
Genomewide association study identifies a novel locus for 
cannabis dependence

Arpana Agrawal, PhD1,*, Yi-Ling Chou, MS1, Caitlin E. Carey, MA2, David A. A. Baranger, 
BA2, Bo Zhang, PhD3, Richard Sherva, PhD4, Leah Wetherill, MS5, Manav Kapoor, PhD6, 
Jen-Chyong Wang, PhD6, Sarah Bertelsen, MA, JD6, Andrey P Anokhin, PhD1, Victor 
Hesselbrock, MD7, John Kramer, PhD8, Michael T. Lynskey, PhD9, Jacquelyn L. Meyers, 
PhD10, John I Nurnberger, MD, PhD11, John P. Rice, PhD1, Jay Tischfield, PhD12, Laura J. 
Bierut, MD1, Louisa Degenhardt, PhD13, Lindsay A Farrer, PhD4, Joel Gelernter, MD14,15, 
Ahmad R. Hariri, PhD16, Andrew C. Heath, DPhil1, Henry R. Kranzler, MD17, Pamela A. F. 
Madden, PhD1, Nicholas G. Martin, PhD18, Grant W Montgomery, PhD19, Bernice Porjesz, 
PhD10, Ting Wang, PhD20, John B. Whitfield, PhD18, Howard J. Edenberg, PhD5,21, Tatiana 
Foroud, PhD5, Alison M. Goate, DPhil6, Ryan Bogdan, PhD2, and Elliot C. Nelson, MD1

1Washington University School of Medicine, Dept. of Psychiatry, 660 S. Euclid, CB 8134, Saint 
Louis, MO 63110, USA

2Washington University in St. Louis, Dept. of Psychological and Brain Sciences, St. Louis, MO, 
USA

3Washington University School of Medicine, Dept. of Developmental Biology, St. Louis, MO, USA

4Boston University School of Medicine, Dept. of Medicine (Biomedical Genetics), Boston, MA, 
USA

5Indiana University School of Medicine, Dept. of Medical and Molecular Genetics, Indianapolis, 
IN, USA

6Icahn School of Medicine at Mount Sinai, Dept. of Neuroscience, New York, NY USA

7University of Connecticut Health, Dept. of Psychiatry, Farmington, CT, USA

8University of Iowa Carver College of Medicine, Dept. of Psychiatry, Iowa City, IA USA

9King’s College, Institute of Psychiatry, Psychology and Neuroscience, Addictions Department, 
London, UK

10State University of New York, Downstate Medical Center, Dept. of Psychiatry, Brooklyn, NY USA

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Ph: 314-2861778; Fax: 314-2862213; arpana@wustl.edu. 

DISCLOSURE/COI
We disclose that Drs. LJ Bierut, JP Rice, J-C Wang and AM Goate are listed as inventors on the patent “Markers for Addiction” (US 
20070258898) covering the use of certain SNPs in determining the diagnosis, prognosis, and treatment of addiction. Dr. Kranzler has 
been a consultant, advisory board member, or CME speaker for Lundbeck, and Indivior. He is also a member of the American Society 
of Clinical Psychopharmacology’s Alcohol Clinical Trials Initiative (ACTIVE), which was supported in the last three years by 
AbbVie, Alkermes, Ethypharm, Indivior, Lilly, Lundbeck, Otsuka, Pfizer, Arbor and Amygdala Neurosciences. Dr. Nurnberger is an 
investigator for Assurex and a consultant for Janssen.

HHS Public Access
Author manuscript
Mol Psychiatry. Author manuscript; available in PMC 2018 May 07.

