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A nanobody-based molecular toolkit
provides new mechanistic insight into
clathrin-coat initiation
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Department of Cell Biology, School of Medicine, University of Pittsburgh,
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Abstract Besides AP-2 and clathrin triskelia, clathrin coat inception depends on a group of early-

arriving proteins including Fcho1/2 and Eps15/R. Using genome-edited cells, we described the role

of the unstructured Fcho linker in stable AP-2 membrane deposition. Here, expanding this strategy

in combination with a new set of llama nanobodies against EPS15 shows an FCHO1/2–EPS15/R

partnership plays a decisive role in coat initiation. A nanobody containing an Asn-Pro-Phe peptide

within the complementarity-determining region 3 loop is a function-blocking pseudoligand for

tandem EPS15/R EH domains. Yet, in living cells, EH domains gathered at clathrin-coated

structures are poorly accessible, indicating residence by endogenous NPF-bearing partners.

Forcibly sequestering cytosolic EPS15 in genome-edited cells with nanobodies tethered to early

endosomes or mitochondria changes the subcellular location and availability of EPS15. This

combined approach has strong effects on clathrin coat structure and function by dictating the

stability of AP-2 assemblies at the plasma membrane.

DOI: https://doi.org/10.7554/eLife.41768.001

Introduction
Clathrin-mediated endocytosis is an evolutionarily ancient mode of directed transport of selected

macromolecules into the eukaryotic cell interior. The process depends on the deposition of an

ordered precession of cytosolic coat components at a small, flat, demarcated zone of the plasma

membrane destined to transform morphologically into a spherical clathrin-coated vesicle

(Avinoam et al., 2015; Bucher et al., 2018). Generally, the local assembly of the organized coat

coordinates the process of membrane deformation into an invaginated bud with the recognition and

capture of transmembrane cargo (Kaksonen and Roux, 2018; Mettlen et al., 2018). To properly

build the coat, a succession of discrete coat proteins display different kinetics of arrival and depar-

ture (Taylor et al., 2011), and can be differentially positioned within the assembling polyhedral cla-

thrin lattice (Sochacki et al., 2017; Ma et al., 2016) that is emblematic of this type of intracellular

transport vesicle coat. The so-called pioneer proteins (Ma et al., 2016; Traub and Wendland,

2010), which arrive first to define and arrange the incipient bud site, include epidermal growth fac-

tor receptor pathway substrate 15 (Eps15), the core heterotetrameric clathrin adaptor AP-2, and

FCH/F-BAR domain only protein 1 (Fcho1) and Fcho2 (Taylor et al., 2011). Eps15 is a fibrous (>30

nm) protein oligomer (Tebar et al., 1997; Cupers et al., 1997), originally identified as a tyrosine

phosphorylated substrate of the activated EGF receptor, hence the designation Eps15

(Fazioli et al., 1993). Yet even in the absence of EGF receptor activation, Eps15 localizes to the vast

majority of cell surface clathrin-coated structures at steady state (van Delft et al., 1997a;

Benmerah et al., 1999; Tebar et al., 1996), is positioned predominantly at the margins of assem-

bling lattices (Sochacki et al., 2017; Tebar et al., 1996; Henne et al., 2010; Edeling et al., 2006),

and is among the first assembled coat proteins encountered by an activated G protein-coupled
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receptor (GPCR) moving laterally in the plane of the plasma membrane into a preassembled cla-

thrin-coated region (Paek et al., 2017).

A large multi-domain protein, Eps15 binds physically to numerous other coat components, includ-

ing AP-2 (Edeling et al., 2006; Benmerah et al., 1996; Traub et al., 1999; Schmid et al., 2006),

Fcho1/2 (Henne et al., 2010; Reider et al., 2009; Uezu et al., 2011; Umasankar et al., 2012), Dis-

abled-2 (Dab2) (Teckchandani et al., 2012), epsin 1 (Chen et al., 1998; McPherson et al., 1998),

HIV-1 Rev-binding protein (Hrb) (Doria et al., 1999; Whitehead et al., 1999; Yamabhai et al.,

1998), Numb (Santolini et al., 2000; Evergren et al., 2018), stonin 2 (Rumpf et al., 2008), and syn-

aptojanin 1 (McPherson et al., 1998; Haffner et al., 1997), among other proteins including ubiqui-

tin (Hofmann and Falquet, 2001). Because of this multiplicity of protein–protein contacts, residence

of Eps15 at clathrin bud sites is not solely dependent on AP-2 (van Delft et al., 1997a). While much

is known about the biology of Eps15 (Teckchandani et al., 2012; van Bergen En Henegouwen,

2009; Milesi et al., 2019), several aspects of its operation still remain opaque, including how the

multiple synchronous protein–protein interactions might be prioritized and regulated, how asymmet-

ric partitioning within a clathrin-coated structure is achieved, and how post-translational modifica-

tions, including phosphotyrosine addition (Torrisi et al., 1999) and ubiquitination (Polo et al., 2002;

van Delft et al., 1997b; Francavilla et al., 2016), impact Eps15 operation and stability.

Numerous complimentary experimental approaches are available in contemporary cell biology to

probe the structure, location and function of individual gene products. Most notably, genome-edit-

ing technology provides an unparalleled ability to disrupt or modify gene products in a cellular set-

ting (Smith et al., 2017; Housden et al., 2017). Transcription activator-like effector nuclease

(TALEN)-mediated genome editing is used here to silence the EPS15R-encoding EPS15L1 locus in a

HeLa cell line that also lacks the expression of the pioneer proteins FCHO1 and FCHO2

(Umasankar et al., 2014). Other technically useful current tools for biochemical and cellular analyses

are single chain nanobodies (Nbs) derived from Camelidae species (Beghein and Gettemans, 2017;

Wang et al., 2016a). Since the variable heavy-chain domain from heavy chain antibodies (VHH)

encoded by Nbs is only a single, stably folded, compact chain of ~13 kDa, they are easy to subclone,

express and transfect (Moutel et al., 2016; Dmitriev et al., 2016). They are further versatile as the

smallest, autonomous native antigen-binding fold in that ectopically expressed monomeric VHH frag-

ments often remain operational in the reduced cytosolic environment (Moutel et al., 2016;

Pleiner et al., 2015; Schenck et al., 2017). Here, a set of anti-Eps15 Nbs is characterized biochemi-

cally and an assortment of Nb-based fusion proteins for cell-based analysis evaluated.

Results

Identification of anti-EPS15 EH domain Nbs
A phage-based immune llama (Lama glama) VHH library, raised against residues 1–314 of the Homo

sapiens (Hs) EPS15 protein from chromosome 1 (Wong et al., 1994), was generated and screened.

As Nbs preferentially recognize folded conformational antigens over linear or peptide regions, the

immunizing antigen corresponds to three consecutively-arrayed Ca2+-binding, EF-hand-like Eps15

homology (EH) domains (designated EH1-EH3) (Figure 1A), where the individual tandem EH

domains are about 32% identical and 50% similar to one another. The divergence between EH

domain sequences is paralleled by differences in selectivity for endogenous tripeptide-based Asn-

Pro-Phe (NPF) short linear motif (SLiM) (Van Roey et al., 2014) -containing binding partners

(Rumpf et al., 2008; Paoluzi et al., 1998; Confalonieri and Di Fiore, 2002). Overall, EPS15 residues

1–314 are ~60% identical and 77% similar to resides 1–365 of EPS15R, a closely related paralogous

protein encoded by chromosome 19 (Wong et al., 1995) (Figure 1A).

Comparative sequence analysis of the seven ELISA-positive VHH clones reveals three discrete

families (Figure 1B), albeit because of an identical hypervariable complementarity-determining

region 3 (CDR3) (Figure 1C), family 2 and 3 might be derived from the same B cell lineage that

diverge due to somatic-mutation-driven affinity maturation and/or PCR amplification errors. There

are 18 amino acid differences between Nb E_142 and E_180, but only six of the changes are within

CDR1 and CDR2. This sequence variation between family 2 and 3 is curious because the CDR3 loop

is typically the longest, most divergent in amino acid composition, conformationally variable, and

important for antigen recognition (Mitchell and Colwell, 2018; McMahon et al., 2018). The three
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Figure 1. Anti-EPS15 Nb identification. (A) Schematic diagrams of the overall architecture and structural features of H. sapiens (Hs) EPS15 and EPS15R

proteins. The relative location of various GST-fusion proteins used is indicated. DPF: Asp-Pro-Phe SLiM repeat containing domain, UIM: ubiquitin-

interacting motif. (B) Dendrogram of amino-acid sequence relationship between the seven VHH anti-EPS15 Nbs selected by biopanning and ELISA

screening. Some intrafamily variability may have arisen from RT-PCR and/or amplification PCR-based DNA polymerase errors. (C) Amino acid alignment.

Figure 1 continued on next page

Traub. eLife 2019;8:e41768. DOI: https://doi.org/10.7554/eLife.41768 3 of 42

Tools and resources Biochemistry and Chemical Biology Cell Biology

https://doi.org/10.7554/eLife.41768


unique Nb sequences selected for detailed further analysis (one from each family; designated E_3,

E_142 and E_180) are dissimilar to that of a previously reported anti-EPS15 Nb isolated against

EPS15 EH1-3 domains from a naı̈ve llama library (Regan-Klapisz et al., 2005) (Figure 1C).

In in vitro pull-down assays, a direct physical interaction between each of the chosen Nbs with the

EPS15 N-terminal EH domain antigen is seen (Figure 1D). Nb E_3 binds to GST-EPS15 EH1-3 (resi-

dues 1–314), but poorly to GST fused in-frame to either domain EH1 alone (residues 1–109) or

EH1 + 2 (residues 1–217). Not unexpectedly, Nb E_142 and E_180 show similar binding selectivity,

in accordance with the shared CDR3 sequences of these two Nb clones. However, Nb E_142 clearly

shows a higher apparent affinity, and interacts with all three EH domain proteins, EH1, EH1 + 2 and

EH1-3 (Figure 1D). One interpretation of the data is that Nb E_3 recognizes the EH3 domain while

Nb E_142 (and E_180) binds to the EH1 domain. Yet Nb E_3 does show appreciable binding to

GST-EPS15 EH1 + 2, and E_142 binds to GST-EPS15 (1-314) at perhaps suprastoichiometric levels,

and does not require EH1. A robust interaction of Nb E_142 with GST-EPS15 EH2 + 3 (residues 121–

314) occurs in addition to binding to the EH1 domain alone (Figure 1F); this interaction with a GST-

fusion lacking the EH1 domain confirms specific binding of Nb E_142 to EH domains other than

EH1.

Intriguingly, Nb E_3, E_142 and E_180, as well as the other four related Nb clones, all show the

remarkable presence of an immunodominant Asn-Pro-Phe (NPF) tripeptide within the CDR3 region

(Figure 1C). A BLAST analysis of available Nb sequences using the Nb E_142 sequence as the search

query fails to identify a single NPF sequence within the CDR3 hypervariable loop of any currently

characterized VHH clone. Only a series of selected anti-Tulip virus X Nbs derived from a single alpaca

contain either an NPW or NPV tripeptide sequence within the CDR3 loop (Beekwilder et al., 2008).

As the majority of EH domain partners (the so-called EH network) deploy some variation of the NPF

SLiM (Paoluzi et al., 1998; Confalonieri and Di Fiore, 2002) to bind to an EH domain, this strongly

suggests that the newly selected anti-EPS15 EH domain Nbs bind, in part, to the functional interac-

tion surface of the EH domain (de Beer et al., 1998). In agreement, the previously described anti-

EPS15 Nb does not contain an NPF within CDR3 (Figure 1C), does not bind to the native EPS15 pro-

tein efficiently (data not shown), and was originally selected to detect (denatured) EPS15 by immu-

noblotting (Regan-Klapisz et al., 2005).

