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HIV patients form clusters in HIV transmission networks. Accurate identi-

fication of these transmission clusters is essential to effectively target public

health interventions. One reason for clustering is that the underlying

contact network contains many local communities. We present a new

maximum-likelihood method for identifying transmission clusters caused

by community structure, based on phylogenetic trees. The method employs

a multi-state birth–death (MSBD) model which detects changes in trans-

mission rate, which are interpreted as the introduction of the epidemic

into a new susceptible community, i.e. the formation of a new cluster.

We show that the MSBD method is able to reliably infer the clusters and

the transmission parameters from a pathogen phylogeny based on our

simulations. In contrast to existing cutpoint-based methods for cluster

identification, our method does not require that clusters be monophyletic

nor is it dependent on the selection of a difficult-to-interpret cutpoint par-

ameter. We present an application of our method to data from the Swiss

HIV Cohort Study. The method is available as an easy-to-use R package.
1. Background
Basic epidemiological models rely on the random mixing assumption [1].

This requires that each individual in a population has an equal probability

of coming into contact with any other individual, which can lead to rapid epi-

demic spread. The random mixing assumption may be appropriate for airborne

diseases in small communities. For sexually transmitted infections (STIs) such

as HIV-1 however, this hypothesis does not hold: STIs spread within sexual

contact networks that limit the propagation to a specific subset of individuals.

Identifying the structure of the sexual contact network has multiple appli-

cations, for instance, allowing public health officials to target the populations

most vulnerable to infection.

Previous studies have shown that the spread of HIV among men who have

sex with men is driven by quick transmission chains, i.e. groups of infected

individuals with genetically similar viruses [2,3]. We say that patients of such

a quick transmission chain form a cluster. A cluster is the result of series of

infection events very close in time, and their role in spreading the epidemic

affects the efficacy of public health policies: the effectiveness of Treatment as

Prevention, a policy currently advocated by the WHO [4], will be limited if

most of the transmission happens early after infection, before HIV is diagnosed.

One reason for individuals belonging to a quick transmission chain, i.e. for

individuals to form a cluster, is that they are part of the same community in the

sexual contact network. A community is defined as a set of nodes in the sexual con-

tact network such that most or all nodes are connected within a community, but

few links exist between communities [5]. Communities influence the dynamics

of an epidemic: at first, the infection spreads quickly in the community where it
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has been introduced. The rate of transmission then decreases as

the population of susceptibles in the community is progress-

ively exhausted [6]. Eventually, a new introduction event may

occur, where an individual from a previously uninfected com-

munity is infected through one of the inter-community

connections. As the newly infected community is completely

susceptible, the rate of transmission then goes up suddenly as

new transmission routes open. Thus, the community structure

of the sexual contact network shapes transmission dynamics

and, in turn, leaves a footprint in the phylogeny reconstructed

from pathogen genetic sequences of different infected individ-

uals within an epidemic. In particular, the community

structure induces clusters of individuals in the phylogeny.

Previous studies have found varying degrees of influence

of the contact network on the phylogeny. Welch [7] found

almost no influence of the clustering coefficient of a network

on the shape of transmission trees when the degree distribution

of the network was kept constant, and Robinson et al. [8] found

a modest effect of the degree distribution in the network on the

shape of phylogenies reconstructed from simulated genetic

data. On the other hand, Leventhal et al. [9] and Bohme [10]

found that the shapes of phylogenies could be significantly

affected by variance in degree distribution and mean path

length [9] or in degree correlation and clustering coefficient

[10] of the contact network. The link between network struc-

tures and phylogenies is also affected by viral characteristics

such as within-host evolution [11] and recombination [12].

Several methods have been proposed to identify structural

characteristics, such as connectivity and clustering coefficient,

of the population network from a viral phylogeny [13,14].

Phylogenetic clustering methods aim to find transmission

clusters within phylogenies, exploiting the effects that, e.g. con-

tact networks have on phylogenies. To this end, a transmission

cluster is defined to be a set of individuals belonging to the

same transmission chain within a particular community in

the contact network. We do not investigate other reasons for

clustering beyond the contact network. Phylogenetic clustering

methods, which we will refer to as ‘cutpoint-based’ methods,

were evaluated in [15], also under the assumption that cluster-

ing is caused by the contact network. These cutpoint-based

methods differ in how they define the distance between tips

of the tree, but they have two major features in common:

first, they require a difficult-to-interpret cutpoint parameter

to be specified by the user; second, they assume that the clus-

ters are monophyletic in the phylogeny or monophyletic in a

tree obtained from hierarchical clustering (Def. 4 in [15]), i.e.

that the most recent common ancestor of all tips belonging to

a given cluster has no other descending tips. Villandre et al.
[15] simulated epidemics and built phylogenetic trees on simu-

lated contact networks, and evaluated the performance of

cutpoint-based methods which defined a transmission cluster

with cutpoint x as either (i) a clade whose tips are separated

by a fixed tree distance of at most x, where tree distance is

the sum of branch lengths, (ii) a clade whose elements are sep-

arated by a fixed distance of at most x, where distance is the

standardized number of different nucleotides between tip

sequences, (iii) a clade whose elements are separated by a

median pairwise tree distance below x, (with x an arbitrary per-

centile of the tree’s between-tip distance distribution), where

tree distance again corresponds to the sum of branch lengths

or (iv) a clade in a dendrogram, i.e. an ultrametric tree obtained

from the matrix of between-tip tree distances, cut at height x,

where the dendrogram was obtained using one of three
methods: average linkage, complete linkage or weighted

pair-group method of analysis. [15] found that the presence

of nested, non-monophyletic, clusters in the tree as well as

the choice of the cutpoint have a strong impact on the quality

of the recovered clusters. It also established that the cutpoint

values giving the best results for cluster recovery are dependent

not only on the distance used but also on the structure of the

underlying network. Thus, there is a need for a method that

does not have these limitations.