Published in final edited form as:
Mol Psychiatry. 2018 May ; 23(5): 1293–1302. doi:10.1038/mp.2017.200.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11Indiana University School of Medicine, Depts. of Psychiatry and Medical and Molecular 
Genetics, and Stark Neuroscience Center, Indianapolis, IN, USA

12Rutgers, The State University of New Jersey: New Brunswick, NJ, United States

13National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia

14Yale University School of Medicine: New Haven, CT, USA

15US Department of Veterans Affairs: West Haven, CT, USA

16Duke University, Department of Psychology and Neuroscience, Durham, NC, USA

17Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, VISN 4 
MIRECC, Crescenz VAMC, Philadelphia, PA, USA

18QIMR Berghofer Medical Research Institute, Queensland, Australia

19University of Queensland, Institute for Molecular Bioscience, Queensland, Australia

20Washington University School of Medicine, Department of Genetics, St. Louis, MO, USA

21Indiana University, Dept. of Biochemistry and Molecular Biology, Indianapolis, IN, USA

Abstract

Despite moderate heritability, only one study has identified genomewide significant loci for 

cannabis-related phenotypes. We conducted meta-analyses of genomewide association study 

(GWAS) data on 2,080 DSM-IV cannabis dependent cases and 6,435 cannabis exposed controls of 

European descent. A cluster of correlated single nucleotide polymorphisms (SNPs) in a novel 

region on chromosome 10 was genomewide significant (lowest p = 1.3E-8). Among the SNPs, 

rs1409568 showed enrichment for H3K4me1 and H3K427ac marks, suggesting its role as an 

enhancer in addiction-relevant brain regions, such as the dorsolateral prefrontal cortex and the 

angular and cingulate gyri. This SNP is also predicted to modify binding scores for several 

transcription factors. We found modest evidence for replication for rs1409568 in an independent 

cohort of African-American (896 cases and 1591 controls; p=0.03) but not European-American 

(781 cases and 1905 controls) participants. The combined meta-analysis (3,757 cases and 9,931 

controls) indicated trend-level significance for rs1409568 (p=2.85E-7). No genomewide 

significant loci emerged for cannabis dependence criterion count (n=8,050). There was also 

evidence that the minor allele of rs1409568 was associated with a 2.1% increase in right 

hippocampal volume in an independent sample of 430 European-American college students (fwe-

p=.007). The identification and characterization of genomewide significant loci for cannabis 

dependence is amongst the first steps towards understanding the biological contributions to the 

etiology of this psychiatric disorder, which appears to be rising in some developed nations.

INTRODUCTION

Cannabis is amongst the most commonly used illicit psychoactive substances in developed 

nations (1;2). Ten percent of individuals who ever use cannabis meet criteria for lifetime 

cannabis dependence, which is associated with significant comorbid adverse mental health 

outcomes (3–5). A recent survey of U.S. adults showed that the past year prevalence of 
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cannabis use disorders has increased from 1.5% to 2.9% in the decade spanning 2002–2012, 

an increase apparently attributable to a corresponding increase in use during that period of 

time (6).

About 50–60% of the variance in cannabis use disorders, including DSM-IV dependence, is 

attributable to the additive effects of genes (i.e., narrow sense heritability)(7). Despite this, 

only one study to date has successfully identified genomewide significant loci for any 

cannabis related trait (8). Table 1 provides an overview of six genomewide association 

studies (GWASs) of cannabis-related phenotypes (9–12), the largest being a recent meta-

analysis of GWASs of ever using cannabis, even once during the lifetime (N > 32,000)(13). 

However, only the recent study by Sherva and colleagues (8) identified genomewide 

significant loci (three independent regions) for DSM-IV cannabis dependence criterion 

counts in a sample of European-American (EA) and African-American (AA) descent.

We conducted a meta-analysis of GWAS data on individuals of European descent from five 

cohorts to identify loci associated with DSM-IV cannabis dependence (N=2,080). We 

compared individuals who met criteria for DSM-IV cannabis dependence (N=2,080) to 

controls who did not meet criteria for cannabis dependence but reported having used 

cannabis, at least once, during their lives (N=6,435). In addition to comprehensive locus 

(including epigenetic) annotation, we examined whether genomewide significant SNPs were 

associated with variability in gray matter volume within brain regions (bilateral amygdala, 

ventral striatum and hippocampus) previously associated with chronic cannabis use and 

misuse (14;15) among an independent cohort of 430 EA college students. Some prior studies 

have reported lower gray matter volume in these brain regions, although results are 

inconclusive. While a majority of studies have attributed such volumetric changes to the 

effects of chronic cannabis exposure (e.g.,(16)), at least one study has implicated common 

predisposing influences, such as genetic liability, as the major contributor to the association 

between casual cannabis use and variability in amygdala volume (17). As this sample of 

college students included <10 individuals who met criteria for cannabis dependence, we 

were principally interested in examining whether the top loci that emerged from the GWAS 

were associated with volumetric differences, whether regional brain volume varied across 

cannabis users and nonusers and further, whether the effects of top loci on cannabis 

involvement could be partly attributed to variability in brain volume.