Direct evidence for the participation of the CDR3 NPF tripeptide in EH domain binding comes

from site-directed mutagenesis. Compared with the native VHH, a Nb E_142 (NPFfiAPA) replace-

ment eliminates completely the interaction with GST-EPS15 (1-314) (Figure 2A). Because of the mini-

mal nature of the NPF SLiM, with a single hydrophobic anchor (Phe) residue, individual internal NPF

motifs generally bind to EH domains rather weakly, with an equilibrium dissociation constant (KD)

of >100 mM (Yamabhai et al., 1998; de Beer et al., 1998). Cyclized (stapled) NPF peptides bind

with higher apparent affinity (~10 fold, de Beer et al., 2000) due to stabilizing conformational rigid-

ity (Yamabhai et al., 1998), since the NPF adopts a type I b-tight turn when engaging an EH domain

(de Beer et al., 2000). It seems likely that the structural constraints of the overall Nb immunoglobu-

lin (Ig) superfamily fold and the CDR3 loop similarly increase the apparent affinity of the Nbs for the

EH domain, although contributions of CDR1 and CDR2 are also likely. The differing relative position-

ing of the NPF in the CDR3 loop may be responsible for the lower apparent affinity of the Nb E_3

clone and/or more involvement of the CDR1 and -2 loops in engagement of the EH3 domain.

Figure 1 continued

Framework regions (FR) 1–4 and interposed, color-coded CDR1-3 stretches are indicated. The pair of cysteine residues involved in disulfide formation is

indicated (dashed red line), while the three residues mutated in the conditionally-destabilized (Tang et al., 2016) desNb E_142 protein are highlighted

(blue). (D) Pull-down assay of soluble anti-EPS15 Nb in E. coli periplasmic lysates using 50 mg GST, GST-EPS15 (1-109 , 1-217) or (1-314). Analysis of

supernatant (S) and pellet (P) fractions after incubation of Sepharose-bead-immobilized GST fusion with E. coli periplasmic extract containing the

indicated Nb. Coomassie-stained gels shown, with the position of the molecular mass standards (in kDa) indicated. Bound Nb recovered in the pellet

fraction is indicated (arrowheads). (E) Binding of Nb E_142 to GST-EPS15 (1-134) and (121-314) lacking the EH1 domain as in D. (F) Combined ribbon

and molecular surface representation of a computationally-threaded structure of Nb E_142 modeled by Phyre2 server (Kelley et al., 2015). The

locations of the CDR1-3 on the folded VHH domain model are indicated with coloring as in C, while the NPF SLiM in CDR3 is shown in stick

representation and single letter amino acid code.
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interaction type. (C) Biochemical pull-down assay of NPF-SLiM-containing partners within HeLa whole cell lysate to either immobilized GST or

Figure 2 continued on next page
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Characterization of a function-blocking Nb
As a protein–protein interaction module, in biochemical pull-down assays, the immobilized GST-

EPS15 (1-314) EH1-3 array interacts physically with several NPF-harboring cytosolic partners from

HeLa cell lysate, in a dose-dependent manner (Figure 2B and C). The apparent affinity correlates

roughly with the number of NPF SLiMs (HRB: 5; DAB2: 5; epsin 1: 3; clathrin assembly lymphoid

myeloid leukemia protein (CALM): 2) and not with the presence an extreme C-terminal NPF repeat

(HRB, DAB2 and epsin 1) (Yamabhai et al., 1998), with HRB being the most avid binding partner

(Doria et al., 1999; Whitehead et al., 1999; Salcini et al., 1997). Both major isoforms of CALM con-

tain two NPFs, one of which is near the C-terminus but not as close as occurs in either DAB2 or HRB.

However, only very limited binding of cytosolic CALM to the immobilized EH domain array is evident

(Figure 2D). In this assay, the engagement of cytosolic NPF partners by GST-EPS15 EH1-3 is

affected by highest apparent affinity Nb E_142 protein; thus the VHH clone is function blocking. Sup-

plementing HeLa cell lysate with Nb E_142 at an equimolar amount relative to the GST-EPS15 (1-

314) causes a substantial loss of DAB2 and epsin 1 from the bound pellet fraction and incomplete

inhibition of the HRB association. A fivefold molar excess of Nb E_142 produces near complete

obstruction of HRB, DAB2 and epsin 1 interactions, concomitant with recovery of the bound VHH

domain with the GST-EPS15 fusion in the pellet fraction (Figure 2D). In addition, a W57A substitu-

tion in the EPS15 EH1 domain (Whitehead et al., 1999), which involves the absolutely phylogeneti-

cally conserved Trp residue in all EH domains (Confalonieri and Di Fiore, 2002; de Beer et al.,

1998; de Beer et al., 2000) and disrupts the canonical NPF interaction surface between a-helices

aC and aD (Figure 2E) (Rumpf et al., 2008), abolishes the association of Nb E_142 with GST-EPS15

(1-109) (Figure 2F). Yet the same W57A mutation has a comparatively modest effect on binding in

the context of the larger GST-EPS15 (1-314) fusion protein (Figure 2F). Collectively, these data

clearly indicate that Nb E_142 engages EH domains as an NPF-mimicking pseudoligand that con-

tacts a conserved interaction site upon the canonical EH domain.

If the Nbs bind to EH domains primarily utilizing an NPF-motif-mediated interaction, then reactiv-

ity with the related EPS15R EH domains is highly probable as the EPS15 and EPS15R EH domain

regions are ~80% similar. In EPS15R, both the EH1R and EH3R domains favor NPFR motifs

(Paoluzi et al., 1998) and the position +4 Arg participates directly in binding to the EPS15 EH2

domain (de Beer et al., 2000). Strikingly, two of three of the Nb families identified display NPFR

peptide sequences in CDR3 (Figure 1C). In line with the biochemical differences noted for GST-

EPS15 (1-314) engagement, both Nb E_3 and E_142 cross-react with a GST-EPS15R (1-365) fusion,

while the Nb E_142 (NPFfiAPA) CDR3 mutant does not (Figure 3A). Nb E_3 binding to EPS15R is

comparatively weak, however. In sum, the biochemical data indicate that Nb E_142 is an orthosteric,

function-blocking pseudoequivalent NPF ligand for the Eps15/R protein EH domains.

The EH domains of intersectin 1 similarly bind to NPF motifs (Yamabhai et al., 1998), and the

two N-terminal Hs intersectin 1 EH domains are about 43% identical to one another while the EH1-2

array (residues 1–312) (Snetkov et al., 2016) is roughly 39% identical to EPS15 EH1-3 (residues 1–

314) and 36% identical to EPS15R EH1R-3R (residues 1–365). Yet in the same binding assay, Nb

E_142 does not interact appreciably with GST-intersectin 1 (1-312) although the unmistakable Nb

binding to both GST-EPS15 (1–109/EH1) and GST-EPS15 (1–217/EH1 + 2) is apparent (Figure 3B).

This indicates importantly that additional non-NPF side chains must contribute to the selective bind-

ing of Nb E_142 to the EPS15/R EH domains, and likely accounts for the markedly higher apparent

affinity of this Nb over the native NPF ligand for EPS15/R EH domains. Also, since none of the anti-

Figure 2 continued

increasing amounts of GST-EPS15 (1-314) EH1-3 domain. After fractionation by SDS-PAGE, gels were either stained with Coomassie blue or transferred

to nitrocellulose and immunoblotted with the indicated antibodies. (D) Inhibition of NPF-based partner protein interactions with 200 mg immobilized

GST-EPS15 (1-314) by equimolar (45 mg) or 5-fold (225 mg) molar excess of added Nb E_142. (E) Combined ribbon and molecular surface representation

of the M. musculus Eps15 EH1 domain (PDB ID: 1QJT) with location of W57 highlighted. Residues within the interaction surface (yellow oval) that

undergo substantial chemical shift upon NPF ligand binding (Whitehead et al., 1999) are indicated. (F) Elimination of Nb binding by EH1 domain

interaction site disrupting W57A mutation. Coomassie-stained gel of a pull-down assay using 50 mg of the indicated GST-fusion proteins with purified

Nb E_142 protein. The location of the BSA carrier protein in the supernantant fractions is indicated, and bound Nb recovered in pellet fractions is

indicated (arrowheads).
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Figure 3. Direct interaction of Nb E_142 with the EPS15/R but not intersectin 1 EH domains. (A) Analysis of supernatant (S) and pellet (P) fractions after

incubation of 50 mg Sepharose-bead-immobilized GST, GST-EPS15 (1-314) or GST-EPS15R (1-365) with periplasmic extracts containing either Nb E_3,

Nb E_142 or Nb E_142 (NPFfiAPA) as indicated. Coomassie-stained gels shown, with the position of the molecular mass standards (in kDa) indicated

on the left, and bound Nb (arrowheads) shown. (B) Analysis of supernatant (S) and pellet (P) fractions after incubation of 50 mg Sepharose-bead-

Figure 3 continued on next page
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EPS15 Nbs display acidic residues trailing the NPF in CDR3, it makes it improbable that Nb E_142

binds to other proteins with C-terminal EH domains, like EHD1 (Kieken et al., 2010).

Biochemical titrations better gauge the affinity of Nb E_142 for EPS15 EH domains. Using 2 mM

Nb E_142 and immobilized GST-EPS15 (1–109/EH1) varied from 0.5 to 20 mM, saturation occurs at

around 10 mM and half-maximal binding occurs at ~3 mM (Figure 3C–D). With the larger GST-EPS15

(1–314/EH1-3) fusion, half-maximal binding is also seen at ~2 mM (Figure 3D and Figure 3—figure

supplement 1). That the apparent KD for Nb E_142 is roughly similar for the two fusion proteins indi-

cates that binding to each EH domain is independent and of similar affinity. Thus Nb E_142 binds to

the EH domain with low micromolar affinity at physiological ionic strength; these results demonstrate

that the KD of Nb E_142 for an EH domain is considerably better than a single endogenous NPF

peptide (Yamabhai et al., 1998; de Beer et al., 1998).

Nb E_142 is an immunoprecipitation-grade reagent. In addition to the binary interaction with

recombinant GST-EPS15 (1-314) antigen (Figure 3E), purified His6-tagged Nb E_142 bound to Ni-

NTA-agarose efficiently immunoprecipitates Eps15 from both K-562 erythroleukemia cell

(Lozzio and Lozzio, 1975) lysates and rat brain cytosol (Figure 3E). This Nb thus recognizes the

native full-length protein. And in agreement with Nb E_142 also interacting with EPS15R

(Figure 3A), there is quantitative precipitation of EPS15R from the K-562 lysate. Analysis of co-

immunoprecipitating components shows the known EPS15/R interaction partners FCHO1, FCHO2

and AP-2 (a subunits) (Figure 2B) are co-recovered with the EPS15/R immobilized through the EH

domain regions by Nb E_142 (Figure 3E). The extent of recovery of cytosolic FCHO1/2, which bind

to the C-terminal DPF region of EPS15/R with the m-homology domain (mHD) (Henne et al., 2010;

Reider et al., 2009; Umasankar et al., 2012), and AP-2, which binds to the DPF region of EPS15/R

utilizing the appendages of the a and b2 subunits (Benmerah et al., 1996; Iannolo et al., 1997),

mirrors the known differential affinities (Ma et al., 2016). In the same assay, NPF-dependent EH

domain binding partners (HRB, Figure 3E) do not co-precipitate with Eps15/R, again in line with

function-blocking Nb activity.

