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Abstract: Heart Rate Variability (HRV) is an important tool for the analysis of a patient’s physiological
conditions, as well a method aiding the diagnosis of cardiopathies. Photoplethysmography (PPG)
is an optical technique applied in the monitoring of the HRV and its adoption has been growing
significantly, compared to the most commonly used method in medicine, Electrocardiography (ECG).
In this survey, definitions of these technique are presented, the different types of sensors used
are explained, and the methods for the study and analysis of the PPG signal (linear and nonlinear
methods) are described. Moreover, the progress, and the clinical and practical applicability of the PPG
technique in the diagnosis of cardiovascular diseases are evaluated. In addition, the latest technologies
utilized in the development of new tools for medical diagnosis are presented, such as Internet of
Things, Internet of Health Things, genetic algorithms, artificial intelligence and biosensors which
result in personalized advances in e-health and health care. After the study of these technologies,
it can be noted that PPG associated with them is an important tool for the diagnosis of some diseases,
due to its simplicity, its cost–benefit ratio, the easiness of signals acquisition, and especially because it
is a non-invasive technique.

Keywords: heart rate variability; photoplethysmography; cardiovascular diseases; Internet of Health
Things; health care

1. Introduction

One of the fundamental characteristics of the heart is to be able to change its heartbeat rate.
These spontaneous fluctuations of the heart rate (HR) reflect the relationship between ongoing
interferences in the cardiovascular system and the response of its regulatory mechanisms [1].

One of the methods used to evaluate cardiovascular autonomic nervous system activity is HRV
analysis (cranial heart rate variability) [2]. The autonomic nervous system is responsible for the
connection of the central nervous system to the cardiovascular system. The heart rate variability
is constantly modulated through complex interactions between branches of the autonomic nervous
system, the sympathetic nervous system, and the vagus nerve [3]. Since the activity of the autonomic
nervous system and the heart rate are related in a nonlinear manner, the changes in the sympathetic
activity or the vagal tone have the ability to change the response of the heart rate to the stimulation of
any branch of the system [3,4].
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Neural control is completely related to heart rate (HR) and baroreceptor activity [5].
Therefore, through a complex interaction of stimulus and blocking, the responses of the sympathetic
and parasympathetic pathways that change the HR are developed, adapting it to the needs of each
moment. The increase in HR is a consequence of the greater action of the sympathetic pathway and
the lower parasympathetic activity. Therefore, the activities of the sympathetic pathway increase HR
while the activities of the parasympathetic path reduce it [6,7]. With the discovery of the relationship
between the autonomic nervous system and mortality from cardiovascular diseases, it has become
necessary to study the increase in sympathetic activity and the reduction of parasympathetic activity,
which are conditions found in several cardiovascular diseases [8].

Heart diseases are considered a major public health problem, since they are the leading cause of
death worldwide, especially in populations of large urban centers. According to data from the World
Health Organization, 17.3 million people died in 2012 as victims of this type of disease. The estimate is
that, by 2030, this number will be 23.6 million [9,10]. The statistical data of death by NTCDs separated
by WHO region can be verified in Figure 1.

Figure 1. Mortality rates by NTCD per 100,000 habitants, all ages, for region of WHO, 2012 [9].

Mortality rates are steadily rising. Therefore, it is important to adopt preventive measures and
control various risk factors, such as hypertension, diabetes, high cholesterol, smoking, alcoholism,
stress, obesity and physical inactivity. Medical consultations are essential for continuous evaluation to
reduce the number of deaths due to cardiovascular diseases [11,12].

The analysis of HRV signals is important when studying the autonomic nervous system, as it
supports the evaluation of the balance between the sympathetic and parasympathetic influences in
the cardiac rhythm [2]. The heart rate variability is a valuable vital signal, which reflects the physical
condition of a patient [13]. A misshapen value between heartbeats is one of the first indicators of the
existence of an anomaly in the patient’s health. It can reveal diverse conditions, such as respiratory
and cardiac arrest, systemic inflammatory response syndrome, renal insufficiency, cardiac insufficiency,
systolic arterial pressure, among others [14]. Among the methods used to determine the heart rate,
photoplethysmography estimates the alterations in the blood flow adopting an optical method [15].

Photoplethysmography (PPG) is one on the most popular technologies in the last decade for
monitoring of the physiological conditions of a patient, and, because it is an non-invasive method,
PPG has been largely applied to personal portable devices and pulse oximetry due to its convenience
and capacity to perform continuous readings. In addition, the signal can provide information
about both the cardiovascular and respiratory systems. The vast viability of the utilization and
easiness of the patient’s physiological data acquisition characterize this method [13,16]. Compared to
the electrocardiogram (ECG) signal [17,18], the PPG signal does not have a complex hardware
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implementation. It also does not have the requirement of a reference signal, hence the PPG sensors
can be incorporated into wristbands. The utilization of these systems then becomes more accessible
than the current ECG monitoring systems, which require electrodes to be attached on the patient’s
chest [19–21].

In the sense of adding elements to the literature referent to a non-invasive technique, of easy
utilization, which presents valuable information about the cardiovascular system, it was understood
as a suitable theme to be investigated. Thus, the presentation of current information referent to PPG,
such as concepts, analysis methods, variations of the application methods of the technique, means
of interpretation of results and clinical applicability, constitutes a contribution either to researchers
of diverse fields, or to clinical professionals working in the wide range of health areas. Furthermore,
it presents a database and information for hospitals and clinics.

While analyzing some of the literature about the theme of study, photoplethysmography, various
papers emphasizing the importance of a more detailed and specific study about PPG were found.
The work in [22] presents a review of the method of estimation of the heart rate using facial skin and
digital cameras, highlighting the calculation of the HRV by PPG. Additionally, the work in [23] presents
a review of the literature about estimation of the respiratory rate using ECG and PPG. In addition,
in the work in [24], the objective of the researchers was to display the utilization of the PPG technique
for clinic applications, comparing it to ECG and presenting the importance of the determination of the
HRV and the Partial Thromboplastin Time (PTT).

The distinctive aspect of the present paper is in the elaboration of a complete review of the PPG
technique, a comparison with the ECG method, and a description of the most important variables
(HRV, PTT, Pulse Rate Variability (PRV), Pulse Wave Velocity (PWV), etc.) which can be extracted from
the PPG signal and used in a thorough analysis of the physiological conditions of an individual.