MATERIALS AND METHODS

Samples

Data were drawn from 5 cohorts: (a) a case-control (18) and (b) family GWAS (19;20) 

component of the Collaborative Study on the Genetics of Alcoholism (COGA; COGA-cc 

and COGA-f), (c) the Study of Addictions: Genes and Environment (SAGE)(21), (d) the 

Australian Alcohol (22), Nicotine Addiction Genetics (23), and Childhood Trauma (24) 

studies (OZALC+) and (e) the Comorbidity and Trauma Study (CATS)(25). Individual 

studies have been described in detail in related publications and in Supplemental Text. An 

outline of the samples used in this study is available in Table 2. As the overwhelming 

majority of the data were on individuals of European-Australian and European-American 

descent, discovery analyses were restricted to individuals of European descent. All subjects 
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provided informed consent and protocols were approved by the institutional review boards 

overseeing the individual studies (see Supplemental text).

Summary statistics from European ancestry subjects in CATS, COGA-ccGWAS, COGA-

fGWAS, OZALC+ and SAGE were combined to form the discovery analysis. Replication 

analyses were conducted in the Yale-Penn (8) sample which was the major dataset 

contributing to the prior study by Sherva et al (8). Yale-Penn includes a large number of AA 

participants; thus, results from both EA and AA subjects were separately examined. Sherva 

et al also included SAGE data in their discovery cohort and used CATS as a replication 

sample. In our analyses, only the Yale-Penn component of Sherva et al (8) was used for 

replication, while SAGE and CATS were part of the discovery cohort.

Genotyping

A variety of Illumina platforms were used to genotype the cohorts (Table S1). Quality 

control and imputation metrics (26–29) for the individual samples are provided in referenced 

publications (18;19;21;22;25) and in Table S1.

Phenotype

Cases met criteria for DSM-IV cannabis dependence(30), which included withdrawal (i.e., 3 

or more of 7 criteria) in COGA and SAGE but not in CATS or OZALC+. Controls did not 

meet criteria for cannabis dependence but reported a lifetime history of ever having used 

cannabis, even once. Follow-up analyses of top loci examined whether excluding those with 

DSM-IV cannabis abuse or 1–2 dependence criteria modified the results. A natural log-

transformed (to account for skewed data) count of DSM-IV dependence criteria (0–6, 

excluding withdrawal; adding “1” for 0 values) was also analyzed (n=8,050). Finally, the 

effect of comorbid DSM-IV alcohol, nicotine and opioid dependence was investigated by 

examining their association with top loci in post hoc analyses.

Statistical analysis

Each sample was analyzed separately using specific analytic protocols that have been 

validated for that sample (18;22;25;31;32). Prior to meta-analysis, SNPs that did not satisfy 

quality control standards imposed for the current study were excluded (see Supplemental 

Text); only SNPs that survived quality control in all 5 samples were included in the meta-

analysis. PLINK (v1.07)(33) was used to analyze allele dosage data for SAGE, CATS and 

COGA-cc. GWAF-GEE (34) was used to analyze the family data for DSM-IV cannabis 

dependence from COGA-f and OZALC+. Linear mixed models and Merlin-offline(35) were 

used to analyze criterion counts in COGA-f and OZALC+ respectively. Logistic and linear 

regressions were used for the diagnosis and count definitions, respectively (see Table S1 for 

covariates used for each sample). Results were meta-analyzed in METAL (36) using inverse 

variance weighting procedures and genomic control correction. Gene-based association 

analyses were conducted using MAGMA (37) with the 1000 Genomes European data 

(release version 3, May 22, 2014) as the reference panel. Gene boundaries were extended to 

include a 10kb window at the 3′ and 5′ ends.
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Annotation

Top SNPs (p<5E-8) were annotated using a variety of resources that are described in 

Supplemental Text.