Nb E_142 interacts with EPS15 intracellularly
Unexpectedly, when transiently transfected into HeLa cells, the diffuse, rather featureless intracellu-

lar distribution of an mNeonGreen (mNG)-tagged (Shaner et al., 2013) Nb E_142 fusion is not sub-

stantially different from the control mNG protein alone, and is clearly distinct from the punctate

pattern of endogenous EPS15 staining in these cells detected with an anti-peptide antibody recog-

nizing the extreme C-terminus (Hinrichsen et al., 2003) (Figure 4A–E). Immunoblots of whole cell

extracts from transfected HeLa cells confirm synthesis and stability of the intact mNG-Nb fusion pro-

teins as well as various clathrin coat components, including EPS15 (Figure 4F). In fewer than half the

transfected cells, small concentrations of mNG-Nb E_142 that overlap some EPS15 puncta are seen

(Figure 4B’, arrowheads). Essentially similar results are obtained irrespective of whether Nb E_142 is

tagged at the N or C terminus with mNG, or with enhanced green fluorescent protein (GFP). In addi-

tion, in repeated experiments, transfection of either GFP-tagged Nb E_3 or Nb E_180 produces an

Figure 3 continued

immobilized GST, GST-EPS15 (1–109/EH1) or GST-EPS15 (1–217/EH1-2) and GST-intersectin 1 l (ITSN1l) (1–312/EH1-2) with periplasmic extracts

containing either Nb E_3, Nb E_142 as indicated. Coomassie-stained gel shown, with the position of the molecular mass standards (in kDa) indicated

on the left, and bound Nb (arrowheads) shown. (C) Analysis of supernatant (S) and pellet (P) fractions after incubation of 20 mM Sepharose-bead-

immobilized GST or 0.5–20 mM GST-EPS15 (1–109/EH1) with 2 mM purified Nb E_142 in the presence of 100 mg/ml BSA as indicated. Coomassie-

stained gel shown, with the position of the molecular mass standards (in kDa) indicated on the left. (D) Plots of the mean of three determinations that

differed by less than 10% shown for GST-EPS15 (1-109) (squares) or GST-EPS15 (1-314) (circles) titrations. Estimation of KD from the quantitative analysis

of the supernatant fractions yields ~3 mM for a single EH domain (1-109) and ~2 mM for the triple EH domain array (1-314). (E) Analysis of supernatant

and pellet fractions after immunoprecipitation of purified GST-EPS15 (1-314) (arrowheads) or native Eps15 in K-562 cell lysate or rat brain cytosol. After

fractionation by SDS-PAGE, gels were either stained with Coomassie blue or transferred to nitrocellulose and immunoblotted with the indicated

antibodies. Non-specific rabbit anti-EPS15 cross-reactive material in the pellet fraction from the GST-EPS15 (1-314) incubation is identified (bracket).

DOI: https://doi.org/10.7554/eLife.41768.004

The following figure supplement is available for figure 3:

Figure supplement 1. Quantitative titration of Nb E_142 with immobilized GST-EPS15 (1-314).

DOI: https://doi.org/10.7554/eLife.41768.005
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colocalizing weakly with endogenous EPS15 (arrowheads) in intact cells are indicated. Color-separated enlargements (C–E) of the region boxed in B are

Figure 4 continued on next page
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analogous dispersed location in HeLa cells. While superficially these results suggest Nb E_142 may

not function effectively as a so-called chromobody (Rothbauer et al., 2006), in some mNG-Nb

E_142-expressing cells an alteration in the steady-state distribution of endogenous EPS15 is evident

compared with the adjacent non-transfected cells (Figure 4G). The intensity of the EPS15 surface

puncta is diminished relative to adjacent non-transfected cells, indicative of less EPS15 deposition at

these sites, and some limited interference with EPS15 function. Additionally, in adherent cell mem-

brane cortices from inadvertently sheared-off cells (identified by lack of DNA staining), a dim mNG-

Nb E_142 signal is seen to colocalize closely with endogenous EPS15 (Figure 4B, arrows,

and Figure 4C-E). As Nb E_142 is able to robustly immunoprecipitate EPS15(R) from cytosol, and

because the Nbs act as pseudoligands, these transfection data suggest that in viable cells EPS15/R

deposited at clathrin coat assembly sites at the plasma membrane have EH domains locally occupied

in a way that makes Nb E_142 binding unfavorable.

The concept of avidity-dependent, regionalized NPF occupancy of the EPS15/R EH domains gath-

ered at incipient clathrin-coated structures is supported experimentally by the intracellular distribu-

tion and positioning of a transiently transfected triple Nb E_142 array. In HeLa cells, compared with

the single Nb E_142 fusion, a larger mNG-Nb E_142 � 3 protein construct (Figure 4—figure supple-

ment 1) now labels punctate AP-2-positive structures at very low expression levels. Given that both

the ectopic mNG-Nb E_142 and the mNG-Nb E_142 � 3 proteins each contain only a single fluores-

cent mNG domain, the increased efficiency of EPS15/R labeling by the polyvalent reporter (Fig-

ure 4—figure supplement 1) must signify better apparent affinity for the massed EH domains at the

sites of clathrin-coat assembly. This indicates that through avidity-based phenomena, artificially but

flexibly grouped NPF-harboring Nbs can compete in vivo with the deployment multiple NPF-motifs

by endogenous EH domain partner proteins.

Markedly different results are obtained when a single Nb E_142 is appended in-frame to a tan-

dem Fab1p, YOTB, Vac1p, and EEA1 (FYVE2) domain (Figure 5A); this leads to strong sequestration

of endogenous EPS15 within cells. In HeLa SS6 cells, transient overexpression of the control GFP-

FYVE2 alone, which binds to the endosomal compartment phospholipid marker phosphatidylinositol

3-phosphate (PtdIns3P) (Chen and De Camilli, 2005), results in an enlarged labeled endosome com-

partment (Figure 5B), but the subcellular distribution of EPS15 remains undisturbed at clathrin-

coated structures on the cell surface. A C-terminal Nb E_142 extension to the GFP-FYVE2 chimera

produces a dramatic alteration in steady-state EPS15 positioning; the protein now colocalizes exten-

sively with the clustered GFP-FYVE2-Nb E_142 fusion protein on large swollen endosomes and near

completely disarranges assembly of EPS15 at typical scattered puncta on the plasma membrane

(Figure 5C). To explain the markedly altered subcellular distribution of EPS15, note that a funda-

mental tenet of coat-assisted vesicle formation is the cycling of coat protomers between a mem-

brane-attached, assembled pool and a cytosolic, reserve pool. If EPS15 is one of the early arriving

pioneers at a nascent bud, it is deposited from a supply in the dispersed soluble pool. The popula-

tion of EPS15 in the cytosolic fraction (Figure 3) (van Delft et al., 1997a) confirms that this coat pro-

tein too cycles between a membrane-assembled and a cytosolic pool. Additionally, like the tandem

mNG-Nb E_142 � 3 fusion, a concentrating/multivalency effect of densely tethered Nb E_142 upon

a two-dimensional membrane surface markedly increases the capacity of the Nb to capture endoge-

nous EPS15 at that site. The endosome-bound Nb E_142 can thus lure EPS15 from the latter soluble

Figure 4 continued

shown with nuclei (asterisks) in intact cells identified. The presence of mNG-Nb E_142 within EPS15-positive, morphologically aberrant clathrin-coated

structures is evident on the adherent membrane fragments from sheared-off non-viable cells (Heuser, 1989). Scale bar; 10 mm; 1.0 mm in C. (F) SDS-

PAGE and immunoblot analysis of whole HeLa cell lysates after transfection with plasmids encoding mNG, mNG-Nb E_3 or mNG-Nb E_142 as

indicated and either stained with Coomassie blue or probed with the indicated antibodies. Molecular mass standards (in kDa) are shown on the left.

(G–G’) Selected but representative confocal basal optical section of HeLa SS6 cells expressing mNG-Nb E_142 and analyzed as in B. mNG-expressing

transfected cells are outlined. Scale bar; 10 mm.

DOI: https://doi.org/10.7554/eLife.41768.006

The following figure supplement is available for figure 4:

Figure supplement 1. Efficient intracellular labeling of endogenous EPS15 in AP-2-positive clathrin-coated structures with a polyvalent tandem mNG-

Nb E_142 � 3 fusion protein.

DOI: https://doi.org/10.7554/eLife.41768.007
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Figure 5. Massive endosome displacement of endogenous EPS15 with GFP-FYVE2-Nb E_142. (A) Schematic depiction of the domain arrangement of

the GFP-FYVE2-based fusion proteins analyzed. (B–D’) Selected but representative confocal basal optical sections of HeLa SS6 cells transfected with

either negative control GFP-FYVE2 (B, B’), GFP-FYVE2-Nb E_142 (C, C’) or destabilized GFP-FYVE2-desNb E_142 (D, D’). Fixed cells were stained with

anti-EPS15 antibodies (red) and DNA dye (blue). Scale bar; 10 mm. (E) SDS-PAGE and immunoblot analysis of whole HeLa SS6 cell lysates either mock

Figure 5 continued on next page
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pool, titrating out the available free EPS15 such that, over time, little is available for deposition at

new clathrin bud sites. Thus organelle-attached Nb E_142 disturbs the steady-state balance of

endogenous EPS15(R) positioning within the cell, and therefore does function as an intrabody.

Compared with the GFP-FYVE2-Nb E_142 chimera, a destabilized mutant (designated 3maj;

Tang et al., 2016) with three framework side chain substitutions (S73R, C98Y and S117F; GFP-

FYVE2-desNb E_142; see Figure 1C) also relocalizes endogenous EPS15 to an expanded, PtdIns3P-

positive endosomal compartment in HeLa SS6 cells (Figure 5D). The rationale for the conditionally-

destabilized mutant is that in the absence of antigen binding, the structurally perturbed Nb VHH is

labile and subject to protein quality control and accelerated proteasomal degradation (Tang et al.,

2016). However, the effect of the conditionally destabilized Nb on EPS15 redistribution is not as

penetrant as the native Nb. Assembly of endogenous EPS15 at plasma membrane clathrin-coated

structures is still evident. Despite the dramatic change in intracellular localization of EPS15, immuno-

blots show that ectopic expression of neither Nb E_142 nor desNb E_142 alters the overall abun-

dance of EPS15, EPS15R or other core clathrin coat components (Figure 5E). Further, at low-to-

moderate relative expression levels, AP-2 remains at dispersed puncta at the plasma membrane

despite the massive relocation of EPS15(R) to GFP-FYVE2-Nb E_142-positive intracellular endosomal

structures (Figure 5F, arrows). In cells expressing high levels of GFP-FYVE2-Nb E_142 with promi-

nent enlarged PtdIns(3)P-positive endosomes, AP-2 becomes mislocalized with the EPS15 on these

internal organelles and AP-2 puncta at the cell surface become less abundant (Figure 5F, arrow-

heads) but not in the GFP-FYVE2-desNb E_142 producing HeLa cells (Figure 5G). Yet, in 5 min

uptake assays of fluorescently-tagged transferrin, GFP-FYVE2-Nb E_142-producing cells traffic the

endocytic tracer into the lumen of swollen endosomes in cells irrespective of whether there is strong

AP-2 clustering with the Nb bound EPS15 or not (Figure 5—figure supplement 1, arrowheads).

Because of the dilated lumen of expanded endosomes in the presence of the overexpressed FYVE2
module, the internalized transferrin signal is generally neither as compact nor intense as in the adja-

cent untransfected cells (Figure 5—figure supplement 1G–J); thus the results are confounded by

overexpression-induced endosome morphology alterations. Nevertheless, despite the FYVE2-pro-

voked variable endosomal dimensions (a right-shifted volume distribution of tracer-labeled endo-

somes), quantifying integrated fluorescence intensity of the internalized transferrin tracer shows that

prominent sequestration of EPS15(R) on endosomes by ectopic Nb E_142 clearly does not terminate

clathrin-mediated endocytosis of transferrin in HeLa SS6 cells (Figure 5—figure supplement 1J).