Multi-state birth–death (MSBD) models have been widely

used to model population structure and analyse phylogenies

built from individuals in a structured population [16–19], in phy-

logeny epidemiological and macroevolutionary applications.

Thus, in principle, such a model may be used to study the phy-

logeny produced by a sexual contact network and to infer which

tips in a phylogeny belong to which transmission cluster, with

birth rates being transmission rates and death rates being

removal rates. The rationale of the inference is to associate each

cluster to a state in the MSBD model, with clusters differing in

their transmission dynamics through time.

The Binary State Speciation and Extinction [16] and its

extension to multiple states MuSSE, included in the package

Diversitree [17], were the first efforts to infer state-specific

birth and death rates from ultrametric phylogenies, i.e. trees

with all tips sampled at the same point in time, where each

tip is assigned to a state. In [18], these approaches were

extended to non-ultrametric trees. More recently, the Beast2

package BDMM [19] allowed the joint reconstruction of a phy-

logeny and quantification of the parameters of an underlying

MSBD model. These approaches require the user to specify

how many states the model contains and to which state each

tip of the phylogeny belongs. An exception to the latter is

[18], which can integrate over tip states, but does not assign

states to tips.

None of the above approaches are directly applicable to

the inference of transmission clusters, for two reasons. First,

the state of tips, i.e. which cluster they belong to, is not

known prior to the analysis. Second, integrating over the

tip states instead of explicitly assigning states to tips means

that the partition of tips into clusters cannot be inferred.

The method Bayesian analysis of macroevolutionary

mixtures [20] addresses these issues and is able to infer the

number of states and to assign each tip to a state. Furthermore,

the birth- and death-rate parameters associated with each clus-

ter are estimated. However, it was designed to be used with

macroevolutionary datasets, meaning at the time of writing it

could only analyse ultrametric trees. For epidemiological data-

sets, we have non-ultrametric trees as samples are collected

through time. Furthermore, its results have been called into

question, as [21] identified issues regarding the calculation of

its likelihood function and its dependency on the user-defined

prior for inference of the number of states.

In this paper, we present a new method to identify trans-

mission clusters in a phylogeny built from viral sequences

based on the MSBD model. We note that other authors [22]

conducted a similar clustering study, relying on pure birth

models. McCloskey & Poon [22] highlight in their acknowl-

edgements section that their study builds upon our ideas

which we presented at a conference and outline in the follow-

ing. We assume here that transmission clusters were induced

through communities in sexual contact networks. When a

pathogen spreads through such a contact network, the trans-

mission rate typically increases upon the pathogen entering a
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new community, as the number of susceptible individuals in

the new community is typically larger. Our method is designed

to detect these ‘jumps’ in transmission rate, which we associate

with the formation of a new cluster. The method assumes

decreasing transmission rates within clusters to account for

the depletion of susceptibles. In particular, it does not require

prior knowledge on the number of clusters or the tip assign-

ment into clusters. We evaluate the performance of this new

method on the simulated dataset of [15] and compare it to cut-

point-based methods. We then apply it to a published HIV

phylogeny [14] which was obtained based on 192 sequences

from the Swiss HIV Cohort Study (SHCS). Finally, we discuss

the limitations of the method and planned future work.

c t s

Figure 1. Visual representation of the phylogeny under an MSBD model.
Each state is represented by a colour: the ancestral state, in black, starts
at the root and represent the first transmission cluster. The other states,
in blue, red and green, start at change points along the tree. These states
represent further transmission clusters in the course of the epidemic, and
the state change points represent the introduction of the pathogen into a
new community. Here tc, tt and ts are the times of, respectively, a state
change, transmission and sampling event, as they appear in equation (2.2).

c.Interface
15:20180512
2. Methods
2.1. Model
We assume an MSBD model similar to the model used in the

BDMM package [19]. The birth–death process starts with one

infected individual at time t . 0 in the past in an ancestral state

(i.e. cluster membership) and is stopped at present time 0. Thus,

we measure time in the backward direction, increasing from

the present to the root. Without loss of generality, we define the

ancestral state to be state 1. State changes occur at a per-lineage

rate g. Our MSBD model contains an unknown number of states

n*. We assume identical transition rates between clusters, so that

the rate mi,j with which hosts in state i infect hosts in state j is

as follows:

mi,j ¼
g

n� � 1
8i, j = i:

Each individual produces an additional individual at the

state- and time-dependent transmission rate li(t) (function of

l0,i, zi as defined below), and is removed with a state-dependent

removal rate mi corresponding to the removal rate or rate of

‘becoming non-infectious’.