Replication

Replication analyses were conducted in the Yale-Penn study (described in Supplemental 

Text, related publications (13;38) and Table S1). Cases met criteria for DSM-IV cannabis 

dependence (NEA=781, NAA=896) and controls (NEA=1,591, NAA=1,905) reported a 

lifetime history of cannabis use.

Neuroimaging extension

Data on 430 EA college students aged 18–22 years were drawn from the Duke 

Neurogenetics Study (DNS (39); Supplemental Text). First, we examined the association 

between genotype (rs1409568, modeled as C-allele carriers vs. T allele homozygotes) and 

(a) cannabis use (ever used and frequency of use in ever users) and (b) regional brain 

volume. A Generalized Linear Model in SPM8 was used to test whether genotype predicted 

regional volume within 6 brain regions (i.e., left and right amygdala, hippocampus, striatum) 

previously associated with cannabis use and misuse (14;15). Familywise error correction 

(FWE p < .05) with a 10-voxel extent cluster threshold was applied to each of these 6 

anatomical regions of interest (ROIs) derived from the Automated Anatomical Labeling 

atlas (40) within Wake Forest University Pick Atlas software (41). Additional 

methodological details are presented in Supplemental Text. Second, we tested whether 

cannabis use (ever used; frequency of use in ever users) was associated with regional gray 

matter volume in any of these regions. Third, we examined whether associations between 

genotype and regional brain volume persisted after controlling for cannabis use. All DNS 

analyses controlled for sex and age; analyses on regional brain volume also controlled for 

total intracranial volume (ICV), while analyses including genotype additionally included the 

first three principal components of ancestry. All non-imaging analyses and group 

comparisons were conducted using the R (3.1.2) ‘Stats’ package.

RESULTS

Sample characteristics

Samples were relatively similar in age and gender distribution. By ascertainment design, 

there was considerable overrepresentation of all forms of substance use disorder across the 

samples (Table 2), with the exception of OZALC+ which included families that were 

ascertained based on family size rather than substance-related problems.

GWAS results

DSM-IV cannabis dependence—Lambdas for individual studies and meta-analyses 

were close to 1.0 (Supplemental Table S1; Figure S1A). Genomewide significant loci did not 

emerge in any individual study. Meta-analysis of summary statistics from the 5 discovery 

samples (CATS, COGA-cc, SAGE, COGA-f, OZALC) revealed a cluster of genomewide 

significant SNPs in a region on chromosome 10 (Table 3 for loci at p-value < 10−6; 
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Supplemental S2A for Manhattan plot; full results available upon request), with 

genomewide significant loci representing a single signal (Figure 1A for regional association 

plot (42)). The lowest p-value was associated with rs77300175 (p-value = 1.3E-8; Table 3), 

with stronger contributions from the 3 case-control cohorts (SAGE, CATS, COGA-cc; 

Supplemental Table S2) than the family-based cohorts (COGA-f and OZALC+).

Cannabis dependence criterion count—There was no evidence for genomewide 

significant loci associated with cannabis dependence symptom counts (Supplemental Table 

S3; Supplemental Figures S1B and S2B). The most promising association was noted for a 

cluster of SNPs in chromosome 2 (e.g. rs2287641, p=9E-7). The chromosome 10 SNPs were 

similarly associated, but not at genomewide significant levels (e.g. rs150525973 P = 1.2E-6).

Replication: For the DSM-IV dependence diagnosis, findings were not replicated in Yale-

Penn EA participants (Supplemental Table S4); effect sizes were consistently in the same 

direction, but smaller (e.g. rs1409568: β = −0.072, p=0.6). Consistent with our finding, the 

T allele of rs1409568 was associated with a reduced likelihood of cannabis dependence 

among the AA participants from Yale-Penn (β = −0.18, p = 0.028). When results from all 

datasets, discovery and replication (EA and AA), were meta-analyzed together (Ncase=3,757, 

Ncontrol=9,931), rs1409568 remained associated with DSM-IV cannabis dependence at a 

trend level (β = −0.28; p = 2.9E-7). In addition, there was no evidence from our meta-

analysis for association between cannabis dependence diagnosis or symptom counts with 

previously identified loci for cannabis use (i.e., top 10 signals from Stringer et al(13)) and 

top EA locus from Sherva et al (8) – Supplemental Table S5).