Mitochondria-directed Nb E_142 effects on CCS structure and function
Because transient overexpression of the PtdIns3P-binding tandem FYVE domain alters endosome

morphology considerably and may perturb endosomal structure and dynamics in functional studies

(Gucwa and Brown, 2014; Hu et al., 2002), a mitochondria-tethered alternative Nb E_142 fusion

was evaluated. The tailored chimera is composed of a 31-amino acid N-terminal mitochondrial outer

membrane targeting element from M. musculus Akap1 (Ma and Taylor, 2008) fused in-frame to Nb

E_142 and then followed by infra-red fluorescent protein (iRFP; Filonov et al., 2011). Very similar

near-quantitative intracellular redistribution of endogenous EPS15 in HeLa SS6 cells expressing this

fusion protein, but not a control (with central FKBP12-rapamycin binding (FRB) domain instead of

the Nb E_142 module), is evident (Figure 6A and B). EPS15 puncta disappear from the basal sur-

face, and in medial confocal optical sections, cells expressing the Akap1-Nb E_142-iRFP do not dis-

play assembled EPS15 puncta at the cell margins, as seen in the adjacent untransfected or Akap1-

FRB-iRFP transfected cells (Figure 6B’, arrows). But unlike GFP-FYVE2-Nb E_142 expression, even in

Figure 5 continued

transfected or transiently transfected with GFP-FYVE2-based plasmids as indicated. Gels were either stained with Coomassie blue or transferred to

nitrocellulose and probed with the indicated antibodies. Molecular mass standards (in kDa) are shown on the left. (F–G) Basal confocal section of

transiently transfected HeLa SS6 cells expressing either GFP-FYVE2-Nb E_142 (F) or GFP-FYVE2-desNb E_142 (G) and stained for AP-2 a subunit (red) or

EPS15 (blue). Moderate (arrows) and high-level expression (arrowheads) and EPS15 with AP-2 sequestration are indicated.

DOI: https://doi.org/10.7554/eLife.41768.008

The following figure supplement is available for figure 5:

Figure supplement 1. Endocytic transferrin uptake in GFP-FYVE2-Nb E_142 expressing HeLa SS6 cells .

DOI: https://doi.org/10.7554/eLife.41768.009
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Figure 6. Mitochondrial capture of EPS15 with Akap1-Nb E_142-iRFP. (A–B’) Single confocal sections of basal (A

and B) or medial (A’ and B’) optical planes of fixed HeLa SS6 cells previously transfected with either control Akap1-
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EPS15 (green) and Hoechst DNA dye (blue). The iRFP-expressing transfected cells are outlined (red) and, in medial

Figure 6 continued on next page
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high level expression cells, the mitochondria relocalized EPS15 does not elicit prominent AP-2 reor-

ganization, possibly reflecting the absence of a suitable source of phosphatidylinositol 4, 5-bisphos-

phate (PtdIns(4,5)P2) support on the mitochondrial outer membrane and/or the lack of suitable

cargo with appropriate sorting signals to bind to the AP-2 adaptor core (Jackson et al., 2010;

Traub and Bonifacino, 2013) (Figure 6C–D’).

Functional studies show that both Akap1-FRB-iRFP and Akap1-Nb E_142-iRFP-producing HeLa

cells internalize transferrin despite the conspicuous difference in EPS15 positioning within the Nb

E_142-expressing cells (Figure 6—figure supplement 1A–B’), as is seen with the GFP-FYVE2-Nb

E_142-producing cells (Figure 5—figure supplement 1). A small subpopulation of Akap1-Nb E_142-

iRFP-expressing cells display strongly suppressed, but not halted, transferrin internalization. Since a

similar fraction (~15%) of the Akap1-FRB-iRFP fusion produces a similar phenotype, the diminished

transferrin uptake is not likely due to mitochondrial dysfunction and ATP restriction but more proba-

bly due to the known cell-cycle dependence of transferrin endocytosis (Sager et al., 1984) and/or

heterogeneity in relative internalization dependent upon local context and positioning of the cul-

tured cells within the adherent population (Snijder et al., 2009). Overall, in the presence of a normal

complement of endocytic clathrin coat components, artificial spatial displacement of EPS15/R onto

mitochondria does not severely disrupt short-term clathrin-mediated endocytosis in parental HeLa

SS6 cells.

Mitochondria sequestration of EPS15 in gene-edited HeLa cells
As Eps15/R and Fcho1/2 function along the same pathway in a redundant manner (Ma et al., 2016;

Wang et al., 2016b), the effect of forced expression of the mitochondria-targeted Nb E_142 was

explored in novel HeLa cells rendered FCHO1/2- and EPS15R-null by successive TALEN-mediated

gene editing (Figure 7A). Of the three new triple-null lines obtained that exhibit indels within the

targeted exon 5 region of the EPS15R-encoding EPS15L1 gene on chromosome 19 (Figure 7B), and

have no detectable EPS15R protein on immunoblots (Figure 7C), one, clone #40, was selected for

further analysis. The relative cellular abundance of EPS15, AP-2 and several other clathrin-mediated

endocytosis components is not changed in the HeLa clone #40 cells (Figure 7C). Like the HeLa clone

#64/1.E cells from which they are derived, clone #40 cells display morphologically abnormal clathrin-

coated structures at steady state (Figure 7D–F); compared with the parental HeLa SS6 cells, fewer,

larger and more clustered AP-2- and EPS15-positive clathrin assemblies are present on the ventral

membrane in clone #40 cells. This abnormal distribution and morphology of clathrin-coated struc-

tures in the genome-edited cells implies FCHO1/2 and EPS15R play some significant role in bud site

selection and maintenance.

Side-by-side comparison of transferrin uptake and the steady-state abundance of transferrin

receptors at the cell surface reveals that both the HeLa #64/1.E (Umasankar et al., 2014) and the

clone #40 cells display defective clathrin-mediated endocytosis compared with parental HeLa SS6

cells (Figure 7—figure supplement 1). Although fluorescent transferrin is internalized into periph-

eral early endosomes (lysosome-associated membrane glycoprotein 1 (LAMP1)-negative) in a 5 min

pulse of the genome-edited cells at 37˚C (accounting for their long-term viability), the extent is less

than in the HeLa SS6 cells. Instead, the majority of the transferrin is bound to transferrin receptors

diffusely situated over the plasma membrane (Figure 7—figure supplement 1B’ and C’). This pool

of surface transferrin receptors is not similarly evident in the parental cells. Comparative accumula-

tion of surface transferrin receptors in the genome-edited lines is confirmed by fluorescent

Figure 6 continued

views, EPS15 assembled in clathrin-coated structures at the plasma membrane is indicated (arrows). (C-D’)

Representative single basal confocal sections of fixed HeLa SS6 cells previously transfected with either control

Akap1-FRB-iRFP (C–C’) or Akap1-Nb E142-iRFP (D–D’) (pseudocolored blue) and stained with anti-AP-2 a-subunit

(red) and anti-EPS15 (green) antibodies. Relative colocalization of AP-2 with EPS15 in absence of Akap1-FRB/Nb

E_142-iRFP signal (C’ and D’) is shown. Scale bar; 10 mm.

DOI: https://doi.org/10.7554/eLife.41768.010

The following figure supplement is available for figure 6:

Figure supplement 1. Transferrin internalization in Akap1-Nb E_142-expressing HeLa cells.

DOI: https://doi.org/10.7554/eLife.41768.011
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Figure 7. TALEN-mediated generation of FCHO1, FCHO2 and EPS15R triple-null HeLa cells. (A) Schematic depiction of the location and organization

of the EPS15L1 gene and TALEN design strategy. The assembled TALEN component repeat variable diresidues (RVDs) are shown, color-coded on the

right. The diagnostic ApaLI restriction site (boxed in pale yellow) is indicated. (B) Agarose gel electrophoresis of EPS15L1 exon 5 PCR products with and

without ApaL1 digestion as indicated. Compared with the parental HeLa SS6 and clone #64/1.E cell PCR products, the abnormally large cleavage-

Figure 7 continued on next page
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transferrin labeling experiments conducted on ice for 60 min (unpublished); the data thus indicate

slowed egress of the transferrin receptor from the surface of the genome-edited cells for reentry

into the endosomal compartment, leading to stalling and accumulation of this (and other) endocytic

cargo at the plasma membrane.

Transient expression of negative control Akap1-FRB-iRFP in the HeLa clone #40 cells has no obvi-

ous effect on the subcellular patterning of EPS15 (Figure 8A), as in parental the HeLa SS6 cells. The

high degree of colocalization of EPS15 with AP-2 at surface puncta is not different from adjacent

untransfected cells. By contrast, in Akap1-Nb E_142-iRFP producing clone #40 cells, ectopic trap-

ping of EPS15 on the mitochondria-massed Nb E_142 is clear, with a concomitant loss of EPS15

from the plasma membrane. In these transfected clone #40 cells, AP-2 clusters at the surface are

diminished in size and number in a manner that correlates with the efficiency of EPS15 segregation

at mitochondria (Figure 8B-F). The majority of AP-2-positive puncta that do remain are populated

with detectable endogenous EPS15 protein (Figure 8C–F). Thus, in this genetic background stable

membrane-associated AP-2 assemblies depend heavily on EPS15 for their generation.

Based on the apparent affinity and computed cellular abundance in HeLa cells (Hein et al., 2015;

Itzhak et al., 2016), HRB, HRB-like protein (HRBL) and DAB2 are most likely the predominant inter-

action partners for the EH domains at assembling clathrin-coated structures (Figure 2). Comparison

of the steady-state distribution of EPS15 and HRB in clone #40 cells shows that whereas both pro-

teins overlap at the aberrant enlarged clathrin-coated structures that are a distinctive feature of

untransfected cells, in Akap1-Nb E_142-iRFP-expressing cells, neither protein is efficiently deposited

on the plasma membrane (Figure 8G–L). In these cells, EPS15 is lured onto the cytosolic face of

mitochondria but HRB is not, and EPS15 is associated with the few HRB puncta that are evident at

the plasma membrane (Figure 8I–L). Thus, in the presence of Akap1-Nb E_142-iRFP, HRB is essen-

tially displaced into the soluble cytosolic compartment. Overall, these findings recapitulate the effect

of combined EPS15 and EPS15R RNAi in the parental HeLa clone #64/1.E cells, where there is a shift

from large irregular clathrin-coated assemblies to small, abortive diffraction-limited structures

(Ma et al., 2016).

The defects in AP-2-containing clathrin-coated structures in Akap1-Nb E_142-iRFP-transfected

clone #40 cells translate into clathrin-mediated endocytosis dysfunction. A modified uptake assay

format (Reis et al., 2015), with a 2 min pulse of transferrin at 37˚C followed by surface stripping on

ice and rewarming to 37˚C for a further 2 min (Figure 9A), was used since the clone #40 cells display

faulty clathrin-mediated internalization (Figure 7—figure supplement 1). As this procedure removes

the surface bound transferrin pool, alterations in rapid internalization are easier to discern. Loss of

EPS15 from surface puncta in clone #40 cells by massing upon mitochondria with Akap1-Nb E_142-

iRFP has a strong inhibitory effect on transferrin uptake (Figure 9). In both basal and medial confocal

optical sections and maximal intensity projections, the presence of small intracellular endosomes

positive for the fluorescent endocytic tracer is strongly decreased compared with the neighboring

untransfected cells, and also with control Akap1-FRB-iRFP producing clone #40 HeLa cells (Figure 9).