The depletion of the susceptible population is modelled by

the exponential decay of the transmission rates in the process.

Each state is associated with a specific initial transmission rate

l0,i and a transmission decay rate zi. li(t) ¼ l0,i � ezi(t2t0,i) is

the transmission rate of a lineage in state i at time t before the pre-

sent, where t0,i is the time of the first introduction into state i. As t
increases into the past, we impose zi � 0 so that the transmission

rate decreases towards the present.

The infected individuals are sampled upon removal with a

probability s. This birth–death model produces a tree on all

infected individuals together with position and times of state

changes on the tree, and we obtain the phylogeny by considering

the subtree spanned by the sampled infected individuals. The

phylogeny contains information about the transmission and

removal times of the sampled individuals, as well as the
positions and times of the state changes, as shown in figure 1.

We assume that the state changes correspond to introduction

events in newly infected clusters, so that all tips inferred to be

in the same state belong to the same transmission cluster.

We refer to a node in the phylogeny being either a branching

event, a tip, or a state change event. Edges in the phylogeny

connect any two nodes, so any edge belongs to only one state.
2.2. Likelihood function
We now derive the probability density of a phylogeny (including

the state changes) given the MSBD parameters, i.e. we derive the

likelihood of the parameters given a phylogeny with state

changes L(M j T ): ¼ pdf(T jM ) with pdf being the probability

density function. A full derivation of all equations can be

found in the electronic supplementary material, text §1.
2.2.1. Differential equations
Following [18,19], the likelihood of the model parameters given

the phylogeny can be calculated from the differential equations

below. Equation (2.1) describes the probability pi(t) of a lineage

in state i at time t not producing any sampled offspring until

the present (referred to extinction probability below). Equation

(2.2) describes the probability density qi,N(t) of an edge N in

state i at time t evolving according to the phylogeny in time

interval [t, 0].
Þ

dpi

dt
(t) ¼ �(gþ li(t)þ mi)pi(t)þ mi(1� sÞ þ li(t)pi(t)2 þ

P
j=i

g

n� � 1
pj(t)

and pi(0) ¼ 1,

9=
; ð2:1

dqi,N

dt
(t) ¼ �(gþ li(t)þ mi)qi,N(t)þ 2li(t)qi,N(t)pi(t),

qi,N(ts) ¼ mis if N leads to a tip at time ts,

qi,N(tt) ¼ li(tt)qi,N0 (tt)qi,N00 (tt) if N undergoes transmission at tt, leading to N0and N 00,

and qi,N(tc) ¼ g

n� � 1
q j,N(tc) if N changes to state j at tc:

9>>>>>>>=
>>>>>>>;

ð2:2Þ
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The likelihood of the model parameter given a phylogeny

starting at root time t with initial state I is qI,N(t), meaning the

full likelihood can be calculated from equation (2.2). We can

also obtain the likelihood per edge by defining the edge likeli-

hood function fN ¼ qi,N(tb)/qi,N(te) for an edge N in state i with

start time tb and end time te. fN follows the differential equation

in equation (2.2) with initial condition fN(te) ¼ 1. The full likeli-

hood of the model M given the phylogeny T is then obtained

by multiplying the likelihoods of all edges as shown in

equation (2.3), where n is the number of states (including the

root state) in the tree, Ni is the set of edges in state i, Ti the set

of transmission events in state i and Si the set of tips in state i.

L(M jT) ¼ qI,N(t) ¼
Y

i

Y
N[Ni

fN �
Y
t[Ti

li(tt)�
Y
s[Si

smi

" #

� g

n� � 1

� �n�1
: ð2:3Þ

This likelihood function can be applied to trees with or with-

out a root edge, i.e. trees starting with one lineage or two at time t.

2.3. Approximations to the likelihood function
The model as described so far is mathematically rigorous; how-

ever, performing a maximum-likelihood (ML) inference on this

model is computationally complex. As a result, we now introduce

several approximations.

2.3.1. Ignoring state changes in unsampled subtrees
The equations for p and fN do not have an analytical solution.

Numerical integration is computationally expensive and can be

unstable for certain parameters. We thus make the assumption

that no state changes happen in the unsampled parts of the

tree, meaning all state changes occur on lineages that are

observed in the final tree. With this assumption, the master

equation for pi(t) changes to equation (2.4).

dpi

dt
(t) ¼ �(gþ li(t)þ mi)pi(t)þ mi(1� s)þ li(t)pi(t)2

and pi(0 ¼ 1:

9=
;
ð2:4Þ

2.3.2. Simplifying the number of states
As the real number of states in the underlying network n*

is unknown, we need to estimate it. However, once the

approximation described in the previous section is applied,

this parameter only appears in the likelihood in the factor

(g/(n* 21))n21, so maximizing the likelihood is equivalent to

minimizing n*. We further assume that each migration enters a

previously not visited state, i.e. n* � n. Together, the ML esti-

mate will always be n* ¼ n. Thus, we fix n* ¼ n in the inference.

