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Non-alcoholic fatty liver disease is strongly associated with obese and type 2 diabetes. It
has been reported that an oxidized cholesterol, 7-ketocholesterol (7KC), might cause
inflammatory response in macrophages and plasma 7KC concentration were higher in
patients with cardiovascular diseases or diabetes. Therefore, we have decided to test
whether small amount of 7KC in diet might induce hepatic steatosis and inflammation in
two types of obese models. We found that addition of 0.01% 7KC either in chow diet (CD,
regular chow diet with 1% cholesterol) or western type diet (WD, high fat diet with 1%
cholesterol) accelerated hepatic neutral lipid accumulation by Oil Red O staining.
Importantly, by lipid extraction analysis, it has been recognized that triglyceride rather
than cholesterol species was significantly accumulated in CD+7KC compared to CD as
well as in WD+7KC compared to WD. Immunostaining revealed that macrophages
infiltration was increased in CD+7KC compared to CD, and also in WD+7KC compared
to WD. These phenotypes were accompanied by inducing inflammatory response and
downregulating fatty acid oxidation. Furthermore, RNA sequence analysis demonstrated
that 7KC reduced expression of genes which related to autophagy process. Levels of
LC3-II protein were decreased in WD+7KC compared to WD. Similarly, we have
confirmed the effect of 7KC on acceleration of steatohepatitis in db/db mice model.
Collectively, our study has demonstrated that small amount of dietary 7KC contributed to
accelerate hepatic steatosis and inflammation in obese mice models.
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INTRODUCTION

Obesity is a complex disorder that has been a worldwide health
problem for individuals as well as the society (1). The incident
rate of Non-alcoholic fatty liver disease (NAFLD) is increasing
and strongly associated with the patient’s background, such as
obesity as well as type 2 diabetes mellitus (T2DM) (2–4). NAFLD
could be categorized into non-alcoholic fatty liver (NAFL) with
simple steatosis or non-alcoholic steatohepatitis (NASH) which
is accompanied with steatosis, inflammation, and fibrosis (5). It
is clinically important to distinguish two types of disease because
the existence of inflammation could link to hepatic steatosis as
well as systemic inflammatory disorders. Indeed, a couple of
studies have demonstrated that the presence of NAFLD was
associated with higher incident ratio of atherosclerotic
cardiovascular diseases (CVD) (6, 7). Moreover, Yong-Ho and
colleagues have demonstrated that hepatic steatosis was
associated with left ventricular dysfunction (8). There is a
growing evidence that diet can affect the pathophysiology of
NAFLD as well as CVD (9–13).

An oxidized cholesterol, 7-ketocholesterol (7KC), can be
produced by oxidation with oxygen, cooking, and reactive
oxygen species (ROS) (14, 15). It has been reported that in our
daily diet the concentration of 7KC was low compared to
cholesterol (16), however, it might be unexpectedly increased
by the advances in food manufacturing technology such as
microwave cooking or long-term frozen storage (17). In in
vitro experiments, it has been reported that 7KC has an ability
to stimulate ROS production and eventually apoptosis due to
cellular dysfunction in macrophages (18, 19). In an in vivo study,
7KC was toxic to macrophages through promoting inflammation
in atherosclerotic lesions (20, 21). In human, it has been also
reported that 7KC was detected in carotid atherosclerotic plaques
(22). According to recent clinical studies, patients with higher
blood 7KC concentration have a higher incidence rate of getting
cardiovascular events (23, 24). Moreover, plasma 7KC levels
were much higher in diabetes patients compared to healthy
people (25, 26).

Considering these situations, it is quite precious to answer a
question whether a small amount of 7KC in diet might affect the
development of hepatic steatosis, inflammation, and fibrosis in
obese mice to identify one of causal risk factors of steatohepatitis.

According to our results, the diet-derived 7KC accelerated
hepatic steatosis and inflammation, without any change of lipid
profiles or serum cytokines in obese mice models.
MATERIALS AND METHODS

Animals and Diets
Male ob/ob or db/db mice were obtained from Charles River
Laboratories (Tokyo, Japan) and housed in a temperature and
humidity-controlled facility with a 12 h light/dark cycle. Ob/ob
mice were fed regular chow diet with 1% cholesterol (CD,
OrientalBio Laboratories, Chiba, Japan; casein 23%, sucrose
10%, corn oil 5%, and cholesterol 1%) with or without 0.01%
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7KC and high fat, high cholesterol diet (WD, OrientalBio
Laboratories, Chiba, Japan; casein 20%, sucrose 34%, cocoa
butter 20%, and cholesterol 1%) with or without 7KC. Db/db
mice were fed WD with or without 7KC. 7KC was purchased
from Sigma-Aldrich (C2394, St. Louis, MO, USA).