Gene-based association—There was no evidence for enrichment of association within 

genes for cannabis dependence diagnosis. (Supplemental Table S6); However, for symptom 

count, MEI1, on chromosome22, was associated at a gene-level (p=2.55E-6; Supplemental 

Table S7). Several other genes with SNPs of nominal significance clustered in this 

chromosomal region (Figure S3 for chromosome 22 regional association plot).

Genomic and Epigenomic Annotation—Genomewide significant SNPs on 

chromosome 10 were not in linkage disequilibrium (r2 ≥ 0.6) with non-synonymous variants 

in neighboring genes. No significant cis-eQTLs were identified for any chromosome 10 

variant in any tissue in GTEx (43) as well as dorsolateral prefrontal cortex (dlPFC) tissue 

from the Common Mind Consortium data(44). However, there was preliminary evidence that 

rs1409568 (RegulomeDB score 3a), but not other variants in the region (scores ≥ 5) may 

have regulatory effects (45). Closer inspection in the Epigenome Browser (46) showed that 

rs1409568 was accompanied by enhancer-enriched active histone modifications (H3K4me1 

and H3K27ac) in a variety of brain tissues (Figure 2). Evidence of an active enhancer was 

particularly prominent in the dorsolateral prefrontal cortex (dlPFC), angular gyrus, cingulate 

gyrus and the inferior temporal lobe. There were also enriched H3K4me1 and H3K27ac 

signals in the middle hippocampus and the substantia nigra, however these signals were not 

detected at corrected thresholds defined by MACS (q-value cutoff 0.05). All of these regions 

are strongly implicated in the etiology of addiction (47).
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We determined that rs1409568 was within a chromosome 10 regulatory domain spanning 

120,300,000bp – 120,790,000bp that encompassed all of the genome-wide significant SNPs. 

The regulatory domain included 12 genes, including 3 protein coding genes (PRLHR, 
CACUL1, NANOS1), 4 pseudogenes (SLC25A18P1, TOMM22P5, RP11-215A21.2, 
LDHAP5), and 5 non-coding genes (AL356865.1, AL356865.2, U3, RP11-498J9.2, 
AL15778.1). Seven of 12 genes were expressed in several brain-derived tissues 

(Supplementary Figure S4). RP11-215A21.1 is the gene closest to rs1409568 (1.3kb from 

the transcription start site), however, there is no evidence that rs1409568 regulates the 

expression of any gene within the regulatory domain. The T allele of rs1409568 is conserved 

within primates, but not between primates and rodents (Supplementary Figure S5).

There was also evidence that rs1409568 altered the binding motif for several transcription 

factors that are critical during embryogenesis, including those encoded by genes that include 

homeodomains (e.g., HOXD8, VAX1) and those from the Pit-Oct-Unc (POU) family (e.g., 

POU4F1, POU4F3, POU6F2: for full list, see Supplemental Table S8). Although predictions 

were based on common tissue sources, several transcription factors showed brain-related 

expression (e.g., POU6F2).

We identified 26 CpG probes that corresponded to genes with transcription start sites (TSS) 

within 1 Mb of rs1409568. Differences in CpG methylation were examined in CT (n=34) 

and TT (n=313) individuals in tissue from the frontal cortex and cerebellum(48). Only one 

probe (cg23182539), corresponding to TIA-1 related protein isoform 1 (TIAL1) showed 

nominal support for change in methylation scores as a function of genotype (Supplemental 

Table S9), with lower methylation scores in C allele carriers (β = −0.56, p = 0.0017; 

Wilcoxon p = 0.005). However, methylation change in this gene was not significant after 

Bonferroni correction (26 probes x 2 regions; pcorrected = 0.00096).

Sensitivity to definition of controls—The chromosome 10 SNPs represented a single 

signal (Supplemental Figure S6), so follow-up analyses used a representative locus. Controls 

(N=6,435) included individuals who did not meet criteria for DSM-IV cannabis dependence 

but may have met criteria for a lifetime history of DSM-IV cannabis abuse or endorsed 1–2 

dependence criteria. Exclusion of individuals with abuse (N=1,590) from among the controls 

yielded similar effect sizes but diminished statistical significance, likely due to the reduced 

statistical power (rs7098706: b = −0.53, p = 5.90E-7; rs1409568: b = −0.50, p = 1.21E-6). 

Excluding control individuals with abuse or 1–2 dependence criteria (N=2,152) had a similar 

effect (e.g., rs7098706 b = −.50, p = 1.85 E-6; rs1409568: b = −0.48, p = 3.95E-6). Thus, 

heterogeneity within the control population is not responsible for the observed association.

Comorbidity with other substance use disorders—Only nicotine dependence was 

associated with rs1409568, and in CATS alone (p = .003) – adding nicotine dependence as a 

covariate to the CATS analysis did not greatly alter the significance of rs1409568 (p = 

5.51E-8; Supplemental Table S10). Alcohol dependence was not associated with rs1409568 

in any individual study, although the meta-analytic p-value was less than 0.05.

Genotype and brain volumetric variation: In the DNS, 51% of the sample reported 

lifetime cannabis use, with 12% (n=52), 15% (n=66), 8.8% (n=38) and 15% (n=65) using 
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cannabis 1–2, 3–10, 11–20 and >21 times during their lifetime respectively. Ever using 

cannabis and the frequency of use within lifetime users were not associated with rs1409568 

genotype (C-allele carrier vs TT; only 2 individuals with CC genotype). However, the C 

allele, which was associated with increased likelihood of cannabis dependence in the meta-

analysis, was associated with increased gray matter volume in the right hippocampus (2.13% 

greater than TT individuals; Cohen’s d = 0.62, maximal voxel p-fwe = 0.007; Bonferroni p-

value for 6 a priori regions = .008; Supplemental Figure S7A). This association remained 

unchanged when cannabis use was included as a covariate in the analysis (Cohen’s d = 0.62, 

maximal voxel p-fwe = 0.008). Other regions previously associated with cannabis use (i.e., 

left hippocampus and bilateral amygdala and ventral striatum) showed no relationship with 

the SNP. Finally, ever having used cannabis was associated with increased volume in a 

cluster in the left hippocampus (3.18% greater in ever versus never users; Cohen’s d = 0.39, 

maximal voxel p-fwe = 0.002; Supplemental Figure S7B). No significant volumetric 

differences were observed for the right hippocampus, where the SNP exerted main effects, 

nor was the cluster in the left hippocampus in the same region as the cluster in the right 

hippocampus to which rs1409568 was associated. Lastly, rs1409568 was not associated with 

hippocampal volume in an independent large meta-analysis (p=0.33; N=12, 516)(49).

DISCUSSION

This study identified a genomewide significant locus on chromosome 10 for cannabis 

dependence diagnosis in subjects of European descent. To date, only one other (Table 1) 

study (8) identified genomewide significant loci for cannabis dependence criterion count. 

The novel locus identified in the present study included a representative SNP, rs1409568, 

which showed modest evidence for replication in the AA, but not EA, participants from the 

independent Yale-Penn sample that was part of the only other study with genomewide 

significant SNPs. The lack of replication in the EA component of Yale-Penn may reflect 

lower power (i.e., fewer cases than the AA component, or higher minor allele frequency in 

AA than EA) or ascertainment differences. It is also noteworthy that patterns of LD for the 

SNPs in Table 3 differ across CEU and ASW populations (based on 1000 Genomes data; 

Supplemental Figure S8)(50); replication that was noted in the AAs was present in spite of 

these differences. Nonetheless, associations in the Yale-Penn EA participants were in the 

same direction as the current meta-analysis.

The genomewide significant chromosome 10 SNPs represent a single LD signal, and are 

located in a region that is primarily intergenic. However, based on GENCODEv19 (51) 

annotation, there are multiple genes within the regulatory domain spanning these SNPs. 

While 5 of these 12 genes are expressed in brain-derived tissues (Supplemental Figure S4), 

none of the genomewide significant SNPs served as eQTLs for expression of these genes in 

GTEx, which includes modestly sized samples for a variety of brain tissue, nor in the larger 

Common Mind Consortium data, which includes 279 dlPFC samples. We found no evidence 

in the literature for the role of the genes within the regulatory domain in the etiology of 

addiction-related or other behavioral phenotypes.

One genomewide significant SNP, rs1409568, appears to be located within an active 

enhancer (52). This finding is consistent with a recent study that reported modest enrichment 
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of H3K27ac marks for a variety of complex traits (e.g., Crohn’s disease)(53). Importantly, 

there is growing evidence that intergenic genomewide significant loci are disproportionately 

overrepresented in regulatory regions, such as enhancers (54–56). For example, functional 

partitioning of SNP-attributable heritability for 11 complex traits found that DNase1 

hypersensitivity sites were 1.6- and 5.1-fold enriched in genotyped and imputed data 

respectively, with enhancers being the most common subcategory, representing 31.7% of 

total SNP heritability and 9.8-fold enrichment (54).

Importantly, rs1409568 is predicted to bear active enhancer marks in several brain-derived 

tissues that are critical to addiction, most notably the dlPFC and the cingulate and angular 

gyri, which play a major role in the development of addictive behaviors, particularly in the 

regulation of executive control and attentional bias (57). These in-silico findings imply that 

the C allele is associated with reduced or no binding of several homeodomain-containing 

(58) developmentally relevant transcription factors, with some difference scores (e.g., 

POU6F2) being substantial (>8.0). These genes and their products have been variously 

implicated in embryogenesis and in cell-type specific pathways of differentiation, 

particularly in visual systems (59–61), but have not been related to behavioral traits thus far.

There was also nominal evidence that rs1409568 genotype was associated with changes in 

CpG methylation of TIAL1. C allele carriers, on average, had lower methylation scores than 

T homozygotes. There is no published evidence for a role of the RNA-binding protein 

encoded by this gene in addictive processes.

In an independent sample, the C allele of rs1409568 was also associated with a modest 

increase in right hippocampal volume (2.13%) but not with cannabis use itself. The 

hippocampus has been implicated in addiction (47), including volumetric differences that 

have been observed in chronic cannabis users (14;15). This, in addition to tentative evidence 

for the role of rs1409568 as a potential enhancer in the middle hippocampus (Figure 2), 

indicates that this SNP may regulate neural effects that are central to the development of 

addictions. The lack of association between cannabis use and genotype is not surprising 

given the vanishingly low number of problem users (e.g., 12 individuals with cannabis 

abuse) in the DNS sample.

Cannabis use itself was associated with a modest increase (3.18%) in left (but not right) 

hippocampal volume. This finding contradicts prior studies that have linked chronic, but not 

occasional, cannabis use to decreases (not increases) in hippocampal volume. We speculate 

that the association between cannabis use and increased hippocampal volume may be due to 

the nature of DNS, which includes casual, non-problem users who are also likely enriched 

for other factors that might protect against progression to problem use (and against 

hippocampal deficits). In support of this, we found that cannabis users in DNS were more 

likely to represent higher socioeconomic status (t=3.70, p<0.001) and even showed modest 

increases in digit-span performance (t=2.50, p =.013), an index of working memory 

suggesting that cannabis users in DNS may be characterized by adaptive factors that protect 

them from progression to problem use. Therefore, if previously documented associations 

between cannabis use and smaller hippocampal volumes are a consequence of chronic 

exposure to cannabis, then we would not expect to see these reductions in the DNS.
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The minor allele of rs1409568, which was more common in cannabis dependent cases in the 

meta-analysis, was associated with increased hippocampal volume. This finding is also 

inconsistent with the hypothesis that liability to heavy cannabis use should relate to 

decreased hippocampal volume. There are, at least, two plausible explanations for our 

observation of the opposite association. First, it is possible that the association between 

rs1409568 and hippocampal volume is independent of its association with cannabis 

dependence in the meta-analysis. While such a pleiotropic effect adds encouraging evidence 

favoring a role of rs1409568 in neural regions typically associated with addiction, and 

augments its functional plausibility, it does not help reconcile the mechanism by which 

rs1409568 might influence liability to cannabis dependence. Second, the association 

between rs1409568 and hippocampal volume did not replicate in the large ENIGMA meta-

analysis. This raises the possibility that the association is a false positive in DNS and 

suggests that caution is warranted in its interpretation.

It is also noteworthy that the current study did not replicate previously noted associations for 

cannabis use (13) or dependence (8). These are not unexpected. For cannabis use, our 

sample excluded individuals who had never used cannabis, thus limiting our ability to detect 

loci associated with initiation of cannabis involvement. Our lack of replication of one prior 

locus identified for cannabis dependence in EAs (rs77378271) might further underscore 

differences between our European samples and those comprising Yale-Penn. A full meta-

analysis of these datasets might yield additional novel loci.

While no single SNP was genomewide significant for the count of DSM criteria, gene-level 

testing identified MEI1 (meiotic double-stranded break formation protein 1). Relative to 

other tissues, MEI1 is more robustly expressed in the testes and variants in the gene have 

been associated with azoospermia due to early and complete meiotic arrest (62). In parallel, 

there is compelling epidemiological and biological support for the relationship between 

prolonged/heavy cannabis use and male reproductive health, including fertility. Weekly 

cannabis use has been associated with a 28–29% reduction in sperm concentration and count 

(63). The endocannabinoid system actively participates in the regulation of male fertility 

(64), including by promoting meiosis via CB2 activation (65). Therefore, the possibility of 

shared genetic pathways to male fertility and heavy cannabis use might provide a plausible 

alternative to more causal explanations. However, we are not aware of any prior studies that 

link MEI1 to cannabis use or addiction.

Some limitations are noteworthy. First, despite aggregating across several large datasets, our 

meta-analytic sample was relatively underpowered to detect small effects and also, for 

analyses that would allow us to estimate genetic correlations between cannabis dependence 

and other traits (e.g. cigarettes per day (68) for which genomewide summary statistics are 

available. Such calculations typically rely on unrelated cases and controls and our study 

included two samples with complex pedigree structures. Second, we did not have adequate 

numbers of AA participants for a full examination of loci identified in Sherva et al (8). In 

EAs, the only SNP associated at genomewide significant levels in Sherva et al was 

rs77378271 (CSMD1). In the current study, rs77378271 shows some evidence for 

independent association with cannabis dependence in COGA-cc (p=5.3E-3); however, the 

meta-analytic p-value was not significant, with indication of heterogeneity across the 
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samples included in the present meta-analysis. We anticipate that additional data on cannabis 

dependence in both EA and AA participants will be available in the future. Finally, the 

minor allele frequency for rs1409568 (and related genomewide significant SNPs) was <10% 

across cases and controls from each sample.

We identified a new genomewide significant locus on chromosome 10 that was associated 

with vulnerability to cannabis dependence in European ancestry individuals. One of the 

representative SNPs, rs1409568, showed promising epigenetic evidence and might also 

contribute to variation in hippocampal volume, which has been related to risk for and 

resilience to psychiatric disorders, including addictions. Replication, however, was limited to 

a subset of AA, but not EA, individuals and analyses in the DNS contradicted prior findings 

for hippocampal volume and did not extend to a broader meta-analysis of hippocampal 

volume. Therefore, the identification of this chromosome 10 locus should be viewed as 

preliminary. Future work that aggregates additional cannabis dependent cases and controls, 

would allow for the detection of smaller effect sizes and a more thorough investigation of 

comparability of loci across population groups. This is critical, as genomic research into 

cannabis involvement has lagged behind that of other drugs, despite the pressing public 

health significance of the problem. Continuing to identify risk factors, both genetic and 

environmental, that are associated with cannabis dependence is a public health priority, as 

understanding the genetic etiology of cannabis use disorders can ultimately help to identify 

individuals who are at greatest risk of the disorders and enhance efforts aimed at prevention 

and personalizing pharmacotherapy among affected individuals.
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Figure 1. 
Regional association plot of chromosome 10 SNPs (centered at rs1409568 ± 500kb) 

associated with cannabis dependence cases-status (N=2,080) compared with cannabis 

exposed controls (N=6,435).
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Figure 2. 
Epigenetic annotation of rs1409568 on chromosome 10 depicting preliminary in silico 
evidence for an active enhancer mark.
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