	 the	kiwi	slices	were	measured	
at	the	end	of	each	air-	drying	experiment.	Drying	was	finished	when	

the	moisture	content	of	the	samples	was	about	0.15	±	0.5	(kg	water/
kg	dry	matter).

2.3 | Mathematical modeling of drying process

Monolayer	 drying	models	 of	 experimental	 data	 of	 kiwi	 slices	 were	
expressed	in	the	form	of	moisture	ratio	of	samples	during	monolayer	
drying	and	it	was	displayed	as	(Eqn.	1):

In	 these	 equations,	 MR,	M,	M0,	Me,	 and	Mt+dt	 are	 the	 moisture	
ratio,	moisture	content	at	any	time,	initial	moisture	content,	equilibrium	
moisture	content,	moisture	content	at	t,	and	moisture	content	at	t + dt 
(kg	water/kg	dry	matter),	respectively,	and	t	is	drying	time	(min).	Drying	
runs	were	done	in	triplicate.	Mathematical	models	were	simulated	by	
software	 Sigma	 Plot	 Ver.11	 (statistical	 software	 package,	 SigmaPlot,	
version	11,	London,	UK).	The	drying	curves	obtained	were	fitted	with	
three	different	moisture	ratio	models	(Table	1)	(Togrül	&	Pehlivan,	2002).

The	coefficient	of	determination	(R2)	was	one	of	the	main	criteria	
for	selecting	the	best	equation.	In	addition	to	the	coefficient	of	deter-
mination,	 the	 goodness	 of	 fit	 was	 determined	 by	 various	 statistical	
indicators	such	as	reduced	chi	square	(χ2),	mean	relative	deviation	mod-
ulus	P	(%),	and	root	mean	square	error	(RMSE).	For	quality	fit,	R2	value	
should	be	higher	and	χ2,	P	(%),	and	RMSE	values	should	be	lower	(Goyal	
&	Bhargava,	2008).	The	above	parameters	can	be	calculated	as	follows:

where	MRe,i	 is	experimental	moisture	 ratio,	MRp,i	 is	predicted	mois-
ture	ratio,	N	is	number	of	experimental	data,	and	z	is	number	of	model	
parameters.

(1)MR=
M−Me

M0−Me

(2)
χ2=

N∑

i=1

(MRe,i−MRp,i)
2

N−z

(3)P(%)=
100

N

N∑

i=1

|
||
MRp,i−MRe,i

|||

(4)RMSE=

[
1

N

N∑

i=1

(MRp,i−MRe,i)

] 1

2

TABLE  1 Drying	kinetic	models

Equation Name

Newton MR	=	exp(−kt)

Page MR	=	exp(−ktn)

Henderson	and	Pabis MR	=	a	exp(−kt)

Logarithmic MR	=	a	exp(−kt)	+	c

Two-	term MR	=	a	exp(−k0t + b	exp(−k1t)

Two-	term	exponential MR	=	a	exp(−kt)	+	(1−a)	exp(−kat)

Wang	and	Singh MR	=	1	+	at + bt2

Diffusion	approximation MR	=	a	exp(−kt)	+	(1−a)	exp(−kbt)

Verma	et	al. MR	=	a	exp(−kt)	+	(1−a)	exp(−gt)

Diffusion	of	Fick’s MR	=	a	exp(−c(t/L2))

Modified	page	II MR	=	a	exp(−c(t/L2)n)
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2.4 | Computation of effective diffusion 
coefficient and activation energy

The	 experimental	 drying	 data	 were	 done	 for	 the	 determination	 of	
diffusivity	coefficients	by	Fick’s	 second	diffusion	equation.	The	ana-
lytical	solution	of	Fick’s	second	law	is	unsteady-	state	diffusion	in	an	
infinite	slab	by	the	drying	process	seen	in	the	Equation	(5):

where	MR	is	moisture	ratio	(dimensionless),	Deff	 is	the	effective	dif-
fusion	 coefficient	 (m2/s),	 and	 L	 is	 the	 half-	thickness	 of	 sample	 (m).	
Therefore,	effective	diffusion	coefficient	(Deff)	was	obtained	by	plot-
ting	ln	MR	versus	time	(min).	From	Equation	(5),	a	plot	of	ln	MR	versus	
time	displayed	a	straight	line	with	a	slope	of	(α),	in	which	(Eqn.	6):