2.3.3. Time discretization
Equations (2.4) and (2.2) have an analytical solution for constant

transmission and removal rates, but not necessarily for time-

dependent rates. To obtain a closed form solution, we use time

discretization and assume that the transmission rates can be con-

sidered locally constant on small enough intervals. The grid size

used for the discretization is fixed across the tree and needs to be

specified by the user. A smaller size will improve the accuracy of

the likelihood calculation but also increase the computational cost.

2.3.3.1. Time discretization for p
A closed form of the extinction probability and the likelihood

function can be obtained for piecewise constant transmission

and removal rates. Assuming constant rates in equation (2.4),

and a generic initial condition pi(tIC) ¼ VIC (rather than the
initial condition pi(0) ¼ 1), we obtain an analytic solution of

equation (2.4)

pi(t) ¼ �
1

li

(yi þ liVIC)xi e�ct � yi(xi þ liVIC) e�ctIC

(yi þ liVIC) e�ct � (xi þ liVIC) e�ctIC

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gþ li þ mi)

2 � 4mi(1� s)li

q

and xi ¼
�(gþ li þ mi)� c

2
and yi ¼

�(gþ li þ mi)þ c
2

:

9>>>>>>>=
>>>>>>>;
ð2:5Þ

This solution can be verified by differentiating the solution and

substituting the result into equation (2.4).

To obtain pi(t) using this time discretization, we divide the

time interval [t; 0] into a grid. Starting with pi(0) ¼ 1, we can

then evaluate pi using equation (2.5) in each grid interval going

backwards in time, using as initial value the solution of the

previous grid interval.

2.3.3.2. Time discretization for fN
A closed-form solution of the edge-likelihood function fN can

now be calculated, for a small time interval [tl; tl21] on an edge

N in state i. This expression uses the value of pi(tl21), calcula-

ted as explained above. We define fN(t, tl21) ¼ qi,N(t)/qi,N(tl21),

and obtain

fN(t, tl�1) ¼ ec(tl�1�t) yi � xi

(yi þ lipi(tl�1)) e�c(t�tl�1) � (xi þ lipi(tl�1))

� �2

,

ð2:6Þ

with c, xi and yi as defined in equation (2.5).

This expression for fN(t, tl21) is a solution of the differential

equation (2.2) on the interval [tl, tl21] with fN(tl21) ¼ 1, assuming

the rates li are constant in this interval and using the approxi-

mate function pi(t) from equation (2.5). This can be easily

verified by differentiating equation (2.6) and substituting the

resulting (d/dt)fN(tl, tl21) into the differential equation (2.2). We

then have fN(tb,te) ¼
Q

l fN(tl,tl�1).

Equations (2.5) and (2.6) are identical in form to the

expressions used in the birth–death skyline model [23], with

the piecewise constant birth rate variation being governed by

the exponential decay mechanism described earlier.

2.4. Algorithm
We now present an algorithm which identifies the cluster con-

figuration and associated parameters that maximize the

likelihood in equation (2.3) for a particular phylogeny T. More

details can be found in the electronic supplementary material,

text §2.

2.4.1. Maximum-likelihood search
We use a greedy approach to add state changes until no further

improvement of the likelihood can be obtained. New ML esti-

mates are obtained for all transmission, decay, removal and

state change rates each time a new state change is added, but

the positions and times of previous state changes are fixed.

Once a configuration has been found in which no more

state changes can be added to improve the likelihood, we

will attempt to recursively remove all the states from this con-

figuration. This step is designed to compensate partly for the

fact that the greedy approach never goes back on previous

state change assignments, and so can end up in sub-optimal

configurations.

Once no further improvements of the likelihood can be

obtained by either adding or removing a state, the method

will return the best fitting model found, including the state

configuration and the ML estimates for all parameters.
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The full algorithm is as follows:

(1) Find the most likely parameters for a one-state birth–death

model (i.e. with identical birth and death rates across the tree).

(2) For all edges in the tree:

(a) add a state change on this edge, then

(b) find the most likely parameters (i.e. transmission,

removal and state change rates) for this state configur-

ation, then

(c) keep this configuration as candidate if its likelihood is higher

than previously tested configurations with nþ 1 states.

(3) If a configuration with n þ 1 states was found that is more

likely than the configuration with n states, keep it and go

back to step 2.

(4) For each state change in the configuration:

(a) remove this state change.

(b) find the most likely parameters for this state configur-

ation, and

(c) if the configuration without this state was more likely

than the previous configuration, keep it.

(5) If at least one state was removed, go back to step 4.

(6) Otherwise, end and record the most likely model.

2.4.2. Time positions of state changes
The model and the likelihood function allow for state changes to be

placed anywhere on an edge. However, comparing the likelihood

values between configurations with different numbers of states is a

problem in an ML framework, as the parameter spaces are of

different sizes: indeed, the time of introduction into the n þ 1th

cluster is an additional continuous parameter. To allow an optim-

ization across different numbers of states, we thus limit the

positioning of state changes to predetermined discrete positions

on edges: they can be positioned at either 10%, 50% or 90% of

the length of the edge they are on. An intermediate option is also

available, which will test all three predetermined options and

keep the most likely.

