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Interferon revisited: Peering behind the lines of antiviral defense
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HCV is a positive-stranded RNA virus, that accounts for approx-
imately 71 million chronically infected individuals worldwide
and represents a major risk factor for liver fibrosis, cirrhosis and
hepatocellular carcinoma.1 For a long time, interferon (IFN)-
alpha regimens were the cornerstone of HCV therapy, which
depending on the HCV genotype, led to a sustained virologic
response in 54–75% of patients.2 However, therapy with IFNs is
lengthy and burdensome for many patients due to the broad
spectrum of adverse effects.2 Thus, they have recently been
replaced with more efficient and well-tolerated direct-acting
antivirals, rendering chronic HCV infection a curable disease.3

Over the last 30 years, HCV research has provided important
insights into the molecular mechanisms of innate IFN responses,
as well as the sophisticated viral strategies to evade the host
defenses and to persist.4 Viruses entering the host are detected
by cellular sensors of pathogen-associated molecular patterns,
leading to the production of type I and III IFNs. Subsequently, this
triggers the rapid transcription of hundreds of IFN-stimulated
genes (ISGs), which are directly or indirectly antiviral and con-
trol the IFN response itself.5,6 The ISG C19orf66 is induced by
several clinically relevant viruses including HCV, and thus may
exhibit antiviral activity.6 Indeed, it was previously described as a
potent restriction factor for HIV, Kaposi's sarcoma-associated
herpesvirus (KSHV), Zika virus and dengue virus (DENV).7–10

However, the molecular details related to the function of
C19orf66, especially for HCV, remained largely unknown.

In this regard, a new study published in this issue of Journal of
Hepatology by Volker Kinast and co-workers, sheds new light on
the role of C19orf66 as an IFN-induced restriction factor (Fig. 1).11

Analyzing primary human hepatocytes infected with cell-culture-
derived HCV (HCVcc) and liver biopsies from 25 patients with
chronic HCV infection, the authors revealed significantly increased
mRNA expression levels of C19orf66, that appeared to be largely
independent of viral load, METAVIR score and HCV genotype in
patients. Consistently, C19orf66 is induced by IFN therapy in
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patients with HCV, as revealed by computational analysis of liver
transcriptomic data. Combination therapy of pegylated IFN-alpha
(pegIFN-a) with ribavirin induced a peak of hepatic C19orf66
mRNA expression at 4- and 16-hours post-treatment, highlighting
it as an early-induced ISG. The authors demonstrated an antiviral
effect on HCV using C19orf66 knockout cell lines generated by
CRISPR/Cas9. Disrupted C19orf66 expression restored IFN-a-sup-
pressed replication of HCVcc and a subgenomic HCV replicon,
further validating the antiviral effect of C19orf66 on HCV.While the
impact of C19orf66 on other steps of the HCV life cycle, such as
entry or translation, was not significant, the authors confirmed that
C19orf66 is a restriction factor of HCV replication, using over-
expression studies in combination with subgenomic replicons. The
observed antiviral effect of C19orf66 seems independent from 7
tested HCV genotypes, suggesting an indirect “host targeting”
impact of this ISG. This is further supported by the lack of an as-
sociation of hepatic C19orf66 expression with the underlying HCV
genotype in patients. C19orf66 seems to be recruited to lipid
droplets in HCV-infected cells, where it partially colocalizes with
the viral proteins core, NS3 and NS5A. In contrast, C19orf66 re-
mains homogenously distributed in the cytosol of non-infected
cells. These findings indicate that C19orf66 exerts its antiviral ac-
tion at the HCV replication compartment of the membranous web
(MW), which integrates lipid droplet accumulations as the central
site of viral processing and particle formation.12 The MW is formed
after a massive remodeling of membranes from the endoplasmic
reticulum (ER),12 which involves a HCV-induced stimulation of
phosphatidylinositol 4-kinase (PI(4)K). This leads to an enrichment
of phosphatidylinositol 4-phosphate (PI(4)P) at the membranes of
the ER,13 thus provoking a bending and deformation of double-
stranded ER membranes in HCV-infected cells. Interestingly, the
authors established a functional link between C19orf66 expression
and impaired HCV-induced PI(4)P levels in HCV replicating cells.
Moreover, expression of C19orf66 with mutated zinc-finger motif
(C19orf66-Zincmut) impaired its antiviral activity, coinciding with a
less perturbed MW morphology and composition compared to
cells expressing wild-type C19orf66.