2.5 | Sensory evaluation test

Sensory	evaluation	 test	was	carried	out	with	a	group	containing	10	
educated	panelists.	All	evaluations	were	done	through	Single	Stimulus	
method	 and	five	 scores	 hedonic	 tests.	The	 prepared	questionnaires	
with	 four	questions	were	asked	to	everyone	and	for	every	question	
there	were	five	options.	The	proposed	questions	were	color	accept-
ance,	 odor	 and	 flavor,	 appearance	 shape,	 and	 chewiness	 (texture	
crispiness).	Every	one	marked	as	own	self	taste	one	of	choice	such	as	
very	good,	good,	 fair,	poor,	and	very	poor.	Finally,	scoring	was	done	
for	every	choice	separately	(very	good	=	5,	good	=	4,	fair	=	3,	poor	=	2,	
and	very	poor	=	1).	In	this	research,	multiple	Duncan’s	test	in	0.01	level	
was	 analyzed	with	 SAS	 software	 9.1	 version	 (Lawless	 &	 Heymann,	
2010).

2.6 | Artificial neural network (ANN)

An	 artificial	 neural	 network	 composed	 of	 simple	 processing	 elements	
called	neurons	that	are	connected	to	each	other	by	weights.	The	neuron	
is	grouped	into	distinct	layers	and	interconnected	according	to	a	given	
architecture	 (Mousavi	 &	 Javan,	 2009).	 A	multilayer	 perception	 (MLP)	
networks	is	one	of	the	most	popular	and	successful	neural	network	archi-
tectures,	suited	to	wide	range	of	engineering	application	involved	drying.

Mathematically:

where yj	 is	 the	 net	 input	 of	 each	 neuron	 in	 the	 hidden	 and	 output	
layers,	xi	is	input,	n	is	number	of	inputs	to	the	neuron,	wij	is	the	weight	
of	the	connection	between	neuron	 I, and neuron j and bj is the bias 
associated with jth	neuron	(Mohebbi,	Shahidi,	Fathi,	Ehtiati,	&	Noshad,	
2011).	Each	neuron	consists	of	a	transfer	function	expressing	its	inter-
nal	activation	level.	Output	from	a	neuron	is	determined	by	transform-
ing	its	input	using	a	suitable	transform	function.

Generally,	 the	 transfer	 functions	 are	 sigmoidal,	 guassian,	 hyper-
bolic	tangent,	hyperbolic	secant,	and	linear	functions.	Sigmoidal	(log-
sig)	 and	 hyperbolic	 tangent	 (tanh)	 functions	were	 used	 to	 establish	
nonlinear	relationship	in	engineering	applications	(Picton,	2000):

As	can	be	seen,	Figure	1	shows	schematic	structure	of	perceptron	
neural	network.	In	this	network,	the	input	layer	consists	of	two	neu-
rons	 (air	 temperature	 (x1)	 and	drying	time	 (x2))	 and	 the	output	 layer	
contains	one	neuron	(moisture	ratio	(y)).

The	 back	 propagation	 algorithm	 was	 used	 in	 training	 of	 ANN	
model.	This	algorithm	uses	 the	supervised	 training	 technique	where	
the	 network	 weights	 and	 biases	 are	 initialized	 randomly	 at	 the	

(5)MR=
M−Me

Mo−Me

=
8

π2
exp

[
−π2Defft

4L2

]

(6)α=
π2Deff

4L2

(7)yj=

n∑

i=1

f(wijxi)+bj

(8)logsig(z)=
1

1+exp(−z)
(0,+1)

(9)tahn(z)=
ez−e−z

ez+e−z
(−1,+1)