In the actual epidemic, an introduction event is always simul-

taneous with a transmission event, which is not possible under our

MSBD model. However, cluster introduction events can be placed

close to transmission events in the tree, so this should not affect

the accuracy of the inference. Furthermore, due to incomplete

sampling, the introduction events may actually fall on branches.

2.5. Implementation
The likelihood calculation and ML inference are implemented as

the publicly available R package ML.MSBD. The package takes as

input a phylogenetic tree with branches in units of time, in the

phylo format implemented by the package APE [24]. Partial

results of the inference are automatically saved after each optimiz-

ation step, so that an interrupted run can be resumed at any point.

The full results returned include the best estimates for the number

and positions of cluster introductions, as well as all initial trans-

mission rates, transmission decay rates and removal rates of each

state. Furthermore, we return the ML values for each number of

states n up to ~nþ 1 where ~n is the ML inferred number of states.

An evaluation of the performance of the package can be found

in the electronic supplementary material, text §5.
3. Results
3.1. Cluster inference on simulated data
3.1.1. Dataset
We use a simulated dataset produced by Villandre et al. [15],

which contains simulated epidemics on three different types

of networks, A, B and C. The network structure A is composed
of 13 communities of 20 subjects each, with each community

being a fully connected graph and one bridge linking any

two communities.

The network structure B consists of one central community

of size 60, representing a main sexual contact network, con-

nected by single bridges to 25 communities of size 20. Each

small community is a fully connected graph. These small com-

munities represent disjoint sexual contact subnetworks in a

population of interest.

The network structure C contains 100 communities,

whose size was sampled from a distribution obtained from

a phylogeny of the SHCS dataset (see [15] for details). To

ensure that all communities are accessible, they are first

linked in a chain. Additional bridges are then created by con-

necting any two vertices belonging to different communities

with probability 0.00075.

In all network types, edges between communities are

weighted with a weight of 0.25, 0.5, 0.75 or 1, meaning

that the rate of transmission on these edges is respectively

25%, 50%, 75% and 100% of the transmission rate on

within-community edges.

Epidemics were simulated on these networks starting from

one random introduction in A networks, one random introduc-

tion in the main community in B networks, and two random

introductions in C networks. All infected individuals were

sampled upon removal and a transmission tree was built

from the sampled tips. Thus, there is no phylogenetic uncer-

tainty in this dataset: the tree represents exactly the simulated

epidemic. For each type of network (A,B,C) and each weight-

ing scheme (w ¼ 0.25, 0.5, 0.75 or 1), 300 epidemics were

simulated, for a total dataset of 3600 trees.

Network structure B was designed to correspond best to

the monophyletic assumption of the cutpoint-based clustering

methods: the epidemic starts in the main cluster and the

smaller communities are not connected with each other, so

all infections originating from the same introduction will be

grouped in a single clade. Network structure A, on the other

hand, allows for the possibility of multiple introductions in

the same community and onward transmission in further

communities inducing nested clusters, thus breaking some

of the assumptions of the cutpoint-based methods. More

details about the networks are presented in the electronic

supplementary material, text §3.
3.1.2. Comparison of our method with cutpoint-based methods
We ran our ML inference on the trees to assign states to tips,

and interpret different states as different transmission clus-

ters. In accordance with the simulation conditions, we set

s ¼ 1 in the inference. The removal rates mi are assumed inde-

pendent of the community, and so were set to the same value

m for all states. The time positions of the state changes were

fixed using the intermediate option of testing positions at

10%, 50% and 90% of the length of the edges.

The correspondence between the real network commu-

nities and the clusters inferred from the tree was assessed

using the adjusted Rand index (ARI) [25,26]. This index

measures the number of pairs of tips which are clustered

identically in both clusterings, i.e. either in the same cluster

or in two different clusters in both arrangements, compared

to the number of pairs which are clustered differently. The

ARI ranges from 21 to 1: a value of 1 indicates a perfect

match of the inferred clustering to the truth, a value of 0
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indicates that the inferred clustering matches the truth no

better than a clustering drawn at random, and negative

values indicate that the inferred clustering is worse than

would be expected by chance.

We compare the results from our method to the results

obtained by Villandre et al. [15] using cutpoint-based

clustering methods.

Figure 2 and electronic supplementary material, figure S2

show the scores obtained by our MSBD method on the simulated

A,B,C networks compared to the scores of the cutpoint-
based clustering methods, respectively, for weights w ¼ 0.25

and w¼ 1 and for weights w ¼ 0.5 and w¼ 0.75. All methods

used the same cutpoints values, except for the method based

on Definition 3 (Def. 3). Data corresponding to this method

were rescaled to fit in the same figure.

As shown in [15], the results of the cutpoint-based

methods are highly variable and good scores can only be

obtained from a narrow range of cutpoints. In addition, the

best cutpoint value is highly dependent on the underlying

network structure: in methods other than Def. 3, the best



Table 1. Percentage (%) of tips belonging to clusters with strictly less
than eight tips, per network structure and weighting scheme.

network type A B C

w ¼ 0.25 9.0 9.9 33.9

w ¼ 0.5 15.3 16.0 44.6

w ¼ 0.75 21.7 20.8 51.4

w ¼ 1 25.1 22.2 55.5
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scores are obtained for a cutpoint of c � 0.15 for networks A,

c � 0.03 for networks B and c � 0.02 for networks C. For Def.