Mice used for the experiment were anesthetized by an
intraperitoneal injection of medetomidine (0.3 mg/kg),
midazolam (4 mg/kg), and butorphanol (5 mg/kg). Adequate
anesthesia was maintained by monitoring the respiration rate
and the lack of response to paw pinching. The experimental
protocol was approved by the Ethics Review Committee for
Animal Experimentation of Osaka University Graduate School
of Medicine.

Biochemical Analyses
In serum, alanine aminotransferase (ALT), total cholesterol
(TC), high density lipoprotein cholesterol (HDL-C), and
triglycerides (TG) were measured by enzymatic methods
(Wako Pure Chemical Industries, Tokyo, Japan). Non HDL-C
was calculated as TC minus HDL-C. Hepatic TG, TC, and free
cholesterol (FC) were also measured after lipid extraction of liver
tissue by Folch method (Wako Pure Chemical Industries, Tokyo,
Japan). Esterified cholesterol (CE) was calculated as TC minus
FC. Serum tumor necrosis factor a (TNF-a) and IL-1b were
determined using mouse TNF-a and IL-1b ELISA kit (MTA00B
and MLB00C, Quantikine, Minneapolis, USA), respectively.

Histologic and Immunohistochemical
Analyses
Paraffin-embedded sections were stained with hematoxylin and
eosin (200108, Muto Pure Chemicals, Tokyo, Japan) or sirius red
(MKCB3138V, Sigma-Aldrich, Tokyo, Japan). For lipid staining,
frozen sections were stained with Oil Red O (M3G0644,
NACALAI TESQUE, Kyoto, Japan). Macrophages were detected
by F4/80 (MCA497R, Bio-Rad, Tokyo, Japan) and VECTASTAIN
secondary antibodies (Vector laboratories, Burlingame, USA). To
quantify the area of staining by Oil Red O and Sirius Red, images
offive random fields from each section were processed with Image
J software (National Institute of Mental Health, Bethesda, MD,
USA). Each value was expressed as the percentage of the total area
of the section. Numbers of F4/80 positive cells were counted and
averaged for five random fields of each section.

Quantitative Polymerase Chain Reaction
and Western Blotting
Quantitative real-time polymerase chain reaction (qRT-PCR)
and western blot were performed as described previously
(27, 28).

Briefly, total RNA was isolated from the liver tissues using the
Rneasy® Mini Kit (QIAGEN, Hilden, Germany). The RNA was
reverse-transcribed using a SuperScript VILO cDNA Synthesis
Kit (Thermo Fisher Scientific, CA, USA). qRT-PCR was
performed by Taqman master mix (Thermo Fisher Scientific,
CA, USA) and a 7900 Sequence Detection System (Applied
Biosystems, USA). The specific primer information is listed in
Table S1.
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The antibodies used for the immunoblot are LC3B (2775, Cell
Signaling Technology, Beverly, MA, USA) and Rubicon (8465,
Cell Signaling Technology, Beverly, MA, USA). For signal
normalization, anti-GAPDH antibody was used (MAB374,
Millipore, Bedford, MA, USA). Membranes were imaged with
the ImageQuant LAS 4000 camera system (GE Healthcare). The
band intensity was quantified by Image J software.

RNA-Seq Analysis
The quality of the RNA was assessed by spectrophotometer
(NanoDrop 2000, Wilmington, USA). Sequencing was
performed on an Illumina HiSeq 2500 platform in the 75-base
single-end mode. The Illumina Casava 1.8.2 software was used
for base-calling. The raw reads were mapped to the mouse
reference genome sequences (mm10) using TopHat ver. 2.0.13
in combination with Bowtie2 ver. 2.2.3 and SAMtools ver. 0.1.19.
The number of fragments per kilobase of exon per million
mapped fragments (FPKMs) was calculated using Cufflinks ver.
2.2.143,44. Pathway analyses were conducted using a STRING
network tool.