In these experiments, quantitation shows that the number of >0.2 mm2 transferrin-positive intracellu-

lar structures within the three-dimensional volume of untransfected cells surrounding the Akap1-Nb

E_142-iRFP-expressing cells is roughly double that of the EPS15-sequested cell population (Fig-

ure 9—figure supplement 1). Since the larger transferrin-containing vesicular structures represent

progressive concentrating endosomal fusion reactions (Rink et al., 2005), and because the Akap1-

Nb E_142-iRFP-transfected HeLa clone #40 cells display substantially elevated levels of transferrin

Figure 7 continued

resistant indels in the three TALEN clones is indicated. (C) SDS-PAGE and immunoblot analysis of TALEN clones. Whole cell lysates subjected to SDS-

PAGE were either stained with Coomassie blue or immunoblotted with the indicated antibodies. Molecular mass standards (in kDa) are shown on the

left. (D–F) Representative confocal optical section of the steady-state distribution and morphology of clathrin-coated structures at the surface of

parental HeLa SS6 (D), HeLa clone #64/1.E (E) and HeLa clone #40 (F) cells stained with antibodies directed against EPS15 (red), the AP-2 adaptor a

subunit (green), and Hoechst DNA dye (blue) as indicated. Scale bar; 10 mm.

DOI: https://doi.org/10.7554/eLife.41768.012

The following figure supplement is available for figure 7:

Figure supplement 1. Defective endocytic transferrin internalization in genome-edited HeLa cells.

DOI: https://doi.org/10.7554/eLife.41768.013
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Figure 8. Clathrin-coated structure abnormalities in HeLa clone #40 cells lacking FCHO1/2 and EPS15/R. (A–L) Representative confocal basal optical

sections of fixed HeLa clone #40 cells expressing either control Akap1-FRB-iRFP (A and G) or Akap1-Nb E_142-iRFP (B-F, H-L; transfected cells outlined

in blue) and stained with antibodies to EPS15 (green) and the AP-2 a subunit (red) or HRB (red), as indicated. Color-separated enlargements of the

Figure 8 continued on next page
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receptors at the cell surface (Figure 7—figure supplement 1), this inhibited internalization with

mitochondria-appropriated EPS15 implies that FCHO1/2 and EPS15/R facilitate AP-2-dependent cla-

thrin-mediated endocytosis.

Rescue of AP-2 puncta in clone #40 cells with grossly misplaced EPS15
by the FCHO1 unstructured interdomain linker
Ectopic expression of Akap1-Nb E_142-iRFP is unlikely to grossly perturb PtdIns(4,5)P2 levels on the

basis of the proper plasma membrane deposition of endogenous AP-2 in transfected HeLa SS6 cells

(Figure 6). Indeed, the failure of AP-2 to assemble into normally dispersed puncta at the surface of

clone #40 cells is not due to bulk effects on phosphoinositide metabolism in Akap1-Nb E_142-iRFP-

transfected cells. Using the phospholipase Cd1 pleckstrin-homology (PH) domain as an intracellular

biosensor for PtdIns(4,5)P2, both co-transfected Akap1-FRB-iRFP or Akap1-Nb E_142-iRFP-express-

ing cells show an abundance of this plasma membrane localized lipid even with the marked differ-

ence in EPS15 localization (Figure 10A and B). These results reveal that despite a plasma membrane

supply of PtdIns(4,5)P2, elevated levels of the transferrin receptor at the cell surface (Figure 7—fig-

ure supplement 1), and a normal cellular concentration of AP-2 (Figure 7C), the absence of utiliz-

able FCHO1/2 and EPS15/R pioneers in HeLa clone #40 cells is not compatible with widespread and

stable deposition of AP-2 at the cell surface and assembly of clathrin-coated structures. In addition,

the noted parallel decrease in AP-2 and HRB puncta in the presence of the Akap1-Nb E_142-iRFP

trap again supports the notion that the EH domains of EPS15/R play a key role in docking HRB at

nascent coated buds.

Fully concordant with the widely dispersed PtdIns(4,5)P2 within the inner leaflet of the plasma

membrane in both Akap1-FRB-iRFP- and Akap1-Nb E_142-iRFP-transfected HeLa clone #40 cells is

the restoration of extensive and apparently random deposition of AP-2 on co-transfection with GFP-

tagged FCHO1 (1–609) (Figure 11). This truncated FCHO1 protein contains the membrane-binding

N-terminal EFC/F-BAR domain (Umasankar et al., 2012; Henne et al., 2007) and the adjoining

intrinsically disordered linker that appears to operate as an allosteric activator (Umasankar et al.,

2014; Hollopeter et al., 2014), driving a reconfiguration of AP-2 from the closed to the membrane-

bound open state (Jackson et al., 2010). Ectopic GFP-FCHO1 (1–609) can reconstitute the regularly

dispersed HeLa clathrin-coated structure pattern at very low levels of expression of the linker

(Figure 11A). Measurement of AP-2-positive puncta in FCHO1 linker-expressing cells, compared

with adjacent non-transfected HeLa clone #40 cells, documents the overall shift to smaller, more

numerous 0.2–0.6 mm2 structures (Figure 11—figure supplement 1). In parallel technical replicates,

as expected EPS15 is sequestered prominently by the overexpressed Nb decoy on mitochondria,

and little endogenous EPS15 is deposited along with the corrected AP-2 in the compact, scattered

surface puncta (Figure 11B). Thus the normalizing effect of the FCHO1 (EFC domain and) linker is

manifest largely in the absence of co-assembled EPS15. Also in the same experiment, by itself the

expressed GFP-FCHO1 (1–609) produces a profusion of small clathrin-coated structures spread over

the basal plasma membrane that contain both AP-2 and EPS15, while the transfected Akap1-Nb

E_142-iRFP alone repeatedly diminishes the intensity and abundance of AP-2 structures at the ven-

tral surface of clone #40 cells (Figure 11C–D). The FCHO1-corrected phenotype is starkly different

from the untransfected clone #40 cells, and closely mirrors the results seen in clone #64/1.E cells

(Umasankar et al., 2014; Sager et al., 1984), where we have shown this is not due to the phospho-

lipid-binding N-terminal EFC domain (Umasankar et al., 2014). These striking results again verify

that FCHO1/2 act epistatically to EPS15/R and demonstrate clearly that a major role of EPS15/R is

normally to cooperate with full-length FCHO1/2 to bind to and activate AP-2 proteins at incipient

clathrin-coated structures, as we previously suggested (Ma et al., 2016).

Figure 8 continued

regions boxed in B and H are shown below, with colocalization of displaced endogenous EPS15 with Nb E_142 (arrowheads) in transfected cells and

AP-2 with residual EPS15 or HRB at the plasma membrane (arrows) indicated. Scale bar; 10 mm.

DOI: https://doi.org/10.7554/eLife.41768.014
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Figure 9. Defective clathrin-mediated endocytosis in Nb E_142-producing clone #40 cells. (A) Schematic representation of the transient transfection

and transferrin internalization protocol. (B-G’) Transiently transfected HeLa clone #40 cells expressing either negative control Akap1-FRB-iRFP (B-D) or

Akap1-Nb E_142-iRFP (E–G’) were incubated in starvation medium for 60 min before a 2 min pulse of 25 mg/ml Alexa Fluor 568-transferrin (red; white in

E’-G’) at 37˚C. The cells were then placed on ice and immediately washed three times with acid stripping buffer to remove surface bound transferrin.

Figure 9 continued on next page
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Nb-E3 ligase mediated EPS15 degradation
An alternative experimental strategy to proximity and local molarity changes through Nb-mediated

intracellular sequestration is targeted elimination of Nb-recognized targets (Moutel et al., 2016;

Gross et al., 2016; Shin et al., 2015). The GFE3 plasmid, which contains a GFP reporter and an anti-

body-like gephyrin recognizing FingR module for ubiquitin conjugation and targeted proteasomal

degradation of gephyrin mediated by an in-frame fusion of the Rattus norvegicus X-linked inhibitor

of apoptosis (XIAP) E3 ligase RING domain (residues 440–496) (Gross et al., 2016), was repurposed

by substitution of Nb E_142 for the fibronectin-derived FingR section. The negative control, parental

GFE3 transfection into HeLa SS6 cells, has negligible impact on the steady-state distribution of

EPS15 at clathrin-coated puncta on the ventral cell surface (Figure 12A). By contrast, the G-Nb

E_142-E3 plasmid is highly effective in promoting the degradation of EPS15 in transiently trans-

fected cells positive for GFP (Figure 12B). The effectiveness of the XIAP E3 is superior to similar con-

structs containing the C-terminus of Hsc70-interacting protein (CHIP) or von Hippel-Lindau tumor

suppressor E3 ligase domain (data not shown). Variability of different synthetic E3 ligase chimeras to

promote degradation of selected target proteins has been seen by others (Shin et al., 2015). As

with Akap1-Nb E_142-iRFP, effective elimination of EPS15/R by the tailored G-Nb E_142-E3 fusion

protein still leaves AP-2 assembled at clathrin-coated sites on the plasma membrane of the HeLa

SS6 cells (Figure 12C–D).

Figure 9 continued

Then 37˚C medium was readded and the cells incubated for a further 2 min at 37˚C before fixation on ice. Permeabilized cells were stained with

antibodies against EPS15 (green), and confocal optical sections from a basal (B and E) and medial (C and F) plane or a maximal intensity projection of

alternative fields (D and G) are shown with the iRFP fusion protein pseudocolored (blue). Isolated grayscale images of the transferrin (red) channel in the

Akap1-Nb E_142-iRFP-transfected preparations are shown on the right (E’–G’) to better visualize the defective clathrin-mediated endocytosis. Scale bar;

10 mm.

DOI: https://doi.org/10.7554/eLife.41768.015

The following figure supplement is available for figure 9:

Figure supplement 1. Quantitation of short-pulse transferrin uptake in Akap1-Nb E142-iRFP transfected HeLa clone #40 cells.

DOI: https://doi.org/10.7554/eLife.41768.016
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Figure 10. PtdIns(4,5)P2 synthesis in clone #40 cells expressing mitochondria-targeted Nb E_142. (A–B) Single basal optical sections of HeLa clone #40

cells co-transfected with control Akap1-FRB-iRFP (A) or Akap1-Nb E_142-iRFP (B) (blue) together with PLCd1 PH-GFP (green; transfected cells outlined).

Fixed cells were probed with anti-EPS15 antibodies (red) as indicated. Scale bar; 10 mm.

DOI: https://doi.org/10.7554/eLife.41768.017
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Figure 11. Reconstitution of clathrin-coated structure morphology in clone #40 cells with the FCHO1 disordered interdomain linker. (A–

B’) Representative confocal basal optical sections of HeLa clone #40 cells transiently transfected with both GFP-FCHO1 (1–609)- and Akap1-Nb E_142-

iRFP-encoding plasmids before fixation. Permeabilized cells were stained with antibodies directed against either the AP-2 a subunit (red in A) or EPS15

(red in B). Because of diminished GFP expression in these co-transfected cells GFP was enhanced with the GFP-Booster Nb (green; transfected cells

Figure 11 continued on next page
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Discussion
In depth characterization of the anti-EPS15 Nb E_142 shows this VHH is a versatile reagent in that it

functions both in in vitro biochemical assays and as an effective intrabody in the reducing environ-

ment of the cell cytosol. The molecular mode of action of function-blocking intrabodies varies. Some

can disrupt a critical protein–protein, protein–nucleic acid or protein–lipid interaction, thereby pre-

venting the normal biological activity of the target, or stabilize a specific, functionally significant con-

formational state (Staus et al., 2016; Zimmermann et al., 2018). Alternatively, and especially for

proteins that operate as interaction hubs like Eps15/R (Figure 2B), where a single Nb cannot possi-

bly incapacitate all of the interaction information encoded within the target protein, imposed

regional compartmental sequestration is a companion strategy. Here, using new NPF motif-harbor-

ing llama Nbs, it is demonstrated that during assembly the collective EH domains of EPS15 and

EPS15R deposited at clathrin-coated structures appear poorly accessible; this provides an important

clue to the occupancy of EH domains during lattice assembly and sorting in light of the known mod-

est KD for a single NPF.EH domain interaction (Yamabhai et al., 1998; de Beer et al., 1998). These

results confirm and extend previous data showing that ectopic expression of the tandem EH domain

module can inhibit clathrin-mediated endocytosis (Carbone et al., 1997), and that removal of

EH2 + EH3 from EPS15 prevents proper targeting to and stationing at clathrin-coated structures

(Benmerah et al., 1999). Inactivating point mutations to each of the three EH domains of the full-

length Drosophila Eps15 orthologue abolish proper positioning at the synapse, while a C-terminally

truncated DDPF mutant still localizes properly and is able to effectively rescue the defective synaptic

vesicle endocytosis at eps15-null nerve terminals (Koh et al., 2007). And in the squid giant axon,

microinjection of an NPF peptide interferes with clathrin-mediated endocytosis at an early stage,

roughly halving the occurrence of clathrin-coated structures at the synapse (Morgan et al., 2003).