This paper is structured as follows. In Section 1, an overview is presented on the global statistical
data on cardiovascular diseases, some fundamental concepts of HRV and a brief introduction on the
technique of photoplethysmography (PPG). Section 2 presents the details of the photoplethysmography
technique (PPG), explaining its principle of operation and the types of PPG sensors, as well as the
metrics obtained with this technique and how to improve those metrics. Section 3 explains the linear
and nonlinear methods for PPG signal analysis, differentiating these methods in relation to the time
and frequency domains. Section 4 explains some techniques for PPG sensor instrumentation and
improvement techniques for PPG signal analysis. In Section 5, some important studies on the PPG
technique are discussed, correlating this technique to the diagnosis of heart diseases, as well as the use
of PPG in several technologies. In Section 6, a general discussion is presented on the themes mentioned
in previous sections. In Section 7, the lessons learned about the studied subject are discussed. Finally,
in Section 8, the conclusion of the study is presented.

2. Photoplethysmography

The sequence of events that happen between the beginning and the end of a heartbeat is called
the cardiac cycle [25]. The cardiac cycle is composed of two main phases: the ventricular diastole and
the ventricular systole. In the diastole, or relaxation phase, the blood flows to the auricles, causing
pressure to decrease in the blood vessels. In the systole, or contraction phase, the blood is pumped
out of the ventricles and distributed throughout the body, causing pressure to increase in the blood
vessels [25,26].

Several methods and devices perform heart rate measurement and heart monitoring [27].
Electrocardiogram (ECG), analog converters and cardiofrequencimeters are the main equipment
used to measure heart rate variability [8]. Similarly, photoplethysmography (PPG) is also used for
measuring the HRV. It is considered a portable, low cost technology of simple utilization, also being
non-invasive and applicable in diverse environments. Besides all previously mentioned attributes, the
development of signal processing algorithms adds robustness, contributing to the evolution of this
technology [28].
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Photoplethysmography (PPG) is a non-invasive technique for measuring blood perfusion
through tissues by the emission of light rays [29,30]. Researchers from around the world, beginning
in 1939, have indicated the need for blood circulation studies using noninvasive techniques.
Consequently, an electronic device was developed for measuring blood volume and blood flow,
namely plethysmography [31]. The clinical fitness of the photoplethysmography was presented
by Alrick Hertzman in 1937 when describing the use of a reflexive photoplethysmography system,
measuring variations in the blood volume, induced by Valsalva maneuver, in the finger of patients [32].

PPG is a simple and inexpensive tool that can be defined as an optical biomonitoring technique
used to measure changes in blood volume in microvascular tissue under the skin occurring due to the
blood pulsatile nature [25]. PPG signal extraction is considered simple; however, the components of
this signal can provide valuable information about the cardiovascular system [25,33]. Over the past
20 years, there has been a significant increase in the number of papers published regarding the PPG
technique, as shown in Figure 2. The popularity of this technique is due to the important applications
in the evaluation of the cardiovascular system, signal monitoring and detection of oxygen in blood [25].

Figure 2. Comparative of 20 years (1997–2017) of PPG publications. Data were obtained from Web of
Science TM using “photoplethysmography” as topic (accessed on 20 February 2018).

Photoplethysmography can measure the heart rate, that is, the alterations of blood flow, detecting
changes in the blood volume [15]. A photo-emitter of infrared light is coupled to a photo-receiver,
using as the medium of light propagation the body segment in which is desired to register the
plethysmographic signal. The pulsatile signal of the blood volume (pulse wave) is detected by
the photo-transistor as a modulation of the original signal of the carrier wave [34]. The indicated
wavelength of the infrared photo-emitter is close to 940 nm [35]. However, according to the same
author, this technique allows extraction of values of some physiological parameters of a patient, such as
the variability of the time between heartbeats and, after processing of such parameters, the heart rate.

The photoplethysmographic wave describes changes in the attenuation of light energy in its
pathway when transmitted or reflected in tissues and bloodstream. This waveform is totally related to
the systole and the diastole of the cardiac cycle [36], as can be observed in Figure 3. The PPG signal
represented in Figure 3 was extracted from a healthy person.
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Figure 3. PPG signal analysis.

The waveform of the PPG signal describes the variations in the attenuation that light energy
suffers on its path when transmitted or reflected in biological tissues [36]. Based on the analysis in
Figure 3, it is possible to estimate some parameters, such as the amplitude of the systole pulse wave
(P1), amplitude of the diastole pulse wave (P2), time interval between beats (t1), etc. From this, it is
possible to determine the instant heart rate (HRinst) and the mean (HRmed). The HRinst can be calculated
from the interval between beats (t1); using Equation (1), one can calculate the instantaneous HRV.

HRinst =
60
t1

(1)

HRmed =
1

Qnn
∑

k∈[Ti ,Tf ]

NN[k] (2)

where Qnn corresponds to the amount of samples of normal intervals (NN) in the interval [Ti, Tf ] [37].
The increase in heart rate and pulse wave amplitude (P1), shown in Figure 3 with number 2,

reflects the growth of blood flow in the signal due to contraction of the left ventricle of the heart.
The amplitude of the dicrotic minimum, represented in Figure 3 with number 3, varies with arterial
vascular elasticity and fundamentally depends on the interaction of the initial pressure wave, when
the heart contracts, and with the pressure wave that is reflected due to peripheral arteries [15].
However, the points identified in Figure 3 may not be present in all PPG signals, since the waveform of
the photoplethysmography signal changes significantly as a function of some conditions, such as body
age, vascular age, physical status (regarding sleeping hours, physical activities, etc.) and others [15,28].

The most commonly used method for analysis of the PPG signal is to detect its peak values,
corresponding approximately to the systolic phases of the cardiac cycle, and register the time passed
between maximum PPG successive values, as explained before. Although the time of the peak in
a PPG signal depends on many factors, including the arterial rigidity, arterial pressure, pulse wave
velocity, and distance of the local of measurement of the aorta, among others. Thus, an alternative to
the PPG peak method is to take the difference between “foot points” of consecutive PPG pulses [38].

To stipulate the foot points, it is necessary to study and calculate the following items [38]:

• Maximum first derivative: Equals the maximum positive pulse gradient, i.e., the maximum
rate of upswing of the pulse wave signal corresponding to the peak velocity of the vessel wall.
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This is determined numerically from the maximum positive value of the first derivative of the
pulse wave.