Measurement of Mitochondrial Complex I
Activity
Mitochondrial complex I enzyme activity was measured by
Complex I Enzyme Activity Microplate Assay Kit (ab109721,
Abcam, Cambridge, UK) according to the manufacturer protocol.

Statistical Analyses
Results were shown as means ± SD. Comparisons between two
groups were made by a two-tailed Student t test. For multiple
group comparisons, a one-way ANOVA with a post hoc
Tukey test was performed and P < 0.05 was considered
statistically significant.
RESULTS

The Addition of Small Amount of 7-
Ketocholesterol in Diet Did Not Affect
Body/Organ Weights, Alanine
Aminotransferase, Tumor Necrosis Factor-
a, or Lipid Profiles
An oxidized cholesterol, 7KC, is recognized to be produced by
oxidation from cholesterol (Figure 1A). In the current study, we
would like to test whether small amount of 7KC supplementation
in diet could accelerate hepatic lipid accumulation and
inflammation in obese mice, we prepared four types of diets.
As mentioned in Introduction, Ichi I et al. have investigated the
daily intake of oxysterols and reported that cholesterol to 7KC
was approximately 700 to 1. We have estimated that 7KC intake
could be increased by five- to ten-fold due to increasing
consumption of processed meat or sausage of microwave and
finally determined that the ratio of cholesterol to 7KC should be
100 to 1. To make the ratio of cholesterol to 7KC 100:1, we
increased cholesterol content of regular chow diet up to 1% (CD;
casein 23%, sucrose 10%, corn oil 5%, and cholesterol 1%), with
Frontiers in Endocrinology | www.frontiersin.org 3
or without 0.01% 7KC. Also, high fat, high cholesterol diet (WD;
casein 20%, sucrose 34%, cocoa butter 20%, and cholesterol 1%)
with or without 7KC were prepared. Before we started the
project, we have confirmed that CD+7KC or WD+7KC have
not shown any liver injury in wild type/C57BL/6 mice even after
20 weeks (data not shown). Next, ob/ob mice at age of 6 weeks
were fed CD, CD+7KC, WD, or WD+7KC for 4 weeks. Firstly,
the change of body weight by 7KC was not observed both in CD
and WD (Figure 1B). There were no difference of liver and heart
weight in mice fed CD ± 7KC or WD ± 7KC (Figure 1C). Spleen
weight of WD mice was significantly increased compared to CD
(0.0017 ± 0.0001 vs. 0.0012 ± 0.0001; p < 0.001, Figure 1C),
however, we could not see any difference between CD and CD+
7KC or WD and WD+7KC. Similarly, in serum, alanine
aminotransferase (ALT) level of WD mice was about two folds
of CD (306.1 ± 68.8 vs. 163.5 ± 46.0; p < 0.001) and TNF-a level
showed significantly higher than CD (34.1 ± 1.4 vs. 30.5 ± 1.9; p <
0.05), though the differences of ALT and TNF-a between CD
and CD+7KC or WD and WD+7KC could not be observed
(Figure 1D). There were no differences of total cholesterol (TC),
high density lipoprotein cholesterol (HDL-C), non-HDL-C, or
triglycerides in mice fed CD ± 7KC or WD ± 7KC (Figure 1E).
These data suggested that the addition of small amount of 7-KC
in diet did not affect body/organ weights, ALT, TNF-a, or
lipid profiles.

