

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Two-dimensional NMR data of a water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from *Aureobasidium pullulans* and schizophyllan from *Schizophyllum commune*

Hiroyuki Kono^a.*, Nobuhiro Kondo^b, Katsuki Hirabayashi^b, Makoto Ogata^c, Kazuhide Totani^d, Shinya Ikematsu^e, Mitsumasa Osada^f

^a Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan

^b Itochu Sugar Co. Ltd., Tamatsuura 3, Hekinan, Aichi 447 8506, Japan

^c Department of Chemistry and Biochemistry, National Institute of Technology, Fukushima College, Nagao 30, Iwaki, Fukushima 970 8034, Japan

^d Division of Chemical Engineering and Biotechnology, Department of Engineering for Future Innovation, National Institute of Technology, Ichinoseki College, Takanashi, Hagisho, Ichinoseki, Iwate 021 8511, Japan ^e Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Henoko 905, Nago, Okinawa 905 2192, Japan

^f Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386 8567, Japan

ARTICLE INFO

Article history: Received 31 July 2017 Accepted 26 September 2017 Available online 1 October 2017

Keywords: NMR β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan Aureobasidium pullulans Schizophyllan Spectral data

ABSTRACT

This article contains two-dimensional (2D) NMR experimental data, obtained by the Bruker BioSpin 500 MHz NMR spectrometer (Germany) which can used for the determination of primary structures of schizophyllan from *Schizophyllum commune* (SPG) and a water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from *Aureobasidium pullulans*. Data include analyzed the 2D NMR spectra of these β -glucans, which are related to the subject of an article in *Carbohydrate Polymers*, entitled "NMR spectroscopic structural characterization of a water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from

DOI of original article: http://dx.doi.org/10.1016/j.carbpol.2017.07.018

* Corresponding author.

http://dx.doi.org/10.1016/j.dib.2017.09.067

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: kono@tomakomai-ct.ac.jp (H. Kono).

A. pullulans" (Kono et al., 2017) [1]. Data can help to assign the ¹H and ¹³C chemical shifts of the structurally complex polysaccharides.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Chemistry
More specific subject area	Structural analysis
Type of data	NMR spectra
How data was acquired	NMR, Bruker BioSpin AVIII 500 MHz spectrometer
Data format	Analyzed
Experimental factors	About 30 mg of each sample dissolved in 600 μ L of 99.9% dimethylsulfoxide (DMSO)-d ₆ .
Experimental features	All NMR experiments were performed at 363 K.
Data source	National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai,
location	Hokkaido 059 1275, Japan
Data accessibility	Data are with this article.

Value of the data

- The following data detail NMR characterization of a novel water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan and schizophyllan from *Schizophyllum commune*.
- The NMR data can be helpful to estimate the branching patterns of other β-glucans.
- NMR parameters for the data can be useful for structural characterization of complex polysaccharides.

1. Data

The presented data include 2D NMR spectra of schizophyllan from *Schizophyllum commune* (SPG) and a water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from *Aureobasidium pullulans* (*A. pullulans*) whose primary structures are shown in Fig. 1. ¹H–¹³C heteronuclear single quantum coherence (HSQC), 2D ¹H–¹³C heteronuclear multiple-bond correlation (HMBC), and 2D ¹H–¹H rotating frame Overhauser effect spectroscopy (ROESY) spectra of SPG are shown in Figs. 2–4, and those of the water-soluble *A. pullulans* β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan are in Figs. 5–7, respectively.

2. Experimental design, materials and methods

The experiment's planning, design, and data processing correspond to the protocol given in Refs. [1,2].

Schizophyllan from Schizophyllum commune (SPG)

A water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from *Aureobasidium pullulans*

Fig. 1. Primary structures of schizophyllan (SPG) and the water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from *A. pullulans*. The **A1**, **B1**, **B2**, and **C1** residues in SPG and **A1**, **A2**, **B1**, **B2**, **C1**, and **C2** residues in the β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan are magnetically inequivalent in their structures.

Fig. 2. HSQC spectrum of SPG in DMSO- d_6 at 363 K. The vicinal ¹H–¹³C spin couplings of the **A1**, **B1**, **B2**, and **C1** residues in SPG (Fig. 1) are denoted by solid red, solid and dashed blue, and solid green lines, respectively. ¹H and ¹³C NMR spectra of SPG are shown in horizontal and vertical axes in the HSQC spectrum, respectively, and the ¹H and ¹³C resonance assignments are indicated in the ¹H and ¹³C spectra.