• Maximum second derivative: Equals the maximum positive rate of change of the gradient,
i.e., the maximum acceleration of the vessel wall. This is determined from the calculation of the
maximum positive value of the second derivative of the pulse wave.

There is no exact definition for the “standing point” position of a pulse wave, and there are
many alternatives to determine them. These methods make use of the determination of the minimum
value of the pulse wave signal, the maximum gradient of the first derivative or the second maximum
derivative of the pulse signal. However, there is also a more complex approach which is called
“tangent intersection” in which two preliminary points are determined using two different methods
(for example, first maximum derivative and minimum value) and the intersection point of tangent
lines to the waveform in each foot defines a third point [38–40].

There are more recent methods, such as the “diastolic patch” technique where the two foot point
regions of two waveforms are correlated to find the time difference between the times of arrival of
these waveforms [38,41]. Furthermore, some important variables can be estimated using the PPG
signal; one of them is the PTT (Pulse Transit Time). PPT is defined as the time the pulse propagates
from the heart to a peripheral locale and has been proposed as a potential substitute of the calculation
of the arterial pressure (AP). That is, the time required for the arterial pulse pressure wave to propagate
from the aortic valve to a peripheral site (usually the finger) is considered. The PTT may be promptly
derived from the electrocardiogram (ECG) or photoplethysmogram (PPG) [42–44]. The rigidity and
the tension in the arterial walls are the fundamental causes that determine the speed of transmission of
the pulse wave, and this, in turn, depends to a great extent on the blood pressure [42,43].

In the determination of the PTT from the ECG, it is considered the time interval between peak
of the waveform R, and, for the photoplethysmogram, it is considered a characteristic point of the
PPG in the same cardiac cycle. The three different points of measurement of the PTT are represented
in Figure 4 and are defined as: PTT-peak, PTT-middle, and PTT-foot. PTT-middle is the maximum
derivative point [45].

Figure 4. Different measurement points of PTT [45].

The PTT value is inversely proportional to the blood pressure (BP) value, so its evaluation
is considered a promising method for continuous, noninvasive monitoring. The most commonly
used technology for detecting the distal pulse waveform is photoplethysmography (PPG).
However, such pulse transit time measurements are in fact a measure of pulse arrival time (PAT) rather
than PTT, and are used as a substitute for PTT [46,47]. However, several studies have commented on



Sensors 2018, 18, 1894 7 of 26

the reliability of PTT with PAT evaluations, since it can be altered by variations of the pre-ejection
period (PEP) [46]. The relationship between the PAT and the PTT can be analyzed with Equation (3).

PAT = PET + PTT (3)

As a solution to this problem, there is the cardiographic impedance (ICG) technology that has been
applied for the detection of aortic valve opening as a reference time for proximal location. Although this
method provides more accurate estimates than the use of ECG R peaks, ICG based systems are not
widely used, as the signal quality is poor. Additionally, these systems are inconvenient due to the need
for multiple electrodes around the body [46,47].

Clinically, the PTT is highly utilized in the investigation of diseases related to sleep, such as
sleep apnea, being a tool frequently used in the identification of obstruction of the upper airways and
the increase in the respiratory effort during sleep, since it causes a drop in the arterial pressure and
stretching of the PTT. For this reason, the obstructive apneas are associated to the increase in amplitude
of the PTT oscillations as indication of respiratory effort [43,48].

Another important variable to be calculated is the pulse wave velocity (PWV), which provides
relevant information about the heart rate as well the good functioning of the heart. The PWV
is associated with the calculation of the elasticity of the blood vessels and the arterial pressure
values. These measurements are considered complex indicators for the state of the cardiovascular
system [30,49,50].

The increase of the arterial rigidity is a complex phenomenon characterized by the decrease of the
complacency (or distensiblity) of the great arteries. The phenomenon occurs with aging, as well as in
presence of diseases associated with the cardiovascular system, such as arterial hypertension, diabetes,
dyslipidemia and obesity. These diseases are pointed out as potential promoters of the increase of
arterial rigidity [51]. Clinically, the increased arterial rigidity can be manifested as consequence of the
increase of pulse pressure (PP) and the isolated systolic hypertension, being the pulse wave velocity
(PWV) considered a gold standard for evaluating the arterial rigidity. Thus, the increase in the pulse
wave velocity is related to the increase of the arterial rigidity [51,52]. Equation (4), for the calculation
of the PWV, is presented.

PWV =
∆D
∆T

(4)

where ∆D relates to the distance between heartbeats, while ∆T is related to the time between heartbeats.
Pulse Wave Velocity (PWV) is the displacement velocity of a pressure wave through an arterial

segment and is commonly used as an early diagnostic variable for cardiovascular risk and an important
marker in the role of primary prevention of arterial pathology. The greater is the PWO, the greater is
the arterial rigidity as well as the underlying cardiovascular risk [53].

In the work in [54], a method was developed to estimate PWV using signals from circulatory
waves derived from multiple PPG sensors. The method manipulates two wearable PPG in-line sensors
placed at a distance known from one another in the ulnar and digital artery. The results showed that
the method is able to measure changes in arterial PWV that result from fluctuations in mean arterial
pressure. The PTT and consequently the VTP are influenced by elastic properties, mainly intrinsic, of
the arterial wall, such as age, the vascular remodeling, arteriosclerosis, and blood pressure [42,43,48].

In addition to these variables, Pulse Rate Variability (PRV) can also be extracted from the PPG.
It was studied as a potential substitute for the heart rate variability value. As the PPG also allows
acquiring physiological parameters, such as blood oxygenation and the ventilatory rate, the use of
PRV instead of HRV could be particularly suitable to these applications where the simultaneous
acquisition of many signals is necessary, for example in studies of sleep disorders, especially for studies
of ambulatory sleep. The calculation of the PRV is related to the PTT, that is, the beat-to-beat alterations
in the pulse wave velocity [55].
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Some studies report the possibility of using PRV as an alternative solution to HRV,
and these studies were carried out under stationary conditions, using invariant analyses in time.
However, in situations involving non-stationary processes and significant changes in the autonomic
balance, such as the orthostatic test, Valsalva maneuver, stress tests and after pharmacological
interventions, the substitution is not yet advised; however, studies are being conducted to validate this
change [55,56].