Eps15b, an alternatively-spliced isoform of Eps15 in vertebrates, lacks the N-terminal EH1-3 tandem

array entirely and does not localize to the plasma membrane but rather to endosomes

(Roxrud et al., 2008).

Yet the EH domain module, alone, is not able to concentrate at clathrin-coated structures

(Benmerah et al., 2000). In the budding yeast S. cerevisiae, where Hs EPS15 can substitute for the

orthologous Ede1p, the minimal region of Ede1p necessary for proper targeting to clathrin-coated

buds is EH3, a flanking proline-rich region and the coiled-coil domain (Lu and Drubin, 2017). This

argues that EH domains play a critical role in placing Eps15 at the membrane bud site but highlights

the cooperativity of the binding information hardwired into Eps15/R (Figure 2B) and their early-arriv-

ing binding partners. In metazoa, these include AP-2, Fcho1/2, Hrb, Dab2, epsin, and CALM

(Manna et al., 2015). These endocytic proteins display a densely wired interactome, and it seems

likely they are responsible for high frequency occupancy of the EH domains at clathrin assembly

sites. Like EPS15/R, HRB/L (also designated AGFG1/2) and DAB2 are both detected in proximity

labeling mass spectrometry experiments as early, and thus edge positioned, components

(Paek et al., 2017). Because Nb E_142 can bind efficiently to EPS15/R in the soluble state, the poor

labeling at clathrin-coated structures with mNG-Nb E_142 and other tagged versions indicates not

only that the EH domain module is locally occupied at these assembly zones, but that any mono-

meric Nb E_142 bound to incoming EPS15/R is promptly displaced by the forming EH network that

Figure 11 continued

outlined), while the iRFP is pseudocolored (blue). Individual cells transfected with the GFP-FCHO1 (1–609) plasmid alone, lacking the mitochondrial iRFP

signal, are indicated (yellow arrows), where the morphology of the clathrin-coated structures is rectified by the ectopic FCHO1 interdomain linker.

Color-separated enlargements of the regions boxed in A and B are shown on the right. (C–D’) Basal optical sections of HeLa clone #40 cells transfected

with either the GFP-FCHO1 (1–609) (C) or Akap1-Nb E_142-iRFP (D) plasmids alone before fixation and permeabilization. The GFP-FCHO1 (1–609)-

expressing cells (green; transfected cells outlined) were stained with antibodies directed against the AP-2 a subunit (blue) and EPS15 (red), while the

Akap1-Nb E_142-iRF-expressing cells were stained with anti-AP-2 a-subunit antibodies (red) and Hoechst DNA dye (blue) as indicated. Color-separated

enlargements of the regions boxed in C and D are shown on the right. Scale bar; 10 mm.

DOI: https://doi.org/10.7554/eLife.41768.018

The following figure supplement is available for figure 11:

Figure supplement 1. Quantitation of clathrin-coated structure restructuring in GFP-FCHO1 (1–609) transfected HeLa clone #40 cells.

DOI: https://doi.org/10.7554/eLife.41768.019
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Figure 12. Ubiquitin-dependent degradation of EPS15 utilizing a repurposed E3 ligase. (A–B’) Representative confocal basal optical sections of HeLa

SS6 cells transfected with either GFE3 or G-Nb E_142-E3 plasmids before fixation and staining with anti-EPS15 antibodies (red), and Hoechst DNA dye

(blue) as indicated. Cells expressing GFP-tagged E3 ligase fusions are outlined (green), with the separated EPS15 signal (A‘, B’) shown. (C–D’’) Fixed

Figure 12 continued on next page
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accompanies coat formation. Somewhat contradictory, Nb E_142 can compete with dilute binding

partners in vitro (Figure 2); Nb E_142 therefore varies in the ability to bind stably to EH domains

dependent on the surrounding microenvironment. A plausible explanation for this apparent discrep-

ancy is an increase in effective membrane concentration of the endogenous EH binding partners at

nascent clathrin bud sites by two-dimensional partitioning and avidity effects slowing unbinding and

diffusion away (Yogurtcu and Johnson, 2018).

The results from the new triple-null clone #40 HeLa cells expressing a mitochondria-bound Nb

E_142 illustrate that without FCHO1/2 and EPS15/R, coated assemblies do not form stably and cla-

thrin-mediated endocytosis falters. Thus the steady-state perdurance of clathrin-coated structures

depends on presence of the pioneer EPS15 in clone #40 cells, albeit with abnormal morphology.

However, in parental HeLa cells, loss of either set alone does not similarly abolish uptake (Ma et al.,

2016; Umasankar et al., 2012; Teckchandani et al., 2012) (Figure 5—figure supplement 1, Fig-

ure 6—figure supplement 1). To explain this compensation, there must be a shared partner protein

(s) that is bound to both these pioneers, and can still operate in the absence of one. Again, this is

emblematic of the extensive redundancy in the pioneer interaction web (Figure 2B). Potential candi-

dates for a critical common partner are once more AP-2 and/or its direct binding partners DAB2,

CALM, HRB or epsin. Both CALM and HRB operate as vital SNARE retrieving sorting adaptors

(Miller et al., 2011; Pryor et al., 2008). That the Nb-directed mislocalization of EPS15 in the HeLa

clone #40 cells leads to bulk loss of clathrin-coated structures and diminished clathrin-based uptake

indicates that the EH domain proteins intersectin 1 and intersectin 2, which are both expressed in

HeLa cells (Figure 4) (Itzhak et al., 2016), cannot sustain the process without FCHO1/2 and EPS15/

R. These findings differ from siRNA-based experiments (Teckchandani et al., 2012) unless Nb E_142

also quantitatively depletes intersectins. Nb E_142 does not bind physically to the intersectin 1 EH

domains, and although hierarchical clustering, based on ultrastructural localization within clathrin-

coated structures, places EPS15/R and intersectin in distinct branches (Sochacki et al., 2017), and

the BioPlex 2.0 database (with HEK 293 cells) (Schweppe et al., 2018) does not score EPS15/R as

intersectin 1 or -2 binding partners, the noted discrepancy could be due to intersectins binding

physically to EPS15/R (Sengar et al., 1999) and so being concomitantly unavailable when massed at

an inappropriate intracellular organelle, or due to lower cellular abundance. Quantitative proteomics

reveals that in HeLa cells intersectin 1 and -2 are present at ~20–30% the level of EPS15/R

(Hein et al., 2015; Itzhak et al., 2016).

The experiments presented here reveal that the pioneers localized to the perimeter of clathrin-

coated structures at steady state (Sochacki et al., 2017; Ma et al., 2016; Tebar et al., 1996;

Henne et al., 2010; Edeling et al., 2006) are generally necessary for the inception of new clathrin-

coated buds. Because HeLa clone #40 cells clearly have PtdIns(4,5)P2 in the inner leaflet of the

plasma membrane when Akap1-Nb E_142-iRFP is expressed, the diminished number and/or inten-

sity of AP-2 puncta in these cells highlights the supportive role the FCHO1/2-EPS15/R partnership

plays in stabilizing active, conformationally-rearranged AP-2 at the cell surface. The still normal abun-

dance of cytosolic AP-2 and clathrin in these multiply genome-edited cells tends to argue strongly

against AP-2 pairs simply engaging the PtdIns(4,5)P2-rich plasma membrane and simultaneously

interacting with a clathrin triskelion to initiate stable, productive clathrin coat assembly

(Cocucci et al., 2012). Indeed, super-resolution microscopy of the AP-2 and clathrin distribution at

the ventral surface in single HeLa cells reveals substantial amounts of membrane-deposited AP-2

without a coincident clathrin signal (Leyton-Puig et al., 2017). While it is possible that a priming

FCHO1/2.EPS15/R nanocluster (Ma et al., 2016) operates downstream or alongside AP-2 colliding

with the plasma membrane in a suitable orientation to engage PtdIns(4,5)P2 through the binding

sites on the large a- and b2-subunit trunks (Jackson et al., 2010; Gaidarov et al., 1996), the fact

that the intrinsically disordered linker in Fcho1/2 appears to act as a regulator of AP-2 switching

from the closed to the open state (Umasankar et al., 2014; Hollopeter et al., 2014) suggests that

Figure 12 continued

HeLa SS6 cells, transiently XIAP E3 ligase transfected as in A and B above, were stained with antibodies against EPS15 (red) and the AP-2 a subunit

(blue) as indicated. Color-separated enlargements (C’–D’’) of the regions boxed in C and D are shown below. Scale bar; 10 mm.

DOI: https://doi.org/10.7554/eLife.41768.020
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these pioneers promote the stable association of AP-2 with the membrane. The strongest evidence

for this model is the unmistakable reconstitution of apparently normal AP-2 puncta in the presence

of a membrane-tethered FCHO1 linker domain in clone #40 cells (Figure 11). Under normal circum-

stances at the edge of a de novo forming coat, membrane-attached FCHO1/2 interacts with incom-

ing EPS15/R through the mHD (Ma et al., 2016; Shimada et al., 2016), steering the AP-2-bound

EPS15 to relay the heterotetramer to FCHO1/2 for local access to the activating linker. This concept

is in line with EPS15/R being the highest affinity binding partner of the FCHO1/2 mHD

(Umasankar et al., 2012; Shimada et al., 2016) and being the only proteins in the genome with the

tandem DPFX2-3DPFX2-3DPF SLiMs necessary for optimal mHD engagement, both FCHO1/2

(Umasankar et al., 2012; Henne et al., 2007) and EPS15 (Wang et al., 2016b) binding to PtdIns

(4,5)P2, and the interdomain linker of FCHO1/2 regulating AP-2 (Umasankar et al., 2014;

Hollopeter et al., 2014) to rearrange the m2 subunit to co-align PtdIns(4,5)P2, YXXØ and [DE]XXXL

[LI] cargo binding interaction surfaces at the planar plasma membrane (Jackson et al., 2010). The

data are also consistent with these rim-localized pioneers being able to drive deposition of new,

open AP-2 into the interior of the incipient lattice.

It has recently been demonstrated that large, long-lived clathrin assemblies in human embryonic

stem cell-derived fibroblasts correlate with elevated expression levels of AP-2 (Dambournet et al.,

2018). Strikingly, while this may be mechanistically related to the abnormal clathrin-coated struc-

tures in the genome-edited HeLa clone #64/1.E and clone #40 cells, due to an increase in the cyto-

solic AP-2 pool, the effect of EPS15 impoundment in clone #40 cells shown here indicates that even

with high soluble levels of AP-2 and PtdIns(4,5)P2, normally sized and distributed clathrin-coated

structures on the plasma membrane require the activity of EPS15/R and FCHO1/2. It has also just

been reported that conditionally hematopoietic compartment compound-null Eps15-/-/Eps15L1-/-

mice are anemic due to dysfunctional erythrocyte differentiation and maturation (Milesi et al.,

2019). Remarkably, although the transferrin receptor is the prototypical AP-2-dependent YXXØ-sig-

nal-harboring transmembrane receptor (Traub and Bonifacino, 2013; Collawn et al., 1990), the

Eps15-/-/Eps15L1-/- double knock-out mice display strikingly abnormal accumulation of the transferrin

receptor on the surface of the defective circulating red blood cell population (Milesi et al., 2019).

This dysregulation of the efficient internalization of the transferrin receptor in the erythrocyte precur-

sor cells (reticulocytes) expressing normal AP-2 is obviously reminiscent of the phenotype of HeLa

clone #40 cells with Nb E_142-mediated sequestration of EPS15 shown here, and independently reit-

erates the upstream role of Eps15/R (and Fcho1/2) in the proper functioning of the AP-2 adaptor

complex under normal conditions.

The utility of Nb-based tools for endocytosis research
The rationale behind generating Nbs against clathrin coat components is that, because clathrin-

mediated endocytosis is an essential process, there is likely a limit to the number of component

genes that can be systematically disrupted before overall cell viability becomes compromised. As

shown here, tailored Nb-based intrabodies with in-frame subcellular compartment targeting informa-

tion can impose relocation/mislocalization of Nb antigens, and change the dynamics, spread and

accessibility of the soluble pool of the target antigen (Beghein et al., 2016). Repurposed E3 ligases

can impose non-physiological turnover of Nb target proteins as an alternative to RNAi and genome-

editing techniques (Moutel et al., 2016). These engineered biological tools do not require normal

catabolic turnover of the target protein, as in si/shRNA-mediated gene silencing. Instead, as soon as

the Nb-based chimera titrates out the target, either by compartmental sequestration or ectopic E3-

mediated proteasomal degradation, any morphological or functional effect can be examined.

Although not explored here, two other potential methods to promote rapid proteasomal degrada-

tion of EPS15/R with the Nb E_142 intrabody are by appending a degron sequence directly to the

Nb (Zhao et al., 2018) or through TRIM21-mediated ubiquitination by making a combinatorial anti-

body fusing an Fc domain to the VHH domain and using the ‘Trim-Away’ approach (Clift et al.,

2017).

There are some constraints to the approaches reported here. For one thing, because they

depend on transient transfection, the absolute expression level within the transfected cell population

varies widely. While this can reveal dose-dependent effects, it hampers bulk population-based stud-

ies, as does the overall transfection efficiency. It might also be useful to modify the subcellular

sequestration approach to make it inducible, either with chemical (Stanton et al., 2018) or
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optogenetic (Benedetti et al., 2018) dimerizers. Future investigations can explore whether a strat-

egy of electroporation of purified recombinant Nb E-142 protein chimeras (Clift et al., 2017) or

appending a cell-penetrating adduct to the Nb (Herce et al., 2017) can alter the kinetics of the phe-

notypic response. An important practical feature of the assortment of tools described here is that,

because of the highly conserved nature of the Nb framework sequence and fold, other, different

antigen selective Nbs can be quickly and simply substituted for Nb E_142 by standard cloning

techniques.

Finally, it is atypical that the NPF-harboring Nbs, especially Nb E_142, do not map to a single epi-

tope upon the EH domain but rather present an orthosteric pseudoligand. This is a manifestation of

the important structural differences between single-domain (VHH) and classical dimeric heavy-light

chain antibodies (Dmitriev et al., 2016; Zimmermann et al., 2018). Protruding CDR loops project

off one edge of VHH Ig b-sandwich domain (Figure 1E), making them conformationally biased and

poorly anti-peptide selective, quite unlike traditional heavy + light chain antibodies (De Genst et al.,

2006; Muyldermans et al., 2009). This is the underlying reason for Nbs being able to recognize and

stabilize different conformations of GPCRs and attendant signaling components (Manglik et al.,

2017).

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Gene
(Homo sapiens)

EPS15 UniProt P42566 Epidermal growth
factor receptor
substrate 15

Gene
(H. sapiens)

EPS15L1;EPS15R UniProt Q9UBC2 Epidermal growth
factor receptor
substrate 15R

Gene
(H. sapiens)

ITSN1 UniProt Q15811 Intersectin-1

Gene
(H. sapiens)

FCHO1;
KIAA0290

UniProt O14526 FCH domain
only protein 1

Gene
(H. sapiens)

FCHO2 UniProt Q0JRZ9 FCH domain
only protein 2

Strain, strain
background
(Escherichia coli)

XL1-Blue Agilent
Technologies

#200236

Strain, strain
background
(E. coli)

BL21 Codon Plus RIL Agilent
Technologies

#230240

Strain, strain
background
(E. coli)

BL21 (DE3) Codon
Plus RIPL

Agilent
Technologies

#230280

Cell line (H. sapiens) (female) HeLa SS6 Elbashir et al., 2001 Human cervical
carcinoma cell line

Cell line
(H. sapiens)
(female)

HeLa SS6 clone #64/1.E Umasankar et al., 2014 Dual FCHO1- and
FCHO2-gene disrupted
(null) HeLa SS6 cells

Cell line
(H. sapiens)
(female)

HeLa SS6 clone #64/
1.E #40 (clone #40)

this paper Triple FCHO1,
FCHO2- and EPS15L1-
gene disrupted
(null) HeLa SS6 cells

Antibody anti-b-actin;
mouse clone
mAb C4

Santa Cruz
Biotechnology

sc-47779 1:10,000 for
immunoblotting

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody anti-AP-2 a

subunit mouse
mAb C-8

Santa Cruz
Biotechnology

sc-17771 1:500 for
immunoblotting

Antibody anti-AP-2 a subunit;
mouse clone
mAb AP.6

F Brodsky Laboratory PMID: 2574457 1:1,000-1:2,000 for
immunofluorescence

Antibody anti-ARH rabbit antigen
affinity purified pAb

L Traub Laboratory PMID: 12451172 1:2,000 for
immunoblotting

Antibody anti-AP-1/2 b1/b2
subunit; rabbit
antigen affinity
purified pAb GD/1

L Traub Laboratory PMID: 7876268 1:2,500 for immunoblotting

Antibody anti-CALM; goat
affinity purified
pAb C-18

Santa Cruz Biotechnology sc-6433 1:500 for immunoblotting

Antibody anti-clathrin
heavy chain;
mouse clone mAb TD.1

F Brodsky
Laboratory

PMID: 1547490 1:5,000 for immunoblotting

Antibody anti-Dab2 rabbit
antigen affinity
purified pAb

L Traub
Laboratory

PMID: 12234931 1:2,500 for immunoblotting

Antibody anti-Disabled-2/p96;
mouse mAb 52/p96

BD Transduction
Laboratories

610464 1:1,000 for immunoblotting

Antibody anti-Eps15; rabbit
affinity purified pAb C-20

Santa Cruz Biotechnology sc-534 1:500 for
immunoblotting

Antibody anti-Eps15; rabbit
antigen affinity
purified pAb

E Ungewickell Laboratory PMID: 12960147 1:500-1:2,000 for
immunofluorescence

Antibody anti-Eps15R; rabbit
mAb ab53006

AbCAM EP1147Y 1:5,000 for
immunoblotting

Antibody anti-epsin 1; rabbit
antigen affinity
piurified pAb

L Traub
Laboratory

PMID: 10692452 1:1,000 for immunoblotting

Antibody anti-FCHO1; rabbit
antigen affinity
purified pAb

L Traub
Laboratory

1:2,500 for immunoblotting

Antibody anti-FCHO2; rabbit
antigen affinity
purified pAb

Novus Biologicals NBP2-32694 1:700 for immunoblotting

Antibody anti-GAPDH;
mouse mAb

USP Bio Y1041 1:3,500 for
immunoblotting

Antibody anti-GFP; antigen
affinity purified pAb

P Hanson
Laboratory

1:1,000 for
immunoblotting

Antibody anti-GFP-Booster;
llama VHH Nb

Chromotek gba488-100 1:1,000-1:2000 for
immunofluorescence

Antibody anti-Hrb;RIP;Rab;
goat affinity
purified pAb

Santa Cruz
Biotechnology

sc-1424 1:1,000 for
immunoblotting

Antibody anti-Hrb; AGFG1;
mouse clone mAb H-2

Santa Cruz
Biotechnology

sc-166651 1:1,000-1:2,000 for
immunofluorescence

Antibody anti-intersectin 1;
mouse clone mAb 29

BD Transduction
Laboratories

611574 1:250 for
immunoblotting

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody anti-LAMP-1; mouse
clone mAb 1D4B

Developmental
Studies Hybridoma
Bank

AB_528127 1:1,000-1:2,000 for
immunofluorescence

Antibody anti-mNG; mouse
clone mAb 32F6

Chromotek 32f6-100 1:1,000 for
immunoblotting

Sequence -
based reagent

pGEX-5X-1 Pharmacia

Sequence-
based reagent

pGEX-4T-1 Pharmacia

Sequence -
based reagent

pMW172 Michael Way

Sequence -
based reagent

pMECS NSF/VIB

Sequence-
based reagent

pHEN6c NSF/VIB

Sequence -
based reagent

pmNG-C1 this paper mNG coding region
replacing GFP in
pEGFP-C1 vector

Sequence-
based reagent

pEGFP-FYVE2 this paper insertion of Nb E_142
following FYVE2 tandem

Sequence-
based reagent

pEGFP-FYVE2-Nb E_142 this paper introduction of 3maj
destabilizing mutations
into Nb E_142

Sequence -
based reagent

pEGFP-FYVE2-Nb dE_142 this paper

Sequence -
based reagent

piRFP-N1-Akap1-FRB

Sequence -
based reagent

piRFP-N1-Akap1-Nb E_142 this paper replacement of control
FRB module with
Nb E_142

Sequence -
based reagent

pEGFP-FCHO1 (1–609) Umasankar et al., 2014

Sequence-
based reagent

PCR primer sets this paper see Table 1 for
complete PCR
primer set details

Peptide,
recombinant protein

bovine serum
albumin (BSA)

Pierce 23209

Peptide,
recombinant protein

glutathione Sigma-Aldrich G4251-1G

Commercial
assay or kit

QuikChange
site-directed
mutageneisis kit

Agilent Technologies 200523

Chemical
compound, drug

Glutathione-
Spharose 4B

GE Healthscience 17075605

Chemical
compound, drug

Ni-NTA-agarose MC Labs NINTA-300

Chemical
compound, drug

Normal goat serum Sigma-Aldrich 46767

Chemical
compound, drug

Alexa Fluor
568-transferrin
(H. sapiens)

Invitrogen;
ThermoFisher
Scientific

T23365

Chemical
compound, drug

Saponin Sigma-Aldrich S7900

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

Lipofectamine 2000 Invitrogen;
ThermoFisher
Scientific

11668027

Software,
algorithm

FV1-ASW 4.1 software Olympus

Software,
algorithm

ImageJ Rueden et al., 2017

Software,
algorithm

Fiji Schindelin et al., 2012

Software,
algorithm

NIS Elements
5.11.01
analysis package

Nikon

Generally, all experiments (which were not randomized) were repeated at least twice on different

days in technical replicates, with qualitatively similar results, or in biological replicates with little vari-

ation using different protein preparations, thawed cell passages and/or DNA preparations. Predeter-

mination of sample size with statistical methods was not applied, and since data selection was not

inherently subjective, no investigator blinding was used either during the experiments or for the

evaluation of resulting data.

Recombinant DNA
A plasmid encoding full-length (amino acids 1–896) Hs EPS15 in pGEX-5X-1 was kindly provided by

Tomas Kirchhausen. The EH domain module (1-314) fused to the C-terminus of GST was generated

from this parental plasmid using QuikChange site-directed mutagenesis (Agilent) to introduce a stop

codon at position 315 (S315*) using the primers listed in Table 1. This plasmid was then used to

make GST-EPS15 (1-109) and (1-217) by similar introduction of L110* and W218* stop codons

(Table 1) using QuikChange. The GST-EPS15 (121-314) construct was prepared using Phusion muta-

genesis and the phosphorylated primer set listed in Table 1. GST-EPS15R (1-365) was generated by

PCR using primers (Table 1) and an EPS15L1 cDNA (BC142716, Transomic Technologies) and cloned

into pGEX-5X-1 between BamHI and XhoI sites. The pMW172 vector containing GST fused to Hs

intersectin 1 l (1-312), inserted between Not I and EcoRI restriction sites (Snetkov et al., 2016), was

generously provided by Michael Way.

The cDNAs encoding Nb E_3, E_142 and E_180 were amplified by PCR from preparations in

pMECS using the primers A6E and PMCF (Table 1) and cloned into pHEN6c between PstI and BstEII

sites. This encodes a Nb with an N-terminal 22-residue PelB sequence for periplasmic expression

and a His6 tag at the C terminus. QuikChange mutagenesis was used to introduce the NPFfiAPA

substitution in the Nb E_142 pHEN6c plasmid using an appropriate primer set (Table 1).

Nb E_3/142/180 were amplified by PCR for cloning into pEGFP-N1 vector using universal primers

(Table 1). For insertion of these Nbs into a mNG-encoding plasmid, first mNG was amplified from a

commercially-synthesized mNG clone (Genscript) using a primer pair (Table 1) and then substituted

for eGFP in the pEGFP-C1 vector using the AgeI and XhoI restriction sites. Nb E_3 and E_142 were

then subcloned into this vector utilizing PCR with primers (Table 1) allowing in-frame insertion with

the BglII and HindIII sites and adding four glycine residues between the mNG and the Nb. For con-

struction of the in-frame tandem mNG-Nb E_142 � 3 vector, the cloning involved sequential addi-

tion of the PCR-amplified (primer pairs reported in Table 1) Nb E-142 cDNA between HindIII and

SalI sites with a (Ser-Gly-Gly)3 spacer between Nb repeat 1 and 2, insertion of a third Nb E_142

cDNA between SalI and BamHI sites with a Val-Asp-Gly-Gly-Ser-Gly-Gly-Ser-Gly-Gly spacer between

Nb 2 and 3 and a 3’ TAA stop codon and, finally, directional cloning replacement of the first Nb

E_142 repeat between BglII and HindIII sites to remove the original in-frame stop codon.

GFP-FYVE2-Hs FCHO1 mHD plasmid, modified from the GFP-FYVE2-Ub
DGG plasmid from Pietro

de Camilli (Chen and De Camilli, 2005), has been described previously (Ma et al., 2016). From this,

the control plasmid GFP-FYVE2 was made using primers to introduce a stop codon (E410*) by
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Table 1. PCR primer sets.

Primer pair Plasmid Method FORWARD 5’ sequence REVERSE 3’ sequence

HsEPS15 315-
>*FORWARD QC/HSEPS15 315-
>*REVERSE QC

Hs EPS15 (1-
314) pGEX-5X-1

QuikChange
mutagenesis

5’-ATGATTCCACCATCAGACA
GGGCCTGATTACAAAAGAAC
ATCATAGG-3’

5’-CCTATGATGTTCTTTTGTAATC
AGGCCCTGTCTGATGGTGGAAT
CAT-3’

EH2 W218* QC FORWARD/EH2
W218* QC REVERSE

Hs EPS15 (1-
217) pGEX-5X-1

QuikChange
mutagenesis

5’-CCATCTAAGAGAAAAACG
TGAGTTGTATCCCCTGCAG-3’

5’-CTGCAGGGGATACAACTCAC
GTTTTTCTCTTAGATGG-3’

EH1 L110* QC FORWARD/EH1
L110* QC REVERSE

Hs EPS15 (1-
109) pGEX-5X-1

QuikChange
mutagenesis

5’-CCAAGATTTCATGATACCA
GTAGTCCTTAACTAATCAGTG
GAACCTCTGC-3’

5’-GCAGAGGTTCCACTGATTAGT
TAAGGACTACTGGTATCATGAAA
TCTTGG-3’

Hs EPS15 Pro121
Phusion FORWARD/pGEX-5X-1
BamHI
Phusion REVERSE

Hs EPS15 (121-
314) pGEX-4T-1

Phusion
mutagenesis

5’-phos-CCATGGGCTGTA
AAACCTGAAGATAAGG-3’

5’-phos-GATCCCACGACCTT
CGATCAGATC-3’

EPS15 W57A QC FORWARD/EPS15
W57A QC REVERSE

Hs EPS15 (1–
107/W57A)
pGEX-5X-1

QuikChange
mutagenesis

5’-GACTTGATACTTGGAA
AGATTGCGGATTTAGCCGAC
ACAGATGGC-3’

5’-GCCATCTGTGTCGGCTAA
ATCCGCAATCTTTCCAAGTATCA
AGTC-3’

Hs EPS15L1 EH1
BamHI-Met1 FORWARD/Hs
EPS15L1 EH3
T366* XhoI REVERSE

Hs EPS15R (1-
365) pGEX-5X-1

Directional
cloning

5’-GTGGGATCCTCACCAT
GGCGGCGCCGCTCATCC-3’

5’-ATACTCGAGTTAGCCTCT
CTCCGAAGGCGGGACCATGTCC
�3’

Primer A6E/Primer PCMF Nb E_3-His6
pHEN6c

Directional
cloning

5’-GATGTGCAGCTGCAG
GAGTCTGGRGGAGG-3’

5’-CTAGTGCGGCCGCTGAG
GAGACGGTGACCTGGGT-3’

Primer A6E/Primer PCMF Nb E-_142-His6
pHEN6c

Directional
cloning

5’-GATGTGCAGCTGCAG
GAGTCTGGRGGAGG-3’

5’-CTAGTGCGGCCGCTGAG
GAGACGGTGACCTGGGT-3’

Primer A6E/Primer PCMF Nb E_180-His6
pHEN6c

Directional
cloning

5’-GATGTGCAGCTGCAG
GAGTCTGGRGGAGG-3’

5’-CTAGTGCGGCCGCTGAG
GAGACGGTGACCTGGGT-3’

NPF-APA QC primer FORWARD/
NPF-
APA QC primer REVERSE

Nb E-_142 (NPF
APA)-His6
pHEN6c

QuikChange
mutagenesis

5’-TGTAATATGAAGAGCAT
GGCCCCCGCCAGACGGTAT
GACGTGTGG-3’

5’-CCACACGTCATACCGTCT
GGCGGGGGCCATGCTCTTCATA
TTACA-3’

AgeI mNeonGreen 5’ FORWARD/
XhoI mNeonGreen 3’ REVERSE

mNG pmNG-C1 Directional
cloning

5’-GCGCTACCGGTCGCCACC
ATGGTGAGCAAGGGCGAGG AGG-3’

5’-TTGAGCTCGAGATCTGAGTC
CGGACTTGTACAGCTCGTCCAT
GCCCATCAC-3’

Nb 5’ BglII + Gly4 FORWARD/Nb 3’
HindIII REVERSE

mNG-Nb E_3
pmNG-C1

Directional
cloning

5’-ATCAGATCTGGAGGTGGA
GGTCAGGTGCAGCTGCAGG AG-3’

5’-CTAAAGCTTTTATGAGGAGA
CGGTGACCTGGG-3’

Nb 5’ BglII + Gly4 FORWARD/Nb 3’
HindIII REVERSE

mNG-Nb E_142
pmNG-C1

Directional
cloning

5’-ATCAGATCTGGAGGTGGA
GGTCAGGTGCAGCTGCAGG AG-3’

5’-CTAAAGCTTTTATGAGGAGA
CGGTGACCTGGG-3’

CORRECT_3 � 1–2 Nb E_142
BmsBI + Gly6Ser2 FORWARD/

mNG-Nb E_142
� 3 pmNG-C1

Directional
cloning

5’-CACCGTCTCCTCATCCGG
AGGTTCAGGAGGTTCCGGG
GGCCAGGTGCAGCTGCAGG AG-3’

5’-GCCGTCGACTGAGGAGACG
GTGACCTG-3’

3 � 2–3 Nb E_142
SalI + Gly6Ser2 FORWARD/BamHI
3x EPS142 Nb REVERSE for mNG-
C1

mNG-Nb E_142
� 3 pmNG-C1

Directional
cloning

5’-CTCAGTCGACGGCGGATC
TGGTGGGAGTGGGGGACAG
GTGCAGCTGCAGGAGTC-3’

5’-GGTGGATCCTTATGAGGAGA
CGGTGACCTG-3’

Nb 5’ BglII + Gly4 FORWARD/2X
Nb
E_142 QC primer HindIII-SalI
REVERSE

mNG-Nb E_142
� 3 pmNG-C1

Directional
cloning

5’-ATCAGATCTGGAGGTGGA
GGTCAGGTGCAGCTGCAGG AG-3’

5’-CCGCCGTCGACTGCACGAAA
TTCGAAGCTTGAGGAGACGGTG
ACCTGGGT-3’

QC GFP-FYVE2-
UbDelGG EcoRI sto/QC GFP-
FYVE2-UbDelGG
EcoRI sto

GFP-FYVE2
pEGFP-C1

QuikChange
mutagenesis

5’-GAGCAGCTGAACAAGAAG
GCATAATTCATGCAGATCTTT GTG-3’

5’-CACAAAGATCTGCATGAATTA
TGCCTTCTTGTTCAGCTGCTC-3’

VHH Nb EcoRI
+Gly4 forward/Anti-Eps15 VHH Nb
ApaI reverse

GFP-FYVE2-Nb
E_142
pEGFP-C1

Directional
cloning

5’-ATCGAATTCGGAGGTG
GAGGTCAGGTGCAGCTGCA GGAG-3’

5’-ACTGGGCCCTTATGAGGA
GACGGTGACCTG-3’

VHH Nb EcoRI
+Gly4 forward/3 maj Anti-Eps15
VHH Nb ApaI reverse

GFP-FYVE2-
dNb E_142
pEGFP-C1

Directional
cloning

5’-ATCGAATTCGGAGGTGGA
GGTCAGGTGCAGCTGCAGG AG-3’

5’-ACTGGGCCCTTAGAAGGA
GACGGTGACCTG-3’

Nb + NLS C-term Phusion
FORWARD/Nb C- term Phusion
REVERSE

GFP-Nb E_142-
SV40 NLS
pEGFP-C1

Phusion
mutagenesis

5’-phos-GGACCCAAGAAGAAA
CGGAAGGTGTGAGGGCCCG
GGATCCACCG-3’

5’-phos-GCGGCCGCCTGAGGA
GACGGTGACCTGGGTCC-3’

Table 1 continued on next page
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QuikChange mutagenesis (Table 1). Nb E_3, E_142 and E_180 were amplified by PCR with primers

(Table 1) and substituted for the FCHO1 mHD between EcoRI and ApaI sites, adding four glycine

residues following the second tandem FYVE domain. The conditionally stable version of Nb E_142,

with the 3maj substitutions (S73R, C98Y and S117F; Tang et al., 2016) was synthesized commercially

(IDT) and subcloned into the GFP-FYVE2-plasmid similarly using a primer pair (Table 1) and the same

restriction sites. The Akap