The Addition of Small Amount of 7-
Ketocholesterol in Diet, However,
Accelerated Hepatic Lipid Accumulation
and Inflammatory Cell Infiltration in Ob/Ob
Mice
Serum ALT, TNF-a, and lipid profiles have never indicated the
effect of 7KC, however, interestingly, liver sections have
demonstrated dramatic changes. This is also a common
problem in the patients with NAFLD. In many cases, it is quite
difficult to distinguish the patients with NASH from NAFL by
laboratory tests, such as liver function, lipid profiles, and
inflammatory markers examination. In HE and Oil Red O
staining, there were more and larger lipid droplets in CD+7KC
compared to CD. The area of lipid droplets which was scanned
by ImageJ software showed significantly increased (11.9 ± 2.3 vs.
19.1 ± 2.8; p < 0.01). In like manner, much more and larger lipid
droplets could be observed in WD+7KC compared to WD. Lipid
droplets area was significantly increased (19.5 ± 3.7 vs. 27.3 ± 3.2;
p < 0.01, Figures 2A, B). Then, we addressed the question which
kinds of lipids were accumulated by 7KC exposure. We extracted
the lipids of liver and measured hepatic triglyceride (TG), total
cholesterol (TC), free cholesterol (FC), and cholesterol ester (CE)
contents. We found that hepatic TG content was significantly
increased in CD+7KC compared to CD (57.0 ± 14.0 vs. 73.9 ±
10.9; p < 0.05). Similarly, 7KC significantly increased hepatic TG
content inWD (90.7 ± 16.1 vs. 111.8 ± 16.5; p < 0.05). There were
no differences of liver TC, FC, or CE in mice fed CD, CD+7KC,
WD, or WD+7KC (Figure 2C). Thus, 7KC accelerated
accumulation of TG but not cholesterol, suggesting that 7KC
might alter fatty acids metabolism. Infiltration of F4/80-positive
March 2021 | Volume 11 | Article 614692
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macrophages was increased in CD+7KC compared to CD (28.4 ±
6.3 vs. 45.2 ± 9.8; p < 0.05). In WD, 7KC could also increase the
macrophage infiltration (53.4 ± 10.4 vs. 76.6 ± 8.3; p < 0.01,
Figure 2D). In Sirius-red staining, the area of fibrosis was
determined by ImageJ. It showed no difference in mice fed CD,
CD+7KC, WD, or WD+7KC (Supplementary Figure 1).
Frontiers in Endocrinology | www.frontiersin.org 4
The Supplementation of Dietary 7-
Ketocholesterol Induced Inflammatory
Response and Downregulated Fatty Acid
Oxidation
To search the underlying molecular mechanism of accelerating
hepatic lipid accumulation and inflammation, we analyzed hepatic
A B

D

E

C

FIGURE 1 | Effect of 7KC on body and organ weight, ALT, serum Tnf-a, and lipid profiles in ob/ob mice fed CD or WD for 4 weeks. (A) 7KC can be produced by
oxidation from cholesterol, (B) The curve of body weight change with special diet feeding, (C) Body and organ weight, (D) Serum ALT and Tnf-a, (E) Lipid profiles.
Plasma lipid concentrations were measured at the end of the feeding. All values are presented as the means ± SD. ANOVA with Tukey test, n = 6 per group; *p <
0.05, **p < 0.01, ***p < 0.001.
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mRNA expressions. To figure out the pathways enriched in WD
+7KC, we performed RNA sequencing and put the genes whose
log2 fold change was above 1 compared to WD diet into a
STRING network tool. Addition of 7KC to WD upregulated a
number of pathways, such as cell adhesion molecules, cytokine-
receptor interaction, Ras signaling pathway, NF-kappa B signaling
pathway, TNF signaling pathway, and so on (Figure 3A). We then
examined each gene expression and found that 7KC upregulated
Frontiers in Endocrinology | www.frontiersin.org 5
most of macrophage maker genes and the genes related to Th1,
Th2, and Th17 cell differentiation, inflammasomes, and
cholesterol synthesis. Meanwhile, 7KC downregulated genes
expression related to b-oxidation (Figure 3B). To confirm these
expressions, we performed quantitative real-time PCR. Addition
of 7KC in WD provoked a significant increase in mRNA
expression of Interleukin 6 (IL-6) in ob/ob mice (1.3 ± 0.5 vs.
2.1 ± 0.7; p < 0.05, Figure 3C). TNF-a was significantly increased
A

B

D

C

FIGURE 2 | Addition of 7KC accelerated hepatic steatosis and inflammation in ob/ob mice fed CD or WD for 4 weeks. (A) HE staining in liver, (B) Oil Red O staining
analysis, (C) hepatic lipid content, (D) F4/80 staining analysis. All values are presented as the means ± SD. ANOVA with Tukey test, n = 6 per group; Scale bars in
(A, B, D) = 100 mm. *p < 0.05, **p < 0.01.
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in WD compared to CD (1.0 ± 0.3 vs. 1.8 ± 0.6; p < 0.05, Figure
3C). However, there were no significant differences by addition of
7KC. Importantly, 7KC significantly decreased mRNA expression
of Cpt1a inWD compared toWD+7KC (0.8 ± 0.2 vs. 0.5 ± 0.2; p <
0.05, Figure 3C) and mitochondrial complex I activity tended to
decreased in WD+7KC (Supplemental Figure 1A). Collectively,
these results suggested that 7KC induced inflammatory response
and attenuated mitochondrial b-oxidation of fatty acids under
triglycerides-overloading condition likeWD+7KC, contributing to
TG accumulation. In contrast, significant change of fibrosis gene
expression could not be observed in ob/ob mice, which was
consistent with the analysis of Sirius Red staining (Figure 3C
and Supplemental Figure 1B).

The Addition of 7-Ketocholesterol
Suppressed Autophagy Process
To further explain the mechanism of 7KC accelerating
steatohepatitis in ob/ob mice, we analyzed the mRNA and
Frontiers in Endocrinology | www.frontiersin.org 6
protein expressions involved in autophagy process since
reduced autophagy in liver could result in marked hepatic
steatosis (23). In WD+7KC, it showed decreased in the
expression of genes related to autophagy process (Becn1, Atg3,
Atg5, Atg7, Atg10, Atg13, and Atg14) (Figure 4A). Levels of
LC3-II protein were decreased in WD+7KC compared to WD.
Rubicon protein expression tended to increase in WD+7KC
compared to WD (Figure 4B). These data suggested that 7KC
suppressed autophagy process and this might be one of the
reasons leading to severer steatohepatitis with obese.

The addition of 7-Ketocholesterol
accelerated steatohepatitis in Db/Db mice
To determine whether 7KC exacerbates steatohepatitis in a T2DM
obese model, we fed db/db mice with WD ± 7KC for 4 weeks. In
serum, ALT, TNF-a, and IL-1b showed no differences with or
without 7KC (Figure 5A). The change of lipid profiles could not be
observed (Figure 5B). Liver histology showed same effect of 7KC
B

C

A

FIGURE 3 | Hepatic gene expression in ob/ob mice fed CD or WD with or without 7KC for 4 weeks. (A) Pathways upregulated by addition of 7KC to WD,
(B) Heatmaps from RNA-sequencing analysis, (C) mRNA expressions involved in inflammation and fibrosis, cholesterol synthesis, fatty acid synthesis, and b-
oxidation. All values are presented as the means ± SD. ANOVA with Tukey test, n = 6 in (C) *p < 0.05, **p < 0.01.
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with ob/ob mice. Hepatic steatosis and infiltration of macrophages
were severer with addition of 7KC (Figure 5C). Liver TG content
significantly increased inWD+7KCcompared toWD(82.7±5.5 vs.
98.3 ± 7.7; p < 0.05, Figure 5D). We analyzed hepatic mRNA
expressions of genes involved in inflammatory andfibrosis in db/db
mice. Interestingly, expression of IL-1b mRNA significantly
increased in WD with 7KC (1.0 ± 0.1 vs. 1.6 ± 0.2; p < 0.05,
Figure 5E).

The Addition of 7-Ketocholesterol in Diet
Did Not Affect Intestinal Lipid Absorption
or Glucose Metabolism
To further investigate whether 7KC might have a primary effect
on intestinal lipid absorption, lipid absorption test was
Frontiers in Endocrinology | www.frontiersin.org 7
performed (Supplemental Figure 1C). There were no
differences of cholesterol and 7KC absorption between WD
and WD+7KC. In addition, intraperitoneal glucose tolerance
test (IPGTT) demonstrated no difference of glucose tolerance
between WD and WD+7KC (Supplemental Figure 2C).
DISCUSSION

Oxysterols are categorized to two types, endogenous and
exogenous sterols. Endogenous oxysterols such as 22-
hydroxycholesterol and 27-hydroxycholesterol, are produced
by endogenous enzymes when intracellular cholesterol excess,
and act as a ligand for the nuclear receptor, liver X receptor
A

B

FIGURE 4 | Effect of 7KC on autophagy in liver of ob/ob mice fed CD or WD for 4 weeks. (A) Heatmap of autophagy process-related genes, (B) Western bot for
LC3-II and Rubicon. All values are presented as the means ± SD. ANOVA with Tukey test, n = 3 in B; *p < 0.05, ***p < 0.001.
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(LXR), causing activation of a series of genes that carry
cholesterol out of cells. Endogenous sterols are catabolized
after acting as a ligand. On the other hand, exogenous sterols
may be present in the diet and absorbed through NPC1L1 in
intestine (29). Among the exogeneous oxysterols, those oxidized
at the C7-position, such as 7KC, were detected in the
atherosclerotic plaques (22). This could be explained by low
expression level of ATP-binding cassette G1 (ABCG1) in
Frontiers in Endocrinology | www.frontiersin.org 8
macrophages, which can export 7KC from cells (30).
Interestingly, ABCG1 mainly expresses in spleen, lung, and
adrenal gland, but not in liver (30). Therefore, we hypothesized
that 7KC may accelerate steatohepatitis similarly to CVD. Our
results have clearly demonstrated that relatively small amount of
dietary 7KC in which the ratio of cholesterol to 7KC was 100:1,
accelerated hepatic lipid accumulation and macrophages
infiltration in two types of obese mice. Importantly, addition of
A

B

D

E

C

FIGURE 5 | Effect of 7KC on body and organ weight, ALT, lipid profiles, liver histology, hepatic lipid content, and mRNA expression in db/db mice fed WD for
4 weeks. (A) Serum ALT, TNF-a, and IL-1b, (B) Lipid profiles, (C) HE staining, Oil Red O staining analysis, and F4/80 staining analysis, (D) mRNA expression,
(E) Hepatic lipid analysis. All values are presented as the means ± SD. Student t test, n = 3 per group; *p < 0.05.
March 2021 | Volume 11 | Article 614692

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Chang et al. 7-Ketocholesterol Accelerates Steatohepatitis in ob/ob
7KC mainly increased hepatic TG, but not cholesterol. This
could be explained by attenuating Cpt1a expression, represent of
mitochondrial fatty acid b-oxidation, suggesting 7KC
accumulation in organelles, especially mitochondria (31).
Further investigation about membrane lipid composition on
and in the cell will be required.

Regarding lipid content in NAFLD, fatty acids and TG were
well investigated (32–34). These may be linked to the findings
that low dietary sugar would effective in the patients with
NAFLD (11, 12). In terms of cholesterol, it has been reported
that desmosterol, a precursor of cholesterol, could predict
steatohepatitis in human (35). Recently, Schnabel L. et al. have
nicely demonstrated that ultra-processed food consumption
would increase mortality (36). Because processed meat such as
sausage and bacon are considered to contain relatively increased
oxidized cholesterol, contribution of dietary 7KC in development
of NAFLD could not be ignored and we should pay more
attention to lipid quality in food.

As a causal risk factor of NAFLD, genetic background was well
investigated. Previous genome-wide association study (GWAS) has
revealed that I148M single nucleotide polymorphism (rs738409C>G)
in patatin-like phospholipase domain containing 3 (PNPLA3) was
detected as a susceptibility gene involved in the development of
NAFLD/NASH (37, 38). However, these individuals with a minor
allele has not shown higher incident ratio of CVD, suggesting that
there might not be a genetic background sharing with NAFLD and
CVD (9).

There are several limitations in this study. Although the
importance of hepatic fibrosis in the point of mortality has
been indicated (6, 39, 40), our analysis of Sirius Red staining
and mRNA expression offibrosis related genes could not indicate
the effect of 7KC (Supplementary Figure 1B). Previous studies
using ob/ob mice have shown that fibrosis was modest and that it
was hardly aggravated by different factors. This resistance to
fibrosis is attributable to the lack of leptin signaling which
activates stellate cells and promotes fibrogenesis (41, 42). In
addition, leptin has been demonstrated to promote inflammatory
response with regulating the production of several cytokines like
TNF-a and IL-6 (43). Thus, further investigations will be worth
in another obese or diabetic model such as diet-induced obesity
mice or streptozotocin-induced diabetic mice, to determine the
effect of 7KC on hepatic fibrosis.

Collectively, we have proved that addition of 7KC in diet
aggravated hepatic steatosis and inflammation without any
change of body weight, serum lipid concentration and ALT level,
suggesting the difficulties to diagnose the patients with NASH. A
biomarker to distinguish NASH from NAFL such as Mac-2
binding protein is always valuable (44, 45). We would propose
that dietary 7KC in diet could be an effective therapeutic target to
reduce the burden of NAFLD/NASH and further investigation of
serum 7KC as a biomarker for NAFLD/NASH will be expected.
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