F IGURE  1 Schematic	structure	of	
perceptron	neural	network,	where	x1 is 
drying	temperature,	x2	is	drying	time,	and	
y	is	moisture	ratio	(MR)
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beginning	of	 the	 training	phase	 (Singh	&	Pandey,	2011).	 In	order	 to	
optimize	ANN,	different	factors	including	hidden	layer	number,	neuron	
number	 per	 hidden	 layer,	 type	 of	 activation	 function	 in	 hidden	 and	
output	layers,	learning	rate,	and	momentum	coefficients	must	be	eval-
uated.	In	this	work,	number	of	1–2	hidden	layers	with	5–15	neurons	
per	hidden	layer,	learning	rate	=	0.4,	momentum	coefficient	=	0.9,	and	
activation	functions	of	sigmoid	logarithms	(Eqn.	8)	and	hyperbolic	tan-
gent	 (Eqn.	9)	 in	each	hidden	and	output	 layer	were	used	 in	order	to	
find	the	best	topology.

In	 order	 to	 network	modeling,	 data	were	 randomly	 divided	 into	
two	groups,	70%	used	 for	 training	and	 reminder	30%	 for	 testing	of	
network.	 Data	 modeling	 accomplished	 by	 using	 SPSS	 statistical	
software	version	 19	 (2011).	 For	 determination	 of	 the	 best	 network	
arrangement	two	criteria	of	determination	were	used,	coefficient	(R2)	
and	mean	relative	error	(MRE),	respectively:

where PANN	is	predicted	ANN	output	parameter,	Pexp	is	experimental	
data,	and	N	is	number	of	observations.

3  | RESULTS AND DISCUSSION

3.1 | Mathematical modeling of drying kinetic

Eleven	dynamic	models	of	kiwi	monolayer	drying	were	processed	at	
temperature	of	50,	60,	and	70°C.	Statistical	parameters	of	tests	were	
R2,	χ2,	RMSE,	and	PE	(%).	Statistical	analysis	amounts	were	presented	
for	each	parameter	of	Tables	2,	3,	and	4	 in	brief.	R2	value	for	pro-
cessed	models	was	higher	than	0.8307	in	all	cases.	Changes	ampli-
tude of R2	was	between	 .8307	and	 .9996,	 χ2 was 0.0000157 and 
0.0178,	and	variety	range	amount	of	RMSE	was	0.00384	and	0.1269,	

(10)R2=1−

⎡
⎢
⎢
⎣

∑N

i=1
(PANN,i−Pexp,i)

2

∑N

i=1
(PANN,i−PANN,i)

2

⎤
⎥
⎥
⎦

(11)MRE=

⎛
⎜
⎜
⎝

1

N

�N

i=1

�
��
(PANN,i−Pexp,i)

�
��

Pexp,i

⎞
⎟
⎟
⎠
×100

TABLE  2 The	statistic	result	of	kiwi	monolayer	drying	at	50°C

Model PE (%) RMSE χ2 R2

Newton 25.49 0.02986 0.000921 .9964

Page 22.09 0.02801 0.000838 .9968

Henderson	and	Pabis 24.88 0.02947 0.000928 .9965

Logarithmic 15.29 0.0190 0.0004 .9985

Two-	term 14.33 0.01894 0.000412 .9986

Two-	term	exponential 19.01 0.02546 0.000692 .9974

Wang	and	Singh 83.80 0.10883 0.012661 .951

Diffusion	
approximation

24.88 0.02947 0.000962 .9965

Modified	page	II 22.09 0.02801 0.000868 .9968

Verma	et	al. 14.50 0.01908 0.000403 .9985

Diffusion	of	Fick’s 14.50 0.01908 0.000403 .9985

TABLE  3 The	statistic	result	of	kiwi	monolayer	drying	at	60°C

Model PE (%) RMSE χ2 R2

Newton 12.36 0.0143 0.000215 .9991

Page 12.05 0.0143 0.000223 .9991

Henderson	and	Pabis 12.49 0.0143 0.000223 .9991

Logarithmic 4.38 0.010 0.000114 .9995

Two-	term 4.85 0.0098 0.000115 .9996

Two-	term	exponential 9.89 0.0132 0.000189 .9992

Wang	and	Singh 65.68 0.0837 0.007625 .9674

Diffusion	approximation 12.49 0.0143 0.000234 .9991

Modified	page	II 12.05 0.0143 0.000233 .9991

Verma	et	al. 5.28 0.0103 0.000121 .9995

Diffusion	of	Fick’s 5.28 0.0103 0.000121 .9995

TABLE  4 The	statistic	result	of	kiwi	monolayer	drying	at	70°C

Model PE (%) RMSE χ2 R2

Newton 24.3 0.0767 0.006181 .9417

Page 7.81 0.0258 0.000737 .9936

Henderson	and	Pabis 16.17 0.0593 0.003893 .9655

Logarithmic 19.84 0.0445 0.002312 .9807

Two-	term 5.09 0.0154 0.000293 .9977

Two-	term	exponential 15.46 0.0506 0.002834 .975

Wang	and	Singh 49.64 0.1268 0.017798 .8307

Diffusion	approximation 16.17 0.0593 0.004110 .9655

Modified	page	II 7.81 0.0258 0.000778 .9936

Verma	et	al. 5.15 0.0160 0.0003 .9975

Diffusion	of	Fick’s 5.15 0.0160 0.0003 .9975

F IGURE  2 The	results	comparison	of	predicted	and	experimental	
moisture	ratio	for	best	dynamic	model	of	kiwi	monolayer	drying
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respectively,	and	also	variety	range	amount	of	PE	(%)	was	2.85	and	
83.8,	respectively.	Statistical	analysis	results	showed	that	Two-	term	
model	had	the	highest	R2	and	lowest	χ2,	RMSE,	and	PE	(%).	Therefore,	
increasing	R2	and	lowering	of	χ2,	RMSE	was	the	most	important	cause	
in	selecting	the	best	processed	model.	Comparison	experimental	and	
predicted	moisture	 ratio	 data	 have	 been	 represented	 for	 the	 best	
processed	model	in	temperature	range	50–70°C	and	have	been	rep-
resented	in	Figure	2.	Predicted	data	for	moisture	ratio	in	experimen-
tal	data	as	direct	line	on	diagram	show	that	the	obtained	Two-	term	
dynamic	 model	 can	 better	 describe	 characteristics	 of	 kiwi	 drying.	
Similar	results	were	observed	by	Doymaz	and	Ismail	(2011).
In	addition,	parameters	of	various	applied	models	 are	presented	

in	 Table	5.	 Kinetic	 constant	 (k)	 increased	 as	 drying	 air	 temperature	
increased,	thus	could	be	predicted	by	Arrhenius	relationship	(Eqn.	12).	
By	taking	logarithm	from	both	side	of	that	equation	and	plot	ln	k ver-
sus T−1,	 first-	order	 regression	 fitted	 data	with	 a	 high	 determination	
coefficient	(.9251)	as	shown	in	Figure	3.

The	 results	 showed	 that	 drying	 air	 temperature	 had	 a	 signif-
icant	 effect	 on	 the	 drying	 time.	This	 status	 is	 clearly	 observed	 in	
drying	curve	 (Fig.	4).	As	clear	 from	diagram,	 the	essential	time	 for	
kiwi	 drying	 from	 primary	 moisture	 content	 86.6%	 (wet	 basis)	 to	
final	moisture	 content	 5%	 (wet	 basis)	was	960,	 600,	 and	360	min	
for	temperature	of	50,	60,	and	70,	respectively.	Similar	results	were	
observed	by	other	researchers	 for	different	vegetables	 (Doymaz	&	
Ismail,	2011).

Effective	moisture	diffusion	of	kiwi	was	calculated	in	50,	60,	and	
70°C,	 4.55	×	10−11,	 9.12	×	10−11,	 21.27	×	10−11,	 respectively.	 As	
observed,	effective	moisture	diffusion	of	kiwi	in	70°C	was	higher	than	
60°C	 in	 similar	 conditions.	 This	 context	 is	 described	 through	 mass	
transfer	from	capillary	pores	of	food.	Similar	results	have	been	repre-
sented	in	different	vegetables	in	Table	6.

3.2 | Sensory analysis of kiwi slices during drying

The	results	of	sensory	evaluation	of	kiwi	slices	have	been	represented	
in	different	temperature	ranges	in	Figure	5.	The	results	demonstrated	

(12)k=ko exp

(
Ea

RT

)

TABLE  5 Parameters	of	applied	models	at	different	temperatures

Model names Temperature (℃) k (min−1) n a b c h l g

Newton 50 0.00611 – – – – – – –
60 0.00830 – – – – – – –
70 0.02230 – – – – – – –

Page 50 0.00831 0.9341 – – – – – –
60 0.00856 0.9932 – – – – – –
70 0.09110 0.6313 – – – – – –

Henderson and 
Pabis

50 0.00596 – 0.9886 – – – – –
60 0.00834 – 1.0019 – – – – –
70 0.0180 – 0.8569 – – – – –

Logarithmic 50 0.00684 – 0.9585 – 0.0462 – – –
60 0.00888 – 0.9838 – 0.0256 – – –
70 0.0304 – 0.7845 – 0.1468 – – –

Two-	term 50 0.00696 – 0.9461 0.0597 – 0.00034 – –
60 0.00870 – 0.9975 0.0106 – −0.0017 – –
70 0.0988 – 0.4413 0.5771 – 0.0107 – –

Two-	term	
exponential

50 0.00941 – 0.4492 – – – – –
60 0.0102 – 0.5954 – – – – –
70 0.0857 – 0.203 – – – – –

Wang	and	Singh 50 – – −0.0033 2.6	×	10−6 – – – –
60 – – −0.0053 6.7	×	10−6 – – – –
70 – – −0.0148 5.5	×	10−5 – – – –

Diffusion	
approximation

50 0.00022 – 0.0535 30.60 – – – –
60 0.00850 – 0.9934 −0.294 – – – –
70 0.094 – 0.4263 0.1129 – – – –

Modified	page	II 50 – 0.9341 – – 0.013 – −1.2725 –
60 – 0.9932 – – 0.0064 – 0.8643 –
70 – 0.6313 – – 0.0687 – 0.8002 –

Verma	et	al. 50 0.00682 – 0.9465 – – – – 0.00022
60 −0.00249 – 0.0066 – – – – 0.00850
70 0.0106 – 0.5737 – – – – 0.0940

Diffusion	of	
Fick’s

50 – – 0.9887 – 0.0043 – −0.8585 –
60 – – 1.002 – 48.831 – −76.51 –
70 – – 0.8569 – 0.0665 – 1.9243 –
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that	 among	 color	 acceptance,	 odor,	 taste,	 and	 texture	 crispiness	
(chewiness),	no	significant	difference	was	observed	(p	<	.01)	and	the	
dried	sample	had	the	highest	sensory	score	at	70°C.	Its	cause	was	due	

to	browning	 reactions	 that	 led	 to	 the	 sample	color	 change	and	 this	
problem	has	been	realized	by	panelists.	The	results	showed	that	there	
was	no	significant	difference	between	odor	and	taste	and	the	dried	
sample	had	the	highest	score	at	70°C.	Appearance	acceptance	of	the	
dried	 slices	 showed	 that	 there	was	no	 significant	 difference	 among	
all	 samples	at	50,	60,	and	70°C	and	the	dried	sample	had	the	high-
est	sensory	score	at	70°C.	Related	to	texture	crispiness	acceptance	
(chewiness),	 the	results	showed	that	there	was	no	significant	differ-
ence	among	the	studied	samples	in	probability	level	99%,	although	the	
dried	sample	in	60°C	had	the	highest	statistical	score.

3.3 | Artificial neural network modeling

In	this	research,	a	combination	of	different	layers	and	neurons	with	dif-
ferent	activation	functions	were	used	for	modeling	perceptron	neu-
ral	networks.	Neural	network	with	one	and	two	hidden	layers,	3–15	
neurons	were	selected	randomly	and	network	power	was	estimated	
to	predict	kiwi	moisture	ratio.

The	results	of	optimization	of	perceptron	neural	network	with	log-
arithm	 sigmoid	 activation	 function	 and	 hyperbolic	 tan	with	 obtained	
rearrangements	have	been	 represented	 in	 different	 cases	 in	Figure	6.	
Figure	6	 shows	 the	variation	 in	 relative	error	value	versus	number	of	
neuron	 to	 predict	 moisture	 ratio.	 Investigating	 the	 obtained	 results	
especially	multilayer	perceptron	neural	 network	with	 logsig	 activation	
function	showed	that	neural	network	with	2-	13-	13-	1	 rearrangement,	
i.e.,	network	with	two	inputs,	13	neurons	in	the	first	and	second	hidden	
layer,	and	one	output	had	the	best	result	in	predicting	the	moisture	ratio	
(regression	coefficient	value	in	this	case	was	.997).	On	the	other	hand,	
the	results	of	perceptron	neural	network	with	hyperbolic	tan	activation	
function	showed	that	neural	network	with	2-	15-	1	had	the	best	results	
in	predicting	the	moisture	ratio	as	this	network	could	estimate	moisture	
ratio	during	monolayer	drying	process	of	kiwi	with	regression	coefficient	
=.994	(relative	error	amount	was	calculated	as	0.001092	in	this	case).

Model	 sensitivity	 diagram	of	 predicted	 parameters	 by	MLP	net-
work	with	 logsig and tanh	 activation	 functions	 against	 experimental	

TABLE  6 Comparison	of	effective	moisture	diffusion	values	of	
kiwi	fruit	and	other	crops

Crops Deff (m2/s)
Temperature 
range (°C) Reference

Carrot 0.77–9.33	×	10−9 50–70 Doymaz	
(2004a)

Apricot 6.76–12.6	×	10−10 55 Doymaz	
(2004b)

Sweet	cherry 1.54–5.68	×	10−10 60–75 Doymaz	and	
Ismail	(2011)

Kiwi 4.55–21.27	×	10−11 50–70 This study

F IGURE  3 Arrhenius-	type	relationship	between	log	kinetic	
parameter	of	Two-	term	model	versus	inverse	temperature

F IGURE  4 Curve	variation	in	kiwi	moisture	ratio	versus	drying	
time	at	different	temperature	during	drying	(drying	temperature	
□	=	50°C,	▲	=	60°C,	O	=	70°C)

F IGURE  5 The	result	of	kiwi	slices	sensory	evaluation	during	
drying
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parameters	for	the	best	topology	are	shown	in	Figure	7.	Result	com-
parison	of	different	activation	function	of	ANN	shows	that	logsig	acti-
vation	function	with	13	neurons	in	first	and	second	hidden	layer	due	
to	higher	R2	value	(.997)	was	the	best	model	to	predict	kiwi	moisture	
ratio.

4  | CONCLUSION

In	 this	 study,	 temperature	effect	was	 investigated	on	kiwi	drying	
characteristic.	 Increasing	 drying	 temperature	 caused	 a	 reduction	
in	 time	 and	 raise	 of	 velocity	 and	 effective	 diffusion	 coefficient.	
After	model	statistical	analysis,	the	results	showed	that	Two-	term	

model	is	the	best	model	for	kiwi	drying	monolayer	due	to	maximum	
R2,	minimum	χ2,	and	RMSE,	among	those	processed	dynamic	mod-
els.	Moreover,	 product	 sensory	 characteristics	were	 evaluated	 in	
this	 research	by	panelists.	The	 results	 revealed	 that	 among	color	
acceptance,	 odor,	 taste,	 and	 texture	 crispiness	 (chewiness)	 were	
not	observed	any	significant	differences	 in	probability	 level	=.99.	
Multilayer	perceptron	neural	network	with	different	functions	was	
used	to	estimation	feasibility	of	moisture	ratio	with	neural	network.	
The	 results	 showed	 that	neural	network	with	 sigmoid	 log	activa-
tion function contain 13 neurons in the first and second  hidden 
layers	 that	 could	 predict	 moisture	 ratio	 amount	 with	 regression	 
coefficient	=.997.
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