PPG Sensor

Photoplethysmography sensors measure the amount of infrared light absorbed or reflected by
blood. Volume changes are caused by pressure changes in blood vessels, which occur throughout the
cardiac cycle [15]. There are two types of functioning principles for photoplethysmography sensors:
the transmission or reflection of light through or by a certain part of the body [57]. The schematic
representation of the PPG sensor is shown in Figure 5: the transmission operation (Figure 5a), in which
the emission module and the photodetector are located on diametrically opposite sides; and by
reflection (Figure 5b), in which the emission module is located on the same side as the photodetector.

(a) (b)

Figure 5. Representation of the operation of photoplethysmography sensors for finger application, by
transmission (a) and by reflection (b). Adapted from [58].

With a PPG sensor in transmission mode, the LED light passes through absorbent substances,
such as the skin pigmentation, bone and arterial and venous blood, and is then received by the detector
and quantified by filters and converters [59,60].

In contrast, a PPG sensor in reflection mode reflects the LED light on the skin, which is
received by the detector, and quantified in a similar fashion through the use of filters and converters.
Nonetheless, this mode is applied mainly in the body parts too thick to allow the transmission of light
(for example, wrist and forehead). Therefore, the PPG sensors can assume varied shapes, for example,
a band, a wristwatch, or a patch. Additionally, some PPG sensors already make use of wearable
technology, monitoring the heart rate in real time [59–62].

The working principle of the PPG sensor is based on the emission of infrared light by an LED
which penetrates the skin and blood vessels. This light is captured by the detector to measure the
blood stream, as can be observed in Figure 6. The results of the PPG signal depend primarily on the
flow of blood and oxygen to the capillary vessels in each heartbeat [19].
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Figure 6. Working principle of PPG sensors [19].

Theoretically, the PPG signal is formed by two components: (1) the DC offset, which represents
the constant absorption of light passing through the tissues; and (2) the AC component generated by
heartbeats affecting blood volume when light traverses the artery [19].

Regardless of the PPG sensor operating principle, it must be portable, lightweight, rugged,
low cost and comfortable to use, besides keeping the signal quality under various conditions. There are
several sites for measuring the PPG signal, such as the fingers and toes [63–65], forehead [66], wrist [67]
and ear [62,68], since all of them have a rich arterial source and are relatively easy to attach a sensor.

PPG is based on the properties of light scattering caused by glucose in blood. The increase in
glucose decreases the misalignment of the light beam penetrating the tissue, because the refractive
index is reduced by its presence. As a result, a smaller amount of light is absorbed, and the light
intensity which crosses the tissue is greater [69]. The PPG technique is based on Beer–Lambert’s law,
which shows that light intensity decreases exponentially when traveling in an absorbent medium,
and absorption is wavelength dependent [70].

Due to physiological particularities for each person, characteristics such as skin tone, thickness of
the fat layer and rigidity of the radial artery have huge intervention in the morphology and amplitude
of the plethysmographic wave. The Beer–Lambert law relates the intensity of the emitted to the
incident light, in function of light absorption by the medium, the concentration of the solution, and the
path the light travels. The higher is the luminosity emitted by the photo-emitter (LED), the higher is
the amount of light transmitted through the medium as well as the amount of light reflected [69].

The preference for the PPG technique for heart and respiratory rate acquisition, rather than
other techniques such as electrocardiogram (ECG), is due to the safer extraction of respiratory data,
since the PPG waveform provides estimates better than those derived from ECG signal by means
of respiratory sinus arrhythmia (RSA) analyses, as well as to the low cost of the PPG sensor [71].
The photoplethysmography technique may be used for both the prevention as the detection of various
diseases. Therefore, the importance of the PPG approach for measurement and monitoring of the HRV
is perceived.

3. Photoplethysmography Signal Processing and Analysis

For the analysis and understanding of the variables obtained through the measurement of HRV,
some methods can be used, such as linear and nonlinear methods. Linear methods are divided into
two types: time domain analysis, performed by using statistical and geometric indices, and frequency
domain analysis [72]. The parameters extracted from the measurement of the PPG signal both in
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the time domain as the frequency domain can provide valuable information about the control of the
cardiovascular system [73].

Obtaining HRV indices is of great importance for clinical understanding of certain physiological
variables, since increases in variability indicate good physiological adaptation of the organism and its
maintenance, thus predicting a condition of stability of the biological system, whereas reductions have
been pointed out as predictors of diseases [72].

3.1. Time Domain—Statistical Indicators

The records for analysis of HRV indices using linear methods can be obtained in short periods
(2, 5, or 15 min) or in long periods (24 h), which is more common in clinical practice [74]. For this
analysis, at least 256 beat-to-beat intervals are recommended [75].

The statistical time-domain indices obtained by the beat-to-beat determination are: [76,77]

• SDNN—standard deviation of all t1 intervals read in a time interval, expressed in ms;
• SDANN—standard deviation of the means of the intervals t1, every 5 min, in a time interval,

expressed in ms;
• SDNNi—the mean of the standard deviation of the intervals t1 every 5 min, expressed in ms;
• rMSSD—the square root of the square mean of the differences between adjacent intervals t1,

in a time interval, expressed in ms; and
• pNN50—the percentage of the adjacent t1 intervals with duration difference greater than 50 ms.

The SDNN, SDANN and SDNNi indices are obtained from long-term records and represent
sympathetic and parasympathetic activities, but they do not allow differentiation when HRV changes
are due to increased sympathetic tone or withdrawal of vagal tone [74]. On the other hand, the rMSSD
and pNN50 indices represent the parasympathetic activity, as they are found from the analysis of
adjacent RR intervals [76,77].

3.2. Time Domain–Geometric Indices

Other methods used for HRV measurement and analysis are the geometric methods, which allow
the presentation of cardiac pulse intervals (systole and diastole) and use approximations to derive the
HRV measurements [78,79]. The main geometric methods used are:

• Triangular index (RRtri);
• Triangular interpolation of RR intervals (TINN); and
• Plot of Poincaré.

The triangular index and the TINN are calculated from a histogram of density of heart rate
intervals (systole and diastole) which contains, on the X-axis, the length of the intervals of the pulses
and, on the Y-axis, the frequency with which they occurred. Connecting the points of the columns of
the histogram form a figure similar to a triangle, from which these indices are extracted [7,75,79].