Fig. 3. HMBC spectrum of SPG in DMSO- d_6 at 363 K. The arrows indicate the interresidual correlations between **A1**H1–**B1**C3, **B1**H1–**B2**C3, **B2**H1–**A3**C3, and **C1**H1–**A1**C6 via glycosidic bonds.

Fig. 4. ROESY spectrum of SPG in DMSO-*d*₆ at 363 K. The arrows indicate the interresidual correlations between **B1**H3–**A1**H1, **A1**H3–**B2**H1, **B2**H3–**B1**H1, **A1**H6a–**C1**H1, and **A1**H6b–**C1**H1 via glycosidic bonds.

Fig. 5. HSQC spectrum of the water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from *A. pullulans* in DMSO-*d*₆ at 363 K. The vicinal ¹H–¹³C spin couplings of the **A1**, **A2**, **B1**, **B2**, **C1**, and **C2** residues in the β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan (Fig. 1) are denoted by solid and dashed red, solid and dashed blue, and solid and dashed green lines, respectively. ¹H and ¹³C NMR spectra of the β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan are shown in horizontal and vertical axes in the HSQC spectrum, respectively, and the ¹H and ¹³C resonance assignments are indicated in the ¹H and ¹³C spectra.

Fig. 6. HMBC spectrum of the water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from *A. pullulans* in DMSO-*d*₆ at 363 K. The arrows indicate the inter-residual correlations between **C1**C1–**A1**H6a, **C1**C1–**A1**H6b, **C2**C1–**A2**H6a, **C2**C1–**A2**H6b, **C1**H1–**A1**C6, and **C2**H1–**A2**C6 via glycosidic bonds.

Fig. 7. ROESY spectrum of the water-soluble β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan from *A. pullulans* in DMSO-*d*₆ at 363 K. The arrows indicate the interresidual correlations between **A**2H3–**B**2H1, **A**1H3–**A**2H1, **B**1H3–**A**1H1, **A**2H3–**B**2H1, **B**2H3–**B**1H1, **A**2H6a–**C**2H1, **A**2H6b–**C**2H1, **A**1H6a–**C**1H1, and **A**1H6b–**C**1H1 via glycosidic bonds.

2.1. Samples

SPG was purchased from InvivoGen (USA). The water-soluble *A. pullulans* β -(1 \rightarrow 3, 1 \rightarrow 6)-glucan was prepared according to a previously reported method [1,2].

2.2. Description of the NMR experiments

Each sample was dissolved in 600 μ L of DMSO-*d*₆ (99.9% isotropic purity, Sigma-Aldrich (USA)). All NMR spectra were recorded on a Bruker AVIII 500 MHz spectrometer at 363 K. HSQC data were acquired on a 2048 × 256-point matrix for the full spectrum, with 96 scans per increment, and the interpulse delay which corresponded to 1/4 *J*_{CH} was set to 3.44 ms. HMBC) data were acquired on a 1024 × 256-point matrix for the full spectrum, with 128 scans per increment, and the delay time for the evolution was set to 62.5 ms. ROESY data were acquired on a 2048 × 256-point matrix for the full spectrum with 64 scans per increment, and the mixing time was 200 ms. The repetition time of each 2D NMR experiment was 2 s, and all 2D NMR data were zero-filled to 2k in both dimensions prior to Fourier transformation. ¹H and ¹³C chemical shifts were calibrated using the methyl resonances of DMSO at 2.52 ppm for ¹H and 39.52 ppm for ¹³C.

Acknowledgements

This work was supported by the Japan Society for Promotion of Science (JSPS) (Grant no. JP16K05802).

References

- H. Kono, N. Kondo, K. Hirabayashi, M. Ogata, K. Totani, S. Ikematsu, M. Osada, NMR spectroscopic structural characterization of a water-soluble β-(1→3, 1→6)-glucan from *Aurobasidium pullulans*, *Carbohydr. Polym*. (2017) (in press).
 K. Hirabayashi, N. Kondo, S. Hayashi, Characterization and enzymatic hydrolysis of hydrothermally treated β-1,3–1,6-glucan
- from Aureobasidium pullulans, World J. Microbiol. Biotechnol. 32 (2016) 206-212.