In addition to the identified antiviral role of C19orf66 on MW
formation, the authors identified that stress granule-associated
nucleoproteins RO60, RBPMS and CELF1 interacted with
C19orf66. Since this association required the zinc-finger motif of
C19orf66, the authors suggested a role of this ISG in stress
granule formation with functional relevance for its antiviral
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Fig. 1. C19orf66 is a broadly acting ISG that exhibits a pluripotent and mechanistically diverse antiviral activity on clinically relevant viruses. C19orf66
upregulation has been previously shown to inhibit viral replication via lysosomal degradation of NS3 in the case of ZIKV, by interaction with RNA-binding proteins
in the context of DENV infection and through alteration of the Gag/Gag-Pol ratio in the course of HIV life cycle. Additionally, C19orf66 was reported to repress the
expression of KSHV early genes, having as a consequence an impaired viral particle production. Volker Kinast and co-workers demonstrate that upregulation of
C19orf66 in the context of HCV infection or IFN treatment impairs the HCV cycle specifically at the replication step. The mechanism behind this antiviral effect
implicates the altered formation of the HCV MW, originating from the interaction of C19orf66 with stress granule proteins and the downregulation of PI(4)P
levels. DENV, dengue virus; IFN, interferon; ISG, IFN-stimulated gene; KSHV, Kaposi's sarcoma-associated herpesvirus; MW, membranous web; PI(4)P, phos-
phatidylinositol 4-phosphate; ZIKV, Zika virus.
function. This is supported by previous studies on DENV, where
infection provoked cytoplasmic ribonucleic C19orf66-containing
granule formation, while granule disruption partially rescued
viral replication.7,14 The findings of Volker Kinast and co-workers
once more highlight the pluripotent character of the complex
IFN response against a pathogen.5,6 Similar to adaptive immu-
nity, where random pre-existing immunoglobulins react to a
novel immunogen and thus lead to the clonal expansion of a
pathogen-specific antibody, ISGs are able to target a large variety
of host processes that are relevant to previously encountered
pathogens, and may be relevant to future pathogens.

C19orf66 is thus another example of how evolution created ISGs
as a universal tool set. Like a swiss army knife, ISGs can act with
various blades of the same tool against different pathogens. While
many putative functions of C19orf66 may not be relevant to HCV
infection, this protein certainly inhibits other viruses with different
aspects of its pluripotent nature (Fig. 1), i.e., triggering the lyso-
somal degradation of ZIKA NS3,8 repressing KSHV gene expres-
sion,9 altering crucial Gag/Pol ratios during HIV replication,10 stress
granule formation during DENV7 and HCV infection, and most
likely additional not yet discovered facets of its action relevant to
other pathogens. Interestingly, C19orf66 is also induced in the
antiviral response to SARS-CoV,9 where it escapes the virus-
induced mRNA degradation, as has been demonstrated for
Journal of Hepatology 2
KSHV.9 However, whether C19orf66 has antiviral actions against
coronavirus infections remains unclear. Evolution shaped the IFN
response as a powerful innate defense mechanism for the eradi-
cation of invading pathogens. Understanding the mechanisms of
this cellular toolset, as well as the evasion strategies of certain vi-
ruses such as HCV, gives important clues on their Achilles’ heels
and thus may also pave the way to understand and to tackle future
emerging viral diseases.
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