3, the best score is obtained for c � 0.05 for networks A, c �
0.16 for networks B and c � 0.04 for networks C. We define

the ‘peak range’ of cutpoints for each method, network struc-

ture and weighting scheme as the range of cutpoints which

give a score that is at least 75% of the best score obtained for

any cutpoint. With this definition, the peak ranges are very

narrow, with an average length of, respectively, 0.008, 0.015

and 0.016 for networks A, B and C in methods other than

Def. 3. The peak ranges obtained with Def. 3 are much

wider, but a direct comparison is difficult due to the different

definition used for the cutpoint. In all methods, the peak

ranges for networks A and C on the one hand, and B on the

other hand have very little overlap and the best cutpoint for

B is never found in the peak range of either A or C, and vice

versa. In conclusion, it is impossible to get good results from

all network types with any single cutpoint value.

In addition, the cutpoint-based methods are sensitive to

network features and in particular limited by the monophyletic

assumption. In both the A and C networks, the best score

obtained by any cutpoint-based method is � 0.45 for the

weighting scheme w ¼ 0.25 and � 0.55 for w ¼ 1, whereas it

goes up to � 0.85 and � 0.9, respectively, in networks B. An

example of inference on a tree with nested cluster introductions

is shown in electronic supplementary material, figure S3.

In comparison, the MSBD method performs less well on B

networks, with an average score of 0.73 for w ¼ 0.25 and 0.49

for w ¼ 1. However, it performs much better on A networks,

with an average score of 0.64 for w ¼ 0.25 and 0.53 for w ¼ 1.

The worst results are obtained on the C networks, where the

average score is � 0.2 for all weights, less than half the best

scores obtained by cutpoint-based methods.

The low scores obtained on the C networks point to a

potential limitation of our method on the number of clusters

that can be inferred from a tree. The trees simulated on the C

networks contain clusters that have on average fewer

elements and a higher proportion of very small clusters than

the trees simulated on the A and B networks. These clusters

may be harder to detect due to their low signal. This is sup-

ported by the number of inferred clusters shown in electronic

supplementary material, table S1, which shows that the

MSBD inference infers the correct number of clusters for net-

works A and B, but strongly underestimates it in networks C.

To confirm this hypothesis, we calculated the scores obtained

by the MSBD method when excluding all tips that belonged

to a cluster with strictly less than eight tips. The results are

shown in figure 2 (dotted line). The proportion of tips excluded

by applying this criterion is shown in table 1. The scores of all

network structures and all weighting schemes improved when

applying this criterion. The improvement increased with the

proportion of tips belonging to the excluded clusters, support-

ing our hypothesis that the MSBD method has difficulty

identifying them. In particular, the MSBD scores on the C net-

work structure for weight �0.5 increase to a level on par with

the best scores obtained by cutpoint-based methods.
3.2. Quality of the parameter inference
To evaluate the performance of our MSBD method beyond

cluster identification, we simulated several datasets of 200

trees each under the MSBD process, with various parameter

combinations. Simulations were done using Gillespie’s
algorithm [27] for forward simulation of stochastic processes.

Birth–death trees were simulated to have either one state

(g ¼ 0) or multiple states sharing the same birth, birth decay

and death rates (g . 0). Tips were sampled upon removal

and the process was run until the tree reached 50 sampled

tips. The MSBD method was then applied directly to the simu-

lated trees. Because these trees were not built from network

simulations, we did not try to assess the quality of the cluster

inference, but we focused on the quality of the parameter infer-

ence and on whether our method can adequately distinguish

between trees that contain several states and trees that do not.

The results are summarized in table 2. We can see that

although the MSBD method is able to consistently infer mul-

tiple states when they are present, it will also wrongly detect

one additional state in around 25% of the trees that only con-

tain one state. This may be a problem of noise, where due to

the stochasticity of the simulation one subtree is slightly more

likely when attributed different rates than the rest of the tree.

This problem can be alleviated by looking at the difference in

the inferred transmission rates of each state, which are also

estimated by our method: a smaller difference is more

likely to be indicative of noise. As previously noted, the

method also tends to underestimate the number of states in

multi-state trees, mostly because it cannot detect states with

only a few tips.

Regarding the parameter inference, the method has a slight

bias towards overestimating the transmission rate and under-

estimating the removal rate. This is potentially due to our

simulation process being conditioned on reaching 50 tips,

which could bias datasets in favour of trees showing apparent

higher diversification rates [28]. Overall, the absolute error on

the inferred parameters remains low compared to the true

values, both in datasets with one cluster and in datasets with

multiple clusters.

We performed a similar analysis on datasets simulated

with incomplete sampling s ¼ 0.75 or s ¼ 0.5, shown in elec-

tronic supplementary material, tables S4 and S5 (electronic

supplementary material, text §6). The accuracy of the parameter

inferences decreases with lower sampling proportions, in

particular in the transmission rate estimates. However, the rela-

tive error remains low and the MSBD parameter estimates

remain reliable even with lower sampling proportions.

In conclusion, the parameter inference from the MSBD

method is reliable, although it suffers from noise when

applied to trees which contain only one state.
3.3. Cluster inference on HIV dataset
In this section, we analyse a tree used in another study of the

correlation between sexual networks and tree features [14].

HIV-1 subtype B pol sequences were obtained from the SHCS



Table 2. Parameter inference on simulated datasets. Each dataset contains 200 trees of 50 tips each, simulated under an MSBD process using Gillespie’s
algorithm. Transmission rates are averaged over the entire tree.

dataset parameters
l0 5 25, z 5 12,
m 5 1, g 5 0

l0 5 25, z 5 15,
m 5 1, g 5 0

l0 5 10, z 5 1,
m 5 5, g 5 0.5

l0 5 10, z 5 2,
m 5 5, g 5 0.5

average number

of clusters

simulated 1 1 4.95 6.38

.5 individuals, simulated 1 1 1.92 2.49

inferred 1.22 1.25 2.43 2.65

average

transmission

rate

simulated 1.09 0.86 6.95 5.40

inferred 1.54 1.38 7.52 6.20

median absolute error 0.37 0.49 0.75 0.78

average removal

rate

simulated 1.0 1.0 5.0 5.0

inferred 0.88 0.91 4.64 4.50

median absolute error 0.21 0.20 0.73 0.71
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192. While the Swiss epidemic includes a mixture of population

risk groups including heterosexuals, injecting drug users and

MSM, only viral samples from MSM were analysed. A large

cluster including almost 200 sampled individuals who pre-

dominantly lived or sought treatment in the Zürich area was

identified from an ML phylogeny of the complete dataset.

The phylogeny of this cluster was then obtained by fitting a

SIR-type pairwise epidemic model to this sub-epidemic while

simultaneously inferring the tree from the sequence data in

BEAST2. We re-analyse the maximum clade credibility tree

provided for that cluster in the supporting information of [14].

The results of the MSBD analysis are shown in figure 3a.

Three sub-clusters are identified in the tree, one with a higher

base transmission rate than in the backbone of the tree, and

two with similar base transmission rates which are lower

than in the backbone of the tree.

We compare our results to results obtained using the soft-

ware Cluster Picker [29] and PhyloPart [30], phylogenetic

cutpoint-based method which detect clusters based on a com-

bination of bootstrap support at the nodes and respectively

genetic distance between tip sequences or patristic distances.

Genetic sequences were generated for the tree using the soft-

ware SeqGen [31] (see electronic supplementary material, text

§4 for more details).

The results of Cluster Picker are shown in figure 3 and the

results of PhyloPart in electronic supplementary material,

figure S4. As both led to similar results, we will only discuss

the results for Cluster Picker here. As with other cutpoint-

based methods, the results depend strongly on the user-defined

values. We used three different cutpoint values for the genetic

distance: 1.5%, 4.5% and 8%. 4.5% is the default value proposed

by Cluster Picker and is the higher bound of the range rec-

ommended by Cluster Picker for HIV data, whereas 1.5% is

the lower bound of the recommended range. For the bootstrap

support threshold, we used the value 0.0. With this value, the

bootstrap support is disregarded entirely, which mimics the be-

haviour of the methods studied by [15]. The results are shown in

figure 3. We observe that the number of identified clusters is

strongly dependent on the cutpoint values, in keeping with the

results obtained by [15]. The size of the identified clusters

varies also widely, even within the bounds of the recommended

range of cutpoints.

One interesting thing to note is that the cluster pattern

identified by MSBD cannot be obtained by Cluster Picker
even when varying the threshold used. Cutpoint thresholds

which include all of the (non-root) clusters detected by

MSBD typically include additional small clusters which are

not supported by the MSBD model. On the other hand, redu-

cing the threshold to avoid these spurious clusters causes

Cluster Picker to miss clusters supported by MSBD.
4. Discussion
We have introduced a novel method of identifying trans-

mission clusters from a phylogeny, based on an MSBD

model. This model is designed to identify transmission clusters

induced by a pathogen spreading in a contact network with

communities. Transmission clusters are defined as all individ-

uals belonging to a transmission chain within a single

community. It will be an interesting future work to investigate

the ability of the MSBD model to infer clusters formed due to

other dynamics such as superspreading. Beyond HIV, our

method is applicable to any epidemic where the transmission

dynamics are governed by a contact network structure.

Our likelihood function makes two important assumptions:

the first one is that each community is entered precisely once,

and the second one is that unsampled subtrees, i.e. subtrees

that do not appear in the reconstructed phylogeny, do not con-

tain cluster introduction events. The implementation also relies

on a time discretization which approximates all transmission

rates as locally constant on small time intervals. A similar discre-

tization can be applied to extend our method to time-dependent

removal rates, which are not currently supported.

This new method has a few key differences compared to the

cutpoint-based clustering methods. Firstly, it is not restricted to

monophyletic clades and can thus find clusters that are nested

within one another in the phylogeny. As a result, our method

clearly outperformed the others on simulated networks which

were designed specifically to violate the monophyletic

assumption. This issue is particularly problematic in datasets

that have been sampled over an extended period of time, as

nested introduction events are more likely to appear there.

Secondly, as the MSBD method is model-based, it does

not rely on an arbitrary cutpoint to be chosen by the user.

Instead, we look for significant changes in transmission

rates. While our method does involve approximations, our

simulation studies show that these do not destroy the



l0,1 = 0.76, z1 = 0.11, m1 = 0.047
l0,2 = 1.1, z2 = 0.17, m2 = 0.047
l0,3 = 0.26, z3 = 0.017, m3 = 0.047
l0,4 = 0.27, z4 = 0.017, m4 = 0.047

(b)(a)

(c) (d )

Figure 3. Analysis of the empirical HIV tree. Comparison of the clusters obtained with MSBD (a) or with Cluster Picker with a bootstrap threshold of 0.0 and a
genetic distance threshold of 1.5% (b), 4.5% (c) and 8% (d).
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statistical signal for cluster detection. The use of a likelihood

function also gives an estimate of the statistical significance

of each detected cluster and allows us to easily score and com-

pare different cluster partitions. Moreover, as the parameters

of the model are biologically meaningful, they are therefore

easier to potentially fix or interpret in an objective way.

The intuitive reason for these two key differences of MSBD

to cutpoint-based methods is that the MSBD method looks

at relative changes in branch lengths, while cutpoint-based

methods cluster individuals up to a particular distance in

absolute branch lengths. Thus, the cutpoint-based methods

only find monophyletic clusters. Furthermore, branch lengths

on a different scale (e.g. all distances are multiplied by 100)

require a different cutpoint. On the other hand, the MSBD

method uses likelihood statistics to determine if the relative

branch length changes are significant, indicating a new cluster.
Avoidance of a cutpoint parameter is an important advan-

tage. Villandre et al. [15] showed that the quality of the

detection achieved by phylogenetic cutpoint-based clustering

methods is highly sensitive to the value of this parameter,

regardless of underlying contact network type. In particular,

they showed that it is impossible to define a single cutpoint

value as adequate for all network types, even for the same

pathogen. Cluster Picker recommends cutpoints between

0.015 and 0.045 for HIV based on previous empirical studies

of HIV. However, our results show that very different cluster

partitions can be obtained at the two ends of this range. Cut-

point values will further be impacted by the evolutionary

rate and other epidemiological dynamics, meaning these

guidelines cannot be easily transferred to another pathogen.

The chosen cutpoint value is strongly linked with the

number of clusters inferred by cutpoint-based methods, thus
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obtaining the correct clusters requires prior knowledge of the

true number of clusters.

Overall, while our method may not perform as well on

certain types of network as phylogenetic cutpoint-based

methods were we to know the optimal cutpoint in advance,

it outperforms the cutpoint-based methods on a wide range

of cutpoints on simulated datasets following our assumptions

on pathogen spread. Furthermore, while there exist other

non-phylogenetic clustering methods, such as HIV-TRACE

[32], which can detect non-monophyletic clusters, these

methods still require specification of a cutpoint parameter

and we expect that they suffer from the same issues as the

phylogenetic cutpoint-based methods.

MSBD methods have a strong limitation on the size of clus-

ters that can be inferred from a tree. This is seen from the low

scores obtained on the fragmented type C networks and the

improvements obtained when only investigating if clusters of

a certain size are inferred. Contrary to the cutpoint-based

methods, which can handle arbitrary numbers and sizes of clus-

ters, our method can only add clusters when there is a strong

signal for them and thus performs worse than cutpoint-based

methods in datasets with many small clusters. Again, this com-

parison relies on knowing the optimal cutpoint, and as said

above, this knowledge is typically not available.

Another limitation of the current implementation is its

computational cost, which limits the size of the trees that

can be analysed. (Current run time is on the order of CPU-

days for a few hundred tips.) In contrast to cutpoint-based

methods, the MSBD method thus cannot handle datasets con-

taining tens of thousands of sequences. Future work will

focus on implementing the algorithm in parallel and explor-

ing other possible approximations, with the aim of increasing

speed without lowering precision. Making use of the insight

that the MSBD method employs the information on changes

in relative branch lengths may be a future guide to fast but

accurate methods.

In the future, we plan to implement our model in a Baye-

sian framework, which will allow us to explore the number
and positions of clusters in a more rigorous way by using

reversible jumps instead of multiple rounds of optimization.

Some approximations could be removed in this framework,

such as the assumption that n ¼ n* or the fixed positions of

state changes on edges. Moreover, estimating the uncertainty

around the various estimated parameters is problematic in an

ML framework, in particular for the positions and number of

state changes.

This is compounded by the fact that the current method

uses a timed phylogeny as input, and thus relies strongly on

this phylogeny being inferred correctly. This also means that

the uncertainty associated with the phylogenetic inference

cannot be integrated in the cluster inference. Again, a Bayesian

framework could solve this issue by allowing a joint inference

of the phylogeny and the clusters, using the MSBD as a

model-based prior on the transmission tree.

In summary, in spite of the limitations discussed, our

results clearly show that an approach based on a statistical

model for cluster detection can overcome some important

deficiencies of previous approaches. In particular, the assump-

tion of clusters being monophyletic can be dropped, and the

sensitivity to non-biological cutpoint parameters can be

completely avoided.
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