The Poincaré plot is a two-dimensional graphical characterization of the correlation between
consecutive cardiac pulses [7,78,80]. Some authors consider the Poincaré plot as based on nonlinear
dynamics [81–83]. The Poincaré plot is a graphic representation of the correlation between intervals
of consecutive heartbeats. A common manner describing the plot geometry is to fit an ellipse in the
graph [82].

For quantitative analysis of the plot, by the adjustment of the ellipse of the figure formed by the
attractor, the following indices are calculated: SD1 (standard deviation of the instantaneous variability
beat-to-beat), SD2 (standard deviation of long term of the interval between heartbeats) and the ratio
SD1/SD2 [81].

The index SD1 depicts the dispersion of points perpendicular to the identity line and is an index
of instantaneous recordings of the variability beat-to-beat; SD2 describes the dispersion of the points
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along the identity line and represents the HRV in long duration recordings; and the relationship
between both (SD1/SD2) represents the ratio between the short and long variations of intervals of the
heart rate [7,84].

In individuals with COPD, a smaller dispersion of NN intervals is observed, both beat-to-beat
and long-term, forming a characteristic image of HRV reduction. In healthy subjects, the intervals
between the heartbeats are irregular, making it appear, in the Poincaré plot, as a cloud of points.

The qualitative (visual) analysis of the Poincaré plot is performed through the analysis of the
figures drawn by the plot attractor. These can be classified as [82]:

1. Figure similar to a comet, in which an increase in the scattering of the beat-to-beat intervals is
analyzed, characteristic of a normal plot;

2. Figure similar to a torpedo, with slight global beat-to-beat scattering (SD1) and without increasing
the scattering of long-term beat-to-beat intervals; and

3. Parabolic or complex figure, in which two or more distinct ends are separated from the main
body of the plot, with at least three points included in each end.

3.3. Frequency Domain

The linear method may also be applied in the frequency domain. In this perspective, the spectral
power density method is the most frequently used method when dealing with individuals under
resting conditions [75].

The analysis of spectral density evaluates how the power (variance) is distributed as a function of
frequency. This analysis is done by using the properties of mathematical algorithms [75].

The frequency domain analysis is delimited in three distinct frequency bands, called spectral
components, independently of the calculation of the spectral density (Fourier Transform Techniques or
auto regressive model) [85,86]. These are:

• High frequency (HF) (0.15 to 0.40 Hz), modulated by the parasympathetic nervous system and
generated by breathing;

• Low frequency (LF) (0.04 to 0.15 Hz); and
• Very low frequency (VLF) (0.01 to 0.04 Hz), modulated by both the sympathetic nervous system

and the parasympathetic nervous system.

For analysis in the frequency domain, the spectral indices undergo some mathematical processing,
forming a tachograph, which is a graph that expresses the variation of the beat-to-beat intervals as
a function of time, such as Fourier transform (FFT) or autoregressive models (AR) [5]. The FFT method
is used to obtain an approximation of the spectral power of the HRV. On the other hand, in the AR
model, the estimation of the parameters can be easily done by solving linear equations [37].

The analysis of the power spectral density (PSD) is one of the most used approaches for
investigating the autonomic control of the cardiovascular system. Two main components around
0.1 Hz (LF) and 0.25 Hz (HF) were studied. Through this analysis, it was possible to determine [56]:

(1) The HF component corresponds to the respiratory rhythm and is a vagal modulation marker.
(2) The LF component indicates the sympathetic activities.
(3) The reciprocal relationship between the two characterizes the simpato-vagal balance.

Another manner of analyzing the PPG signal in the frequency domain for verification of the
thermal stress of an individual is the application of derivatives to the signal, the first derivative of the
signal represents the blood speed and the second derivative represents the acceleration of the blood
flow inside the tip of the finger, when this is the local of measuring the signal. Hence, it is expected
that the application of derivatives amplify the differences between the PPG signals measured before
and after the induction of thermal stress [87,88].
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3.4. Nonlinear Methods

The heart rate measurement can also be studied by methods based on chaos theory, that is,
by the theory of nonlinear systems [89,90]. The main nonlinear methods used to analyze HRV are:
analysis of trend fluctuations, correlation function, exponent of Hurst, Fractal dimension and the
exponent of Lyapunov [7,89]. Abnormal beats checked, for example by PPG, have inherent components
of Brownian motion, while normal PPG is anti-persistent. The Hurst exponent is a dimensionless
estimator of this trend of time series [91].

In the work [92], four different nonlinear methods were applied, Scaled Amplified Analysis (RSA),
Higuchi Fractal Dimension (HFD), Displaced Flotation Analysis (DF A) and Exponential Generalized
Hurst (GHE), to extract resources for authentication of the ECG signal and study the nonlinear
properties of this signal. The proposed approach was tested using 18 ECG signals from individuals
with normal sinus rhythm. The results show that the accuracy of the authentication is 99.06%.

A Lyapunov exponent is a real number that measures the average rate of divergence or
convergence along the entire attractor that can be considered the point space or set of points
representing several possible stationary states of a dynamic system. Therefore, this exponent can
be used to study the stability of a system. The Lyapunov exponent may be positive (chaotic),
zero (periodic), or negative (a fixed point). It is of greater interest to determine the largest exponent of
Lyapunov (LLE) because it notion of predictability for a dynamic system [93].

In the work [93], the LLE was used to extract a useful characteristics of the PPG signals.
The use of nonlinear methods was used in the work of [94] to analyze the behavior of PPG in
subjects who presented fatigue, because for those individuals, PPG signal seemed a random signal.
Although randomized systems may be random, they are actually deterministic systems governed by
rules of complex or nonlinear materials, that is, one can find regularities or rules of phenomena that
appear to be without regularities or predictability of the points of view from the chaos. In the cited
work, the Lyapunov exponent was used, using dimensionality reduction, trying to relate the fatigue
and the degree of chaos of PPG.

The general analysis of the main methods used for the analysis of the PPG signal, the domain,
and the indices evaluated in each method are presented in Table 1.

Table 1. Summary of the methods used for the analysis of PPG signal.

Method Domain Evaluated Indices

Linear Time domain Statistical indices: SDNN, SDANN,
SDNNi, rMSSD, pNN50.

Linear Time domain Geometric indices: RRtri, TINN and
plot of Poincaré.

Linear Frequency domain HF, LF and VLF.

Nonlinear - Correlation function, hurst exponent,
fractal dimension and the
Lyapunov exponent.

4. Instrumentation

For the acquisition of the PPG signal and the information contained in the same, it is necessary
to collect the signal from the body of the patient for prolonged periods. This is why it is important
to condition the photoplethysmographic signal to instrumentation circuits to avoid the artifacts of
movement as much as possible. The PPG signal presents low amplitudes, and therefore, noise heavily
affects the quality and reading of the signal parameters, i.e., this signal is affected by various noises,
such as the environment, the patient’s condition, breathing or movement. Each type of noise covers a
range of frequencies [95,96]. For example, the respiratory rate range is 0.04–1.6 Hz, and the frequency
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range of the motion artifacts caused by patient movement is 0.1 Hz. The pulse wave frequency values
of the PPG signal is in the range of 0.5–4.0 Hz. The frequencies of the motion artifacts and the PPG
signal therefore overlap, making it impractical to separate them using classical filtering methods [96].

As shown in the previous sections, the PPG sensor consists simply of an infrared light emitting
LED and a infrared light receiver phototransistor. Still, for the analysis of this signal it is also necessary
to make use of filtering and amplification circuits. In [97], the signal obtained in the emitter of the
phototransistor is filtered with a fourth-order low-pass filter with a cut-off frequency of 10 Hz to
eliminate the high frequency noise. Furthermore, the DC tracking method was applied to eliminate
the DC component of the signal. This method avoids the implementation of a high-pass filter with a
very low cut-off frequency. Then, another fourth-order low-pass filter with a cutoff frequency of 0.7 Hz
eliminates both the DC component and the artifacts. This signal is then subtracted from the original
signal and amplified in an INA128 instrumentation amplifier with a gain of 10. Finally, the signal is
applied to an operational amplifier of signal gain of 100. Subsequently, all this was reapplied to further
clean the signal. After this analog processing, the signal can be used in a microcontrolled circuit.

In contrast, in [98], the circuit is composed simply of a combination of a set of LEDs driven by a
MOSFET plus a photodetector for reading the signal. This is implemented by a single integrated circuit,
the OSRAM SFH 7050 sensor. This component is a fully integrated optoelectronic sensor designed
and optimized specifically for PPG signals. It exhibits three different light emitters plus a detector,
also presenting a light barrier to minimize the optical crosstalk between the emitters and the detector,
improving the signal-to-noise ratio [99]. The photodetector signal is applied in a transimpedance
amplifier (TIA), which is a current to voltage converter implemented by an operational amplifier.
Although a transimpedance amplifier is a good method to convert current to voltage, much care must
be taken during the design of this kind of circuit, since it is prone to oscillate. The integrated circuit
used as a transimpedance amplifier was the Microchip MCP6024, an operational rail-to-rail input and
output amplifier. For this project, no filtering of the photoplethysmography signal was implemented on
the final plate, since the signal is further processed by the software. However, low-pass and high-pass
filters can be implemented to reduce computational cost.

In the literature, many papers related to the development of PPG sensor instrumentation circuits
can be found. When analyzing these works, it is verified that the instrumentation is based on the
flowchart of Figure 7. Figure 7 presents a sequence of established steps for instrumentation of the PPG
sensor, based on the work of [98,100–103].

Figure 7. PPG instrumentation.

5. Related Work and Clinical Applicability

HRV is used in investigations of cardiac autonomic function in areas such as Chagas disease,
diabetes mellitus, heart failure, myocardial infarction, chronic obstructive pulmonary disease, etc. In
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addition, such technique is applied in the evaluation of athletes and non-athletes during physical
training programs [1].

The normal range of the HR is between 50 bpm and 99 bpm. Nonetheless, in adverse conditions,
this rate can increase or decrease, being indicative of an atypical situation [29].

Values above 99 bpm of heart rate denote a condition called tachycardia, indicating an increase in
body temperature, stimulation by sympathetic nerves and heart toxicity. On the other hand, heart rate
values below 50 bpm denote a state of bradycardia, a condition opposed to tachycardia, indicating
vagal stimulation [104].

According to [1], HRV indices may describe functional and structural changes in the
cardiovascular system due to the increase in the age of the human being, thus impacting the cardiac
autonomic function. The self-monitoring of glycemia, an intermittent measurement of capillary
glycemia, uses the glucometer as its main method. This technique is limited as for the number of
measures that can be performed per day once it is invasive and painful. Some studies have related PPG
as an effective method for measuring blood glucose levels by monitoring heart rate variability [104].

According to [105], the utilization of remote health monitoring systems presents itself as a very
effective method in the assistance of patients with chronic conditions, such as the case of patients with
heart diseases, which can be verified in the following examples.

A virtual instrumentation based tool was developed to assist the health professionals in
the diagnostic of cardiovascular diseases, in which besides the recording of the blood pressure,
the professional could verify other useful parameters, such as the history of the systolic, diastolic,
and average pressure, in addition to the heart rate, adopting as the base of the measurement of HRV,
photoplethysmography [11].

The authors in [70] developed a pulse oximeter device with the PPG technique to facilitate the
diagnosis of childhood pneumonia in remote areas. In [1,106], the researchers used the time domain
method to measure HRV with the objective of studying the characteristics of the cardiac autonomic
behavior pattern of patients with chronic obstructive pulmonary disease. In [107], they carried out
a study on the technique of photoplethysmography for monitoring HRV in the performance of plastic
and reconstructive surgeries.

The authors in [29] developed a system for telemetric acquisition of physiological signals of
patients in cardiovascular rehabilitation programs using PPG as the basis for HRV measurement.
This system helps health professionals responsible for the cardiopulmonary rehabilitation session in
the monitoring and evaluation of patients’ physiological parameters during physical exercise.

The HRV analysis has been widely used to understand the phenomena related to Autonomic
nervous system under normal and pathological conditions. However, studies related to its use in
clinical practice are still scarce. In [72], the authors have demonstrated the great potential of HRV
analysis for clinical practice.

In Table 2, we show some studies relating the HRV measurement, either by the PPG or ECG
technique, as an important prognostic factor for several cardiovascular diseases, as well as the evaluated
indices and the respective results of these studies.



Sensors 2018, 18, 1894 15 of 26

Table 2. Clinical applicability of Heart Rate Variability.

Reference Year Disease Evaluated Indices Results

[70] 2013 Pneumonia HRV and PPG signal Mean squared error of 3.0 breathing/minute.

[108] 2005 Peripheral arterial occlusive disease of the lower limbs (PAOD) PPG signal 90% of accuracy and 100% of sensitivity.

[109] 2011 Obesity HF, LF and VLF Low levels of excess fat in eutrophic young increase cardiovascular risk.

[110] 2012 Respiratory sleeping disorders in patients with severe cardiovascular disease PPG, EEG, ECG and EMG Sensitivity of 98%, and specificity of 96%.

[111] 2011 Chronic heart failure (CHF) Frequency and time domain 89.74% sensitivity and 100% of specificity.

[112] 2002 Coronary heart disease SDNN, HF HRV can be used for identifying differences in the cardiac autonomic balance of healthy adults.

[113] 2015 Childhood pneumonia Respiratory rate, HRV and SPO2 96.6% of sensitivity, 96.4% of specificity.

[106] 2007 Chronic obstructive pulmonary disease (COPD) SDNN, RMSSD, HF, LF Reduced HRV with decreased sympathetic and vagal activity.

[114] 2011 Respiratory sinus arrhythmia HF Mean error in RR detection of 0.05 to 4.23 breathing/minute for PPG and 1.59 to 3.70 breathing/minute for ECG.

[115] 2008 Renal insufficiency SDNN, LF Chronic renal patients not undergoing dialysis have reduced HRV.

[116] 2015 Cardiovascular risk (CR) Pulse, SpO2 and PPG signal Technical error of 0.8% and 1.0%.

[2] 2011 Peripheral arterial occlusive disease (PAOD) Time domain The PPG signal amplitude and distortion increases with disease severity.



Sensors 2018, 18, 1894 16 of 26

Several studies relate different technologies for the analysis of the PPG signal. Such studies
essentially vary as for the sensor used and for the methods of monitoring HRV through PPG. Some of
these studies are briefly presented next. In [117], the authors produced a prototype, at both software and
hardware levels, with the objective of assisting the stress diagnosis, by using photoplethysmography
as an HRV measurement technique.

The researchers in [71] designed a device that includes an integrated hardware and software
solution for obtaining heart rate in beef cattle, since cardiac information is essential for analyzing
animal health. The authors of [118] developed a prototype based on the PIC18F4550 microcontroller
for monitoring the oxygen saturation and heart rate of rodents, by applying photoplethysmography as
a technique for measuring HRV.

In [64], the authors designed a monitoring and training system for cyclists with smartphones,
using photoplethysmography to measure the cyclist’s physiological signals such as heart rate and
oxygen percentage. By integrating the GPS receiver of the smartphone and the developed software,
it was possible to take the measures of distance and speed covered by the rider.

In Table 3, we present a summary of the work regarding heart rate variability with ECG and
PPG techniques with different technology proposals. The measurement of HRV by applying the PPG
technique has been studied as for the properties of the extracted signal. This signal can be detected in
many activities and responses such as heart rate, breathing rate, oxygen saturation, blood viscosity,
blood pressure or changes in the user’s position. Thus, choosing the suitable equipment and technique
of extraction of signal details is of fundamental importance for studying the PPG signal [117].

Table 3. Technology proposals for measurement and monitoring of HRV.

Reference Year Technique Proposal

[105] 2012 ECG Application to assist in remote
monitoring of cardiac patients.

[117] 2010 ECG e PPG Device for measuring the level
of stress of an individual.

[11] 2006 PPG Low-cost prototype for blood
pressure measurement.

[119] 2012 PPG A new prototype fiber–optic
probe was developed for
investigating PPG signals
from various splanchnic organs.

[25] 2016 PPG Measurement of HRV through
hand image.

[64] 2012 PPG Wireless system for monitoring
and training cyclists.

[70] 2013 PPG Portable oximeter to aid in the
diagnosis of childhood pneumonia.

[27] 2016 PPG Measurement of HRV by
facial detection.

[71] 2014 PPG Obtainment of HRV in beef cattle.

[118] 2008 PPG Oxygen saturation and heart rate
monitoring system for rodents.

6. Discussion and Open Issues

While studying the works selected for this review, we noticed that several of the proposed
techniques presented potential for the construction of medical diagnostic assistance tools. We also
noticed that several studies have correlated the PPG with the ECG to HRV measurement.
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The measurements of SpO2 and HR by the non-invasive PPG technique are being largely
employed in personal portable devices and clinical pulse oximetry due to its convenience and capacity
of to perform continuous readings [13].

With the progress in the study of the PPG technique and the analysis of the devices most
commonly used, the necessity of miniaturization of the measurement device or improvement
in the technology of the equipment was perceived. These advancements in the non-invasive
physiological detection, miniaturization of the hardware, and wireless communication are leading
to the development of new wearable technologies having wide and important implications to the
health area [67]. Wearable computation has the potential of revolutionizing health care implementing
low-cost physiological monitoring, in addition to enabling comfortable a continuous cardiovascular
monitoring away from the clinical ambient and during long periods of time [21,120].

In [63], a miniaturized sensor for continuous long-term monitoring, named “ring sensor”, was
developed. It is attached to the base of a finger for beat-to-beat monitoring, while the data are sent
to a host computer through a radio-frequency transmitter. Additionally, the PPG technique has its
successful application in smart watch technology, a smart watch which, besides the basic functions of
a watch, provides some functions common to smartphones. One of these functions is the monitoring
of cardiac activity by PPG; the smartwatch reports in its screen the values of the individual’s heart rate.
However, it has the downside that only the HR value is presented on its screen, not the the waveform
of the PPG signal, being the last quite employed in the detection of cardiac anomalies.

The rapid growing of Internet of Things (IoT) technology and biosensors resulted in new
opportunities for personalized services of e-health and health, one of these services is the
interconnection between the PPG technique and the Internet of Things technology [21,120–122].
The popularity of portable sensors and the Internet of Things (IoT) transfer significant privileges
to the body sensors networks which could communicate which the cloud computing platforms to offer
the interoperability in the monitoring of health and welfare [123,124].

With the interconnection of these two technologies arose the concept of Internet of Health Things
(IoHT) which is essentially one IoT based solution comprehending a network architecture that allows
the connection between a patient and health installations, for example, e-Health systems based in IoT
for electrocardiography, heart rate, electroencephalogram, diabetes and other different types of body
(vital) signs monitoring based in biomedical sensors [125]. These are capable of monitoring the pulse
signal, blood oxygen (SPO2), air flow, body temperature, arterial pressure, patient’s orientation and
electromyography. These data are processed by applications developed for a user terminal, such as
computers, smart phones, smartwatches or even specialized devices [126–128].

As an example, the work of Constant et al. [129], who developed a device called Pulse-Glasses,
is connected to the cloud and and able to monitor the heart rate with the PPG technique. The IoT
functionalities were implemented in a manner where the HR data are registered from the Pulse-Glasses,
visualized in a Android smartphone Android and saved in the cloud. Consequently, the monitoring
results can easily be sent to a doctor or a hospital database.

In [130], photoplethysmography signals were harvested and utilized to calculate the heart
rate and oxygen saturation. The system developed is capable of providing feedback to the user
through a smartphone application, which receives the PPG signals from the device through Bluetooth
communication, while being able to send a notification with the exam results to the user’s doctor.

One of the problems encountered in the utilization of the photoplethysmography technique
is that the conventional contact PPG sensors are not suitable for situations where the skin has
been damaged or when it is necessary to allow movements without restrictions. Besides, it can
be noted that the pressure of the conventional finger-clip sensors can alter the waveform of the PPG
signal due to the contact force between the finger and the sensor. Furthermore, the PPG signals
are highly susceptible to movement, which makes their use in cardiopulmonary exercise testing or
cardiopulmonary resuscitation difficult [131,132]. There are already research works demonstrating
that this problem can minimized or even solved, as it is the case in the work of Yuan et al. [133], who
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produced a method of improvement for minimization of the artifacts due to the movement performed
with a PPG sensor.

The effects occasioned by noise and artifacts to the PPG signal can be reduced in different ways
through the adequate processing of the PPG signal. More basic filters can aid in the reduction of
artifacts, e.g. the moving average filter, which is highly used in this application, works well for a
limited range of artifacts [134].

Another method is the application of adaptive filters, which cope effectively with the band noise,
needing a signal reference. In most cases, adequate reference signals were obtained making use of
additional hardware. For example, the reference signals were obtained from an additional transducer
connected to identify the movement or employing a additional type of optoelectronic reflectance
sensor [135,136].

Due to the dynamic nature of the biological systems, most of the biological signals are
non-stationary and alter substantially their properties over time [134]. Time–frequency methods
such as the wavelet transform and the smoothed pseudo Wigner–Ville distribution can be applied to
PPG signals showing significant improvement in comparison to traditional approaches [134,137].

Although the artifact reduction approach in the PPG signal by the Wavelet transform has been
examined in the last decades, it is still considered an excellent method for the reduction of motion
artifacts in the PPG signal. Because PPG contains information related to heart rate, heart rate variability,
blood pressure, and respiration, Wavelet can be efficiently identified to preserve respiratory induced
intensity variation while removing PPG signal artifact movements [137–139]. Because motion artifacts
result in in-band noise, adaptive filters offer the best solution compared to conventional ones such as
the moving average filter [135,136,140].

In [141], a study was carried out to investigate the effects of the electromagnetic field on
extremely low frequency in response to photoplethysmographic (PPG), electrocardiographic (ECG)
and electroencephalographic (EEG) activity. With this, the wavelet transform was analyzed as
a characteristic extraction method to represent the electrophysiological signals.

The Wavelet transform and its possible derivations are increasingly gaining space as a method of
artifact reduction in the PPG signal, as in the work in [142], which proposes an approach to reduce
photoplethysmographic signal movement artifacts (PPG) based on the concept of a double tree complex
wavelet transform technique. The processing of corrupted PPG motion artifacts with this technique
has outperformed db10 wavelet processing and can be referred to as the best technique for reducing
movement artifacts suitable for pulse oximetry applications.

The PPG technique has its advantages and disadvantages, however the benefits of this technique
applied with diverse technologies can culminate in the advance in the fields of both medicine and
biomedical engineering, aiding in the early detection of a cardiopathy or improving the medical
supervision of a cardiac patient.

7. Learned Lessons

In this work, it was perceived that the heart rate variability is one important tool for the analysis
of the physiological conditions of a patient, as well as an auxiliary method for the diagnosis of
cardiopathies. The PPG technique is a simple method of monitoring the HRV and frequently better
known for its use in pulse oximeters. Research regarding this technique has been showing significant
progress, such that some researchers in the medical and biomedical engineering fields are giving
preference to utilization of this technique over ECG.

The benefits of the PPG approach compared to ECG are greater than the drawbacks, bearing in
mind that it is a simpler technique and there is not the necessity of attaching electrodes to the patient’s
chest. The expansion of the application of PPG together with the advance of the industry of health care
is notorious. This type of interconnection can support many medical conditions, including medical
care of pediatric patients and the eldery, chronic diseases management of private health care and
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fitness, among others. Thus, it is perceived that this type of industry is between the fastest in accepting
IoT based solutions, and it is fact that IoHT will create a significant economical impact in the world.

The extensive utilization of this technique is related to its simplicity, convenience, easiness of
connection with IoT technologies, and for it being a non-invasive approach. The association of
this technique with the advance of technology tend to proportionate the diagnosis of cardiopathies
precociously, improve the treatment of the patients with the management and monitoring of the patient
remotely in a healthcare ambient and lower the number of deaths caused by cardiovascular diseases.

8. Conclusions

After a review of the literature published in the last 20 years related to studies of
photoplethysmography, a significant expansion in the utilization of this technique as a method of
measurement and monitoring of the HRV was observed.

A large proportion of these studies published, besides mentioning PPG as an approach for
measurement and monitoring HRV, present this technique as effective for the diagnosis of several
cardiovascular diseases. This is only possible when interlinking the technique with IoT technologies,
genetic algorithms and artificial intelligence. For this reason, a closer relationship between the
researchers of the biomedical engineering field and the medical community is necessary to provide a
deeper investigation of this topic, facilitating new studies which can help doctors in the early diagnosis
of some cardiac diseases.

Thus, this article can aid researchers, developers and professionals in the clinical field in the study
of the heart rate variability and the PPG as a tool in the diagnosis of chronic diseases. It can also be a
source of information for healthcare providers and specialists interested in IoHT.
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