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Quantitative or numerical metrics of protein function specificity made possible by the Gene 
Ontology are useful in that they enable development of distance or similarity measures be-
tween protein functions. Here we describe how to calculate four measures of function speci-
ficity for GO terms: 1) number of ancestor terms; 2) number of offspring terms; 3) proportion 
of terms; and 4) Information Content (IC). We discuss the relationship between the metrics 
and the strengths and weaknesses of each. 

Abbreviations: DAG- Directed Acyclic Graph, GO- Gene Ontology, IC- Information Content 

Introduction 
Genomic sciences and biological understanding 
can be greatly enriched by quantitative compari-
sons between the descriptions of protein func-
tions [1-5]. To achieve this, numerical descriptions 
of protein function specificity must be defined. 
This is now possible using the Gene Ontology (GO 
[6,7], ). The GO is a standardized description of 
protein function structured as a hierarchy of “par-
ent-child” relationships, formally called a directed 
acyclic graph (DAG). DAGs have long been used in 
computer science as a mathematical formalism for 
describing complex objects. Modeling protein 
function as a DAG provides a means of more pre-
cisely defining protein function and the relation-
ship between functions as opposed to traditional 
natural language descriptions which are informa-
tion-rich but unfortunately not amenable to com-
puters. 
The use of the GO provides a conception of func-
tion specificity that has immediate implications in 
the automated annotation of proteins [4,6]. Mil-
lions of proteins in public databases have their 
functions inferred from proteins with similar se-
quences. The meaningful transfer of those func-

tions is made possible in part by the standardized 
organization of the GO. The GO is organized so 
that as one traverses away from the root node 
function, definitions become narrower; examples 
of broad functional terms are “catalytic activity” 
(GO:0003824) or “transporter activity” (GO:0005215), 
while narrower functions would be “adenylate cyc-
lase activity” (GO:0004016) or “peptidoglycan 
transporter activity” (GO:0015647) [6]. Quantify-
ing the path from broad to narrow function speci-
ficity is vague however as path lengths are varia-
ble and there are no edge weights which makes 
meaningful numeric interpretation of function 
specificity problematic. This ambiguity can be ad-
dressed by considering various aspects of the DAG 
structure of GO. Each node in GO (i.e., GO term) is 
assigned a function and measurements such as the 
number of ancestor or offspring nodes for that 
term can be used to give a numeric assessment of 
that term’s specificity. This paper discusses vari-
ous methods created to improve the precision of 
assigning and comparing specificity of GO terms 
and discusses strengths and weaknesses of each 
method. 
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Requirements 
The methods described here utilize the R pro-
gramming language with the Bioconductor R 
package installed and a dataset of associations 
between gene or protein identifiers and GO terms, 
e.g. the gene2go file available here. All methods 
described here are available for free. 

Procedure 
Number of Ancestors 
One of the original ways to describe the function 
specificity of a given GO term is through the num-
ber of ancestor nodes a term has which is a meas-
ure of how “deep” a GO term is in the GO hierarchy. 
This is calculated by counting the number of ances-
tor terms for a given GO term up to and including 
the root term; in general one would expect a more 
specific function to have a greater number of GO 
ancestors. Refer to Figure. 1 : the GO term 
GO:Term_1 has no ancestors; the GO terms 
GO:Term_2 and GO:Term_3 each have one ancestor, 
etc. This approach appeals to the nature of the GO 
since as one traverses down the GO away from the 

root node one expects the specificity of terms to 
increase. Pseudocode for this process can be seen 
in Figure 2. Note that in determining ancestors, the 
“neighbors” of a GO term would only include parent 
nodes (not child nodes). 

Number of Offspring 
A second method of measuring GO term specificity 
is the number of offspring nodes a GO term has. As 
with the number of GO ancestors, this is a useful 
metric in that it takes under immediate considera-
tion the hierarchical nature of the GO with more 
specific terms tending to have fewer offspring. We 
created an adjusted, more normalized measure-
ment of GO offspring (OffspN) in order to have the 
measure increase with specificity in the same man-
ner as GO ancestors by considering the maximum 
number of offspring (i.e., the number of offspring of 
the root node, which is 8267 for the version of the 
GO molecular function ontology concurrent with 
this paper), and calculated this measure as follows: 

NOffsp =log(8267+1) - log(offsp+1)   

 
Figure 1. Function specificity in the GO. This graph illustrates, using a simplified 
model of the GO hierarchy, how the number of ancestors (Ancestors) and 
offspring (Offspring) for GO terms would be calculated. For calculating IC, the 
number of proteins with a particular GO term annotation must be accounted for 
in determining their probability of occurring in the data set (Proteins). The proba-
bility of a term occurring depends on whether or not a particular term or any of its 
offspring terms occurs in a data set (Total Proteins). Details on how each specifici-
ty measure is calculated can be found in the “Procedures” section. 

http://standardsingenomics.org/�
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The interpretation of this measure is that higher 
OffspN indicates more specific function. This main-
tains the same “higher is better” idea consistent 
with other GO specificity metrics such as GO an-
cestors. Pseudocode for this calculation is also ex-
emplified in Figure 2. Note however that the 
neighbors of a node would only include its child 
nodes – not its parents. 

GO Proportion 
In order to take under consideration both the 
number of ancestor nodes and the number of 
offspring nodes of a particular GO term we created 
a measure of function specificity that incorporates 
both measures. This measure is a proportion of 
the offspring of a term over the total number of 
“reachable” terms, or offspring + ancestors. In or-
der to have the same interpretation as the above 
GO ancestor and offspring measures, we took 1 
minus the proportion, as follows: 

t
#OffspringP =1- #Offspring +#Ancestors  

  
 

Where Pt is the GO proportion of the reachable 
terms for term t. The 0-1 range of this proportion, 
with 0 indicating non-specific function and 1 indi-
cating high specificity, is useful for a readily-
understood interpretation when comparing terms. 

Information Content 
Information content (IC) provides an alternate 
measure of function specificity. Unlike the pre-
vious specificity metrics IC is a function of a data 
set. In particular, it is related to the probability of 
the occurrence of a particular GO term in a data-
base of protein annotations. GO terms that occur 
less frequently have higher IC and are assumed to 
be more specific. The formula for calculating IC is: 

2IC(t)=-log (p(t))  

Where t is a particular GO term and p is the prob-
ability of that term occurring in a data set. The 
probability of a term occurring is the frequency 
with which that particular term or any of its an-
cestors occur in a data set [9,10]. For any GO term 
in the ontology, p(t) is calculated as follows: 
Step 1: Count the number of proteins assigned to 
the term. 
Step 2: Count the number of proteins assigned to 
all offspring of the term. 

Step 3: Add the counts from Steps 1 and 2 and di-
vide by the total number of proteins in the data 
set. 
Consider, for example, Figure 2. To calculate p(t) 
and IC for GO:Term_3, we follow these steps: 
Step 1: Count the proteins assigned to GO:Term_3 
(one). 
Step 2: Count the proteins assigned to the 
offspring of GO:Term_3 (three). 
Step 3: Calculate p(t) for GO:Term_3, in this case 
4/11. Its IC is therefore 1.5. 
The appealing part IC is that it implicitly accounts 
for the hierarchical structure of the GO. The root 
node, or “molecular function” (GO:0003674), has 
IC of 0.0, creating an appealing baseline measure-
ment of the most non-specific function. As the GO 
is traversed away from the root node one general-
ly expects IC for terms to increase. 

Implementation 
Calculating GO Ancestors/Offspring 
The GO.db package from the Bioconductor library 
written for the R statistical software provides a 
quick and easy way of obtaining the ancestor and 
offspring terms of any given GO term [11]. The 
library contains the GO DAG and outputs descrip-
tions of GO term relationships with a few simple 
commands. The Bioconductor library can be ob-
tained free of charge here. After this library and 
the GO.db package have been installed, these 
commands are what would be used to obtain all 
the ancestor GO terms of, for example, the GO 
term “collagen binding” (GO:0005518): 

> GOMFANCESTOR[[“GO:0005518”]] 
[1] “all” “GO:0005515” “GO:0003674” “GO:0005488” 

This returns the ancestors of the term GO:0005518, 
which in this case are “binding” (GO:0005488), 
“protein binding” (GO:0005515), and the root term 
“molecular function” (GO:0003674). The length 
function in R can be used to count the terms in the 
returned vector from the GOMFANCESTOR func-
tion. Analogously, to obtain the offspring of a spe-
cific term, one would use the command 
> GOMFOFFSPRING[[“GO:0005518”]] 
 [1] “GO:0070052” 
Which returns the lone offspring of GO:0005518, 
which is the term “collagen V binding” 
(GO:0070052). 

http://www.bioconductor.org/docs/install/�
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Calculating Information Content 
As discussed above, IC is related to the probability 
of a specific GO term occurring in a data set. The 
below R code that calculates IC takes as input the 
“gene2go” file which is a data set that contains as-

sociation of proteins with GO terms (the gene2go 
file can be found here); and the “root_term” which 
is “GO:0003674” for the molecular function ontol-
ogy. Code, implemented in the R programming 
language, can be seen in Figure 3. 

 
Figure 2. Pseudocode for determining ancestors or offspring in the GO. The “g” and “t” ar-
guments to the TermSpecificity function are the GO structured as a DAG, and the particular 
term in question respectively. This routine is similar to a standard “depth-first-search” graph 
algorithm that searches for a specific node in a subgraph [8], however its purpose is to 
count the visited nodes rather than to locate a specific node. An “unvisited” neighbor is ei-
ther a parent or child node, depending on whether offspring or ancestors are being counted. 
For the implementation of these methods see the “Implementation” section. 

 
Figure 3: Calculation of IC, implemented in the R programming language. The 
“root_term” is “GO:0003674” for the root term in the GO molecular function hierarchy. 
The “gene2go” argument is the gene2go file available here, or an equivalent file with as-
sociations between genes/proteins (a “GeneID” column header) and GO terms (“GO-
Term” column header). 

http://standardsingenomics.org/�
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Discussion 
The methods described above provide a useful 
toolkit of varied approaches to measuring function 
specificity using the Gene Ontology. The goal is to 
develop a metric of specificity that is comparable 
among all GO terms, which is not an easy task. 
Each method has information about the specificity 
of any particular GO term that another might not 
have (see Figure 4), and each has their own 
strengths and weaknesses. The number of GO an-
cestors of a term as discussed above is useful in 
that it directly reflects the DAG nature of the GO, is 
easy to calculate, and has an intuitively appealing 
interpretation. The problem with this measure-
ment is that there are idiosyncrasies in the GO that 
can cause the path length between any given GO 
term and the root node to be highly variable. For 
instance, the GO term GO:0000102 “catalysis of the 
transfer of L-methionine from one side of a mem-
brane to the other, up its concentration gradient” 
(GO:0000102) has no offspring and 17 ancestors, 
while the term “the action of a molecule that con-
tributes to the structural integrity of a cytoskeletal 
structure” (GO:0005200) has no offspring and two 
ancestors. The variability inherent in the number 
of ancestors of a term makes it difficult to accu-
rately assess and compare specificity between GO 
terms, making it the least useful specificity metric 
in our opinion. 
The measurement based on the normalized num-
ber of GO offspring also is a function purely of the 
GO, like that of GO ancestors, but is more reliable 
due to its lower variability. The GO offspring mea-
surement will also remain consistent across data 
sets, providing a non-data-dependent option of 
measuring and comparing function specificity in 
contrast to IC (see below). Note that GO offspring 
does in fact correlate fairly strongly with IC (Fig-
ure 4). The caveat to the use of this normalized 
offspring metric as a measure of function specifici-
ty is that there are GO terms seemingly quite spe-
cific by other metrics still have many offspring as 
well as some seemingly non-specific terms by oth-
er metrics that have few or no offspring (see Table 
1). 
The GO proportion is useful in that it considers the 
implications of both the number of ancestors and 
the number of offspring. It is also on a 0-1 scale, 
which allows a readily accessible min-max inter-
pretation. However, the concerns with this pro-
portion measure are similar to those pertaining to 
GO ancestors and GO offspring. 

The most unique aspect of IC is that it is calculated 
from data. The strength of IC, however, doubles as 
a caveat: since it is data dependent, the IC of a par-
ticular GO term may fluctuate from data set to da-
ta set. In our experience however the IC calcula-
tion is generally robust for most terms, especially 
common ones as their probability of occurrence in 
a data set changes little. Very scarce GO terms can 
be impacted more significantly if more instances 
of the term are added to a dataset, although we 
have found this to be a rare event. Also, if a GO 
term does not occur in a data set then calculating 
its IC is impossible. This is undesirable, especially 
if that GO term is of some interest to the research 
project at hand. Also, occurrence of GO terms in a 
data set might be due to bias in the way proteins 
are annotated which may not be representative of 
the natural state of function specificity, i.e. more 
specific IC may not be truly indicative of more 
specific function. 
There is also some “divergence” between the vari-
ous specificity metrics for some GO terms. Concrete 
examples of where the various specificity measures 
may diverge can be seen in Table 1. For instance 
the GO term “interacting selectively and non-
covalently with ATP, adenosine 5'-triphosphate” 
(GO:0005524) has the maximum value of the GO 
offspring measurement (OffspN=9.02) and the GO 
proportion is 1.0, both indications of very specific 
function. The IC however is only 6.64, an indication 
of relatively non-specific function. This exemplifies 
a case where two of the measures indicate specific 
function while another indicates moderately-
specific function. A reversal of sorts can be seen 
with the GO term “the action of a molecule that con-
tributes to the structural integrity of a cuticle” 
(GO:0042302). This GO term is very specific by IC 
(15.18), yet middling specificity is indicated by 
OffspN (7.23), and low specificity as indicated by GO 
proportion (0.29) and GO ancestors (2). The GO 
term “the function of binding to a specific DNA se-
quence in order to modulate transcription” 
(GO:0003700), can be seen as a more “middle 
ground” as all of its metrics indicate relatively 
moderate specificity. These numbers provide evi-
dence that each of these measurements have in-
formation to give about function specificity. Con-
sider that GO offspring, which only takes into ac-
count the structure of the GO beneath a particular 
term, is a product of abstracted biological know-
ledge as it currently exists. This knowledge appears 
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to be represented to some degree idiosyncratically 
between different types of functions. In contrast, IC, 
which only considers the current distribution of GO 
terms in a database and may be biased due to the 
experimental methodologies used to annotate pro-

teins. Certainly no metric is perfect, each has 
strengths and weaknesses, and considering all of 
them provides a more holistic knowledge of a GO 
term to enable specificity comparisons across 
terms.  

 
Figure 4: Correlation between different measurements of function specificity. This scatter-plot 
matrix of each pair of specificity measures shows the ways in which they are correlated with 
each other. Each individual row and column contains comparisons for the particular variables 
with the rows corresponding to the y-axis and columns to the x-axis. For instance, for the IC 
and Offsp plot in the lower quadrant, the y-axis is Offsp (0-8) and the x-axis is IC (0-15). In 
the upper quadrant this is reversed. The variables in the pairs plot are the aforementioned IC 
and Offsp (normalized); as well as NumAnc (the number of GO ancestors of a term); and 
GOprop (the proportion considering both number of ancestors and number of offspring of a 
term). As is shown in this graph, there is strong correlation between each of the variables but 
not exactly, indicating each one has information about specificity another might not have. 

Table 1: Examples of GO terms and their specificity metrics. 
 GO Offspring OffspN GO Anc GO Prop IC 

Max Specificity Value 0 9.02 31 1 15.18 
Min Specificity Value 8267 0 0 0 0 
GO:0005524 0 9.02 8 1 6.64 
GO:0003700 1 8.33 5 0.83 5.85 
GO:0042302 5 7.23 2 0.29 15.18 

Note that GO Offspring is the untransformed number of offspring for a term and OffspN is the 
normalized metric. These GO terms provide some examples of how various metrics may pro-
vide different “views” regarding the specificity of a term. For instance GO:0005524 is the 
most specific by OffspN (9.02) yet is only moderate by IC (6.64), meaning that although it is 
most specific by the hierarchical structure of the GO, it is a relatively common term in the da-
tabase. Conversely, GO:0042302 is the most specific by IC (15.18) yet is only moderately 
specific by OffspN which means that although more specific functions are possible according 
to the GO hierarchy, this term is very rare in the database. The GO:0003700 term shows rela-
tively moderate specificity for all metrics. 
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