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Abstract
In this study, monolayer drying of kiwi slices was simulated by a laboratory-scale hot-air 
dryer. The drying process was carried out at three different temperatures of 50, 60, 
and 70°C. After the end of drying process, initially, the experimental drying data were 
fitted to the 11 well-known drying models. The results indicated that Two-term model 
gave better performance compared with other models to monitor the moisture ratio 
(with average R2 value equal .998). Also, this study used artificial neural network (ANN) 
in order to feasibly predict dried kiwi slices moisture ratio (y), based on the time and 
temperature drying inputs (x1, x2). In order to do this research, two main activation 
functions called logsig and tanh, widely used in engineering calculations, were applied. 
The results revealed that, logsig activation function base on 13 neurons in first and 
second hidden layers were selected as the best configuration to predict the moisture 
ratio. This network was able to predict moisture ratio with R2 value .997. Furthermore, 
kiwi slice favorite is evaluated by sensory evaluation. In this test, sense qualities as 
color, aroma, flavor, appearance, and chew ability (tissue brittleness) are considered.
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1  | INTRODUCTION

Kiwi plant (Actinidia deliciosa) is native to the Yangtze River valley of 
northern China and Zhejiang Province on the coast of eastern China 
(http://www.crfg.org/pubs/ff/kiwifruit.html). Annual production rate of 
kiwi has reached ~70,617 MT in 2012 to which Iran has contributed 
32,000 MT (FAO, 2009). This crop is consumed in various ways as fresh 
nourishing, dried thin layers, and so on. Many studies have been conduct-
ed in field of drying of various fruits and vegetables. For instance, Guiné, 
Pinho, and Barroca (2011) worked on pumpkin behavior during drying. 
In this research, the experimental data were fitted to different models 
for moisture ratio and it was concluded that the best models were Page 
and modified Page. As well, Simal, Femenia, Garau, and Rossello (2005) 
studied kinetic drying of kiwi fruit with three mathematical models such 
as exponential, page, and diffusion models. The results showed that page 
model provided the best simulation of kiwi fruit drying curves. Orikasa, 

Wu, Shiina, and Tagawa (2008) studied characteristics of kiwi drying 
at four different temperatures. The highest hardness of surface and 
destruction of l-ascorbic acid were evaluated during convective hot-air 
drying. Doymaz and Ismail (2011) studied modeling of sweet cherry dry-
ing characteristics. The result showed that Page model was presented 
as the best model to describe cherry drying characteristics. Nowadays, 
neural network has an important role as a powerful tool in predicting 
process parameters. Artificial neural networks (ANNs) are modern cal-
culating methods to predict output response from complex systems. 
The main idea of these network species was adapted from biological 
neural system functions in data processing for extending knowledge and 
information (15). A group of Iranian researchers applied multilayer per-
ceptron (MLP) and radial basis function (RBF) networks for prediction 
drying kinetic parameters of pumpkin during hot-air drying (Mokhtarian 
& Koushki, 2012). The other groups of researchers studied ANNs and 
Genetic algorithms to predict free fat content, lactose crystallization, 
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and particle size mean during whole milk powder with spray drying (Koc, 
Heinemann, & Ziegler, 2007). Goni, Oddone, Segura, Mascheroni, and 
Salvadori (2008) utilized ANNs to predict food freezing time and thaw-
ing. Poonnoy, Tansakul, and Chinnan (2006) predicted temperature and 
moisture content of tomato slices during drying by microwave-vacuum 
dryer. Momenzadeh, Zomorodian, and Mowla (2011) predicted drying 
time of corn shell during drying by concurrent microwave-fluidized 
bed dryer by ANNs. Madadlou et al. (2009) predicted casein micelles 
size by combinative approach ANNs-RSM. Mateo, Gadea, Mateo, 
and Jiménez (2011) used ANNs for predicting rate of accumulating 
Deoxynivalenol in infected barely seeds to Fusarium culmorum fungi. 
Fernandes et al. (2011) determined anthociyanin concentration in 
whole grape skin by ANNs and image processing. Lertworasirikul and 
Saetan (2010) used artificial neural network modeling to predict mass 
transfer parameters of kaffir lime peel (i.e., water loss and solid gain). 
ANNs were utilized to predict moisture ratio of dried potato slices by 
different drying methods in this project.

The aim of this research was studying kinetic drying of kiwi slices 
and investigating organoleptic characteristics of products during drying. 
Also feasibility prediction of kiwi moisture ratio with ANN was studied 
and the obtained results were compared with experimental models.

2  | MATERIAL AND METHODS

2.1 | Raw material preparation

In this research, fresh kiwi samples (Monty variety) were purchased 
from local market. Then samples were sorted as to color, diameter, 
and weight (wg: 135 g and diameter was 4–5 cm). In order to reduce 
respiration intensity and physiological and chemical changes, all sam-
ples were preserved in refrigerator at temperature of 5–6°C. At the 
beginning of each experiment, kiwi was washed with fresh water to 
remove the kiwi fines adhered to the fruit surface and cut into ring 
with a diameter of 5 cm and thickness of 3 ± 0.1 mm. The initial mois-
ture content was determined by drying in hot-air convective oven 
(Memmert, model UNE 400 PA, Scheabach, Germany) at 105°C for 
48 hr (AOAC, 1990).

2.2 | Drying equipment

A laboratory convective hot-air dryer (Model Of-02G; JEIO TECH, 
Seoul, Korea) was applied in the experiments. The experiments 
were carried out at three temperatures 50, 60, and 70°C. The rela-
tive humidity of the ambient air (∼30°C) was around 62–65%. The 
dryer was adjusted to a congenial temperature and became constant 
for 1.5 hr before the outset of a conduct test. When the fan motor 
switch was turned on, air passing an air inlet would distribute inside 
the chamber and then passed through an air outlet. The weight loss 
was monitored by means of a digital balance (Jewelry, AND, model 
FX-CT SERIES, FX-300 CT; Tokyo, Japan) through a sampling inter-
val of 30 min and an accuracy of ±0.001 g undergoing drying. The 
final weight and moisture content of the kiwi slices were measured 
at the end of each air-drying experiment. Drying was finished when 

the moisture content of the samples was about 0.15 ± 0.5 (kg water/
kg dry matter).

2.3 | Mathematical modeling of drying process

Monolayer drying models of experimental data of kiwi slices were 
expressed in the form of moisture ratio of samples during monolayer 
drying and it was displayed as (Eqn. 1):

In these equations, MR, M, M0, Me, and Mt+dt are the moisture 
ratio, moisture content at any time, initial moisture content, equilibrium 
moisture content, moisture content at t, and moisture content at t + dt 
(kg water/kg dry matter), respectively, and t is drying time (min). Drying 
runs were done in triplicate. Mathematical models were simulated by 
software Sigma Plot Ver.11 (statistical software package, SigmaPlot, 
version 11, London, UK). The drying curves obtained were fitted with 
three different moisture ratio models (Table 1) (Togrül & Pehlivan, 2002).

The coefficient of determination (R2) was one of the main criteria 
for selecting the best equation. In addition to the coefficient of deter-
mination, the goodness of fit was determined by various statistical 
indicators such as reduced chi square (χ2), mean relative deviation mod-
ulus P (%), and root mean square error (RMSE). For quality fit, R2 value 
should be higher and χ2, P (%), and RMSE values should be lower (Goyal 
& Bhargava, 2008). The above parameters can be calculated as follows:

where MRe,i is experimental moisture ratio, MRp,i is predicted mois-
ture ratio, N is number of experimental data, and z is number of model 
parameters.

(1)MR=
M−Me

M0−Me

(2)
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2
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TABLE  1 Drying kinetic models

Equation Name

Newton MR = exp(−kt)

Page MR = exp(−ktn)

Henderson and Pabis MR = a exp(−kt)

Logarithmic MR = a exp(−kt) + c

Two-term MR = a exp(−k0t + b exp(−k1t)

Two-term exponential MR = a exp(−kt) + (1−a) exp(−kat)

Wang and Singh MR = 1 + at + bt2

Diffusion approximation MR = a exp(−kt) + (1−a) exp(−kbt)

Verma et al. MR = a exp(−kt) + (1−a) exp(−gt)

Diffusion of Fick’s MR = a exp(−c(t/L2))

Modified page II MR = a exp(−c(t/L2)n)
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2.4 | Computation of effective diffusion 
coefficient and activation energy

The experimental drying data were done for the determination of 
diffusivity coefficients by Fick’s second diffusion equation. The ana-
lytical solution of Fick’s second law is unsteady-state diffusion in an 
infinite slab by the drying process seen in the Equation (5):

where MR is moisture ratio (dimensionless), Deff is the effective dif-
fusion coefficient (m2/s), and L is the half-thickness of sample (m). 
Therefore, effective diffusion coefficient (Deff) was obtained by plot-
ting ln MR versus time (min). From Equation (5), a plot of ln MR versus 
time displayed a straight line with a slope of (α), in which (Eqn. 6):

2.5 | Sensory evaluation test

Sensory evaluation test was carried out with a group containing 10 
educated panelists. All evaluations were done through Single Stimulus 
method and five scores hedonic tests. The prepared questionnaires 
with four questions were asked to everyone and for every question 
there were five options. The proposed questions were color accept-
ance, odor and flavor, appearance shape, and chewiness (texture 
crispiness). Every one marked as own self taste one of choice such as 
very good, good, fair, poor, and very poor. Finally, scoring was done 
for every choice separately (very good = 5, good = 4, fair = 3, poor = 2, 
and very poor = 1). In this research, multiple Duncan’s test in 0.01 level 
was analyzed with SAS software 9.1 version (Lawless & Heymann, 
2010).

2.6 | Artificial neural network (ANN)

An artificial neural network composed of simple processing elements 
called neurons that are connected to each other by weights. The neuron 
is grouped into distinct layers and interconnected according to a given 
architecture (Mousavi & Javan, 2009). A multilayer perception (MLP) 
networks is one of the most popular and successful neural network archi-
tectures, suited to wide range of engineering application involved drying.

Mathematically:

where yj is the net input of each neuron in the hidden and output 
layers, xi is input, n is number of inputs to the neuron, wij is the weight 
of the connection between neuron I, and neuron j and bj is the bias 
associated with jth neuron (Mohebbi, Shahidi, Fathi, Ehtiati, & Noshad, 
2011). Each neuron consists of a transfer function expressing its inter-
nal activation level. Output from a neuron is determined by transform-
ing its input using a suitable transform function.

Generally, the transfer functions are sigmoidal, guassian, hyper-
bolic tangent, hyperbolic secant, and linear functions. Sigmoidal (log-
sig) and hyperbolic tangent (tanh) functions were used to establish 
nonlinear relationship in engineering applications (Picton, 2000):

As can be seen, Figure 1 shows schematic structure of perceptron 
neural network. In this network, the input layer consists of two neu-
rons (air temperature (x1) and drying time (x2)) and the output layer 
contains one neuron (moisture ratio (y)).

The back propagation algorithm was used in training of ANN 
model. This algorithm uses the supervised training technique where 
the network weights and biases are initialized randomly at the 

(5)MR=
M−Me

Mo−Me

=
8

π2
exp

[
−π2Defft

4L2

]

(6)α=
π2Deff

4L2

(7)yj=

n∑

i=1

f(wijxi)+bj

(8)logsig(z)=
1

1+exp(−z)
(0,+1)

(9)tahn(z)=
ez−e−z

ez+e−z
(−1,+1)

F IGURE  1 Schematic structure of 
perceptron neural network, where x1 is 
drying temperature, x2 is drying time, and 
y is moisture ratio (MR)
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beginning of the training phase (Singh & Pandey, 2011). In order to 
optimize ANN, different factors including hidden layer number, neuron 
number per hidden layer, type of activation function in hidden and 
output layers, learning rate, and momentum coefficients must be eval-
uated. In this work, number of 1–2 hidden layers with 5–15 neurons 
per hidden layer, learning rate = 0.4, momentum coefficient = 0.9, and 
activation functions of sigmoid logarithms (Eqn. 8) and hyperbolic tan-
gent (Eqn. 9) in each hidden and output layer were used in order to 
find the best topology.

In order to network modeling, data were randomly divided into 
two groups, 70% used for training and reminder 30% for testing of 
network. Data modeling accomplished by using SPSS statistical 
software version 19 (2011). For determination of the best network 
arrangement two criteria of determination were used, coefficient (R2) 
and mean relative error (MRE), respectively:

where PANN is predicted ANN output parameter, Pexp is experimental 
data, and N is number of observations.

3  | RESULTS AND DISCUSSION

3.1 | Mathematical modeling of drying kinetic

Eleven dynamic models of kiwi monolayer drying were processed at 
temperature of 50, 60, and 70°C. Statistical parameters of tests were 
R2, χ2, RMSE, and PE (%). Statistical analysis amounts were presented 
for each parameter of Tables 2, 3, and 4 in brief. R2 value for pro-
cessed models was higher than 0.8307 in all cases. Changes ampli-
tude of R2 was between .8307 and .9996, χ2 was 0.0000157 and 
0.0178, and variety range amount of RMSE was 0.00384 and 0.1269, 

(10)R2=1−
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TABLE  2 The statistic result of kiwi monolayer drying at 50°C

Model PE (%) RMSE χ2 R2

Newton 25.49 0.02986 0.000921 .9964

Page 22.09 0.02801 0.000838 .9968

Henderson and Pabis 24.88 0.02947 0.000928 .9965

Logarithmic 15.29 0.0190 0.0004 .9985

Two-term 14.33 0.01894 0.000412 .9986

Two-term exponential 19.01 0.02546 0.000692 .9974

Wang and Singh 83.80 0.10883 0.012661 .951

Diffusion 
approximation

24.88 0.02947 0.000962 .9965

Modified page II 22.09 0.02801 0.000868 .9968

Verma et al. 14.50 0.01908 0.000403 .9985

Diffusion of Fick’s 14.50 0.01908 0.000403 .9985

TABLE  3 The statistic result of kiwi monolayer drying at 60°C

Model PE (%) RMSE χ2 R2

Newton 12.36 0.0143 0.000215 .9991

Page 12.05 0.0143 0.000223 .9991

Henderson and Pabis 12.49 0.0143 0.000223 .9991

Logarithmic 4.38 0.010 0.000114 .9995

Two-term 4.85 0.0098 0.000115 .9996

Two-term exponential 9.89 0.0132 0.000189 .9992

Wang and Singh 65.68 0.0837 0.007625 .9674

Diffusion approximation 12.49 0.0143 0.000234 .9991

Modified page II 12.05 0.0143 0.000233 .9991

Verma et al. 5.28 0.0103 0.000121 .9995

Diffusion of Fick’s 5.28 0.0103 0.000121 .9995

TABLE  4 The statistic result of kiwi monolayer drying at 70°C

Model PE (%) RMSE χ2 R2

Newton 24.3 0.0767 0.006181 .9417

Page 7.81 0.0258 0.000737 .9936

Henderson and Pabis 16.17 0.0593 0.003893 .9655

Logarithmic 19.84 0.0445 0.002312 .9807

Two-term 5.09 0.0154 0.000293 .9977

Two-term exponential 15.46 0.0506 0.002834 .975

Wang and Singh 49.64 0.1268 0.017798 .8307

Diffusion approximation 16.17 0.0593 0.004110 .9655

Modified page II 7.81 0.0258 0.000778 .9936

Verma et al. 5.15 0.0160 0.0003 .9975

Diffusion of Fick’s 5.15 0.0160 0.0003 .9975

F IGURE  2 The results comparison of predicted and experimental 
moisture ratio for best dynamic model of kiwi monolayer drying



470  |     Mahjoorian et al.

respectively, and also variety range amount of PE (%) was 2.85 and 
83.8, respectively. Statistical analysis results showed that Two-term 
model had the highest R2 and lowest χ2, RMSE, and PE (%). Therefore, 
increasing R2 and lowering of χ2, RMSE was the most important cause 
in selecting the best processed model. Comparison experimental and 
predicted moisture ratio data have been represented for the best 
processed model in temperature range 50–70°C and have been rep-
resented in Figure 2. Predicted data for moisture ratio in experimen-
tal data as direct line on diagram show that the obtained Two-term 
dynamic model can better describe characteristics of kiwi drying. 
Similar results were observed by Doymaz and Ismail (2011).
In addition, parameters of various applied models are presented 

in Table 5. Kinetic constant (k) increased as drying air temperature 
increased, thus could be predicted by Arrhenius relationship (Eqn. 12). 
By taking logarithm from both side of that equation and plot ln k ver-
sus T−1, first-order regression fitted data with a high determination 
coefficient (.9251) as shown in Figure 3.

The results showed that drying air temperature had a signif-
icant effect on the drying time. This status is clearly observed in 
drying curve (Fig. 4). As clear from diagram, the essential time for 
kiwi drying from primary moisture content 86.6% (wet basis) to 
final moisture content 5% (wet basis) was 960, 600, and 360 min 
for temperature of 50, 60, and 70, respectively. Similar results were 
observed by other researchers for different vegetables (Doymaz & 
Ismail, 2011).

Effective moisture diffusion of kiwi was calculated in 50, 60, and 
70°C, 4.55 × 10−11, 9.12 × 10−11, 21.27 × 10−11, respectively. As 
observed, effective moisture diffusion of kiwi in 70°C was higher than 
60°C in similar conditions. This context is described through mass 
transfer from capillary pores of food. Similar results have been repre-
sented in different vegetables in Table 6.

3.2 | Sensory analysis of kiwi slices during drying

The results of sensory evaluation of kiwi slices have been represented 
in different temperature ranges in Figure 5. The results demonstrated 

(12)k=ko exp

(
Ea

RT

)

TABLE  5 Parameters of applied models at different temperatures

Model names Temperature (℃) k (min−1) n a b c h l g

Newton 50 0.00611 – – – – – – –
60 0.00830 – – – – – – –
70 0.02230 – – – – – – –

Page 50 0.00831 0.9341 – – – – – –
60 0.00856 0.9932 – – – – – –
70 0.09110 0.6313 – – – – – –

Henderson and 
Pabis

50 0.00596 – 0.9886 – – – – –
60 0.00834 – 1.0019 – – – – –
70 0.0180 – 0.8569 – – – – –

Logarithmic 50 0.00684 – 0.9585 – 0.0462 – – –
60 0.00888 – 0.9838 – 0.0256 – – –
70 0.0304 – 0.7845 – 0.1468 – – –

Two-term 50 0.00696 – 0.9461 0.0597 – 0.00034 – –
60 0.00870 – 0.9975 0.0106 – −0.0017 – –
70 0.0988 – 0.4413 0.5771 – 0.0107 – –

Two-term 
exponential

50 0.00941 – 0.4492 – – – – –
60 0.0102 – 0.5954 – – – – –
70 0.0857 – 0.203 – – – – –

Wang and Singh 50 – – −0.0033 2.6 × 10−6 – – – –
60 – – −0.0053 6.7 × 10−6 – – – –
70 – – −0.0148 5.5 × 10−5 – – – –

Diffusion 
approximation

50 0.00022 – 0.0535 30.60 – – – –
60 0.00850 – 0.9934 −0.294 – – – –
70 0.094 – 0.4263 0.1129 – – – –

Modified page II 50 – 0.9341 – – 0.013 – −1.2725 –
60 – 0.9932 – – 0.0064 – 0.8643 –
70 – 0.6313 – – 0.0687 – 0.8002 –

Verma et al. 50 0.00682 – 0.9465 – – – – 0.00022
60 −0.00249 – 0.0066 – – – – 0.00850
70 0.0106 – 0.5737 – – – – 0.0940

Diffusion of 
Fick’s

50 – – 0.9887 – 0.0043 – −0.8585 –
60 – – 1.002 – 48.831 – −76.51 –
70 – – 0.8569 – 0.0665 – 1.9243 –
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that among color acceptance, odor, taste, and texture crispiness 
(chewiness), no significant difference was observed (p < .01) and the 
dried sample had the highest sensory score at 70°C. Its cause was due 

to browning reactions that led to the sample color change and this 
problem has been realized by panelists. The results showed that there 
was no significant difference between odor and taste and the dried 
sample had the highest score at 70°C. Appearance acceptance of the 
dried slices showed that there was no significant difference among 
all samples at 50, 60, and 70°C and the dried sample had the high-
est sensory score at 70°C. Related to texture crispiness acceptance 
(chewiness), the results showed that there was no significant differ-
ence among the studied samples in probability level 99%, although the 
dried sample in 60°C had the highest statistical score.

3.3 | Artificial neural network modeling

In this research, a combination of different layers and neurons with dif-
ferent activation functions were used for modeling perceptron neu-
ral networks. Neural network with one and two hidden layers, 3–15 
neurons were selected randomly and network power was estimated 
to predict kiwi moisture ratio.

The results of optimization of perceptron neural network with log-
arithm sigmoid activation function and hyperbolic tan with obtained 
rearrangements have been represented in different cases in Figure 6. 
Figure 6 shows the variation in relative error value versus number of 
neuron to predict moisture ratio. Investigating the obtained results 
especially multilayer perceptron neural network with logsig activation 
function showed that neural network with 2-13-13-1 rearrangement, 
i.e., network with two inputs, 13 neurons in the first and second hidden 
layer, and one output had the best result in predicting the moisture ratio 
(regression coefficient value in this case was .997). On the other hand, 
the results of perceptron neural network with hyperbolic tan activation 
function showed that neural network with 2-15-1 had the best results 
in predicting the moisture ratio as this network could estimate moisture 
ratio during monolayer drying process of kiwi with regression coefficient 
=.994 (relative error amount was calculated as 0.001092 in this case).

Model sensitivity diagram of predicted parameters by MLP net-
work with logsig and tanh activation functions against experimental 

TABLE  6 Comparison of effective moisture diffusion values of 
kiwi fruit and other crops

Crops Deff (m2/s)
Temperature 
range (°C) Reference

Carrot 0.77–9.33 × 10−9 50–70 Doymaz 
(2004a)

Apricot 6.76–12.6 × 10−10 55 Doymaz 
(2004b)

Sweet cherry 1.54–5.68 × 10−10 60–75 Doymaz and 
Ismail (2011)

Kiwi 4.55–21.27 × 10−11 50–70 This study

F IGURE  3 Arrhenius-type relationship between log kinetic 
parameter of Two-term model versus inverse temperature

F IGURE  4 Curve variation in kiwi moisture ratio versus drying 
time at different temperature during drying (drying temperature 
□ = 50°C, ▲ = 60°C, O = 70°C)

F IGURE  5 The result of kiwi slices sensory evaluation during 
drying
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parameters for the best topology are shown in Figure 7. Result com-
parison of different activation function of ANN shows that logsig acti-
vation function with 13 neurons in first and second hidden layer due 
to higher R2 value (.997) was the best model to predict kiwi moisture 
ratio.

4  | CONCLUSION

In this study, temperature effect was investigated on kiwi drying 
characteristic. Increasing drying temperature caused a reduction 
in time and raise of velocity and effective diffusion coefficient. 
After model statistical analysis, the results showed that Two-term 

model is the best model for kiwi drying monolayer due to maximum 
R2, minimum χ2, and RMSE, among those processed dynamic mod-
els. Moreover, product sensory characteristics were evaluated in 
this research by panelists. The results revealed that among color 
acceptance, odor, taste, and texture crispiness (chewiness) were 
not observed any significant differences in probability level =.99. 
Multilayer perceptron neural network with different functions was 
used to estimation feasibility of moisture ratio with neural network. 
The results showed that neural network with sigmoid log activa-
tion function contain 13 neurons in the first and second hidden 
layers that could predict moisture ratio amount with regression  
coefficient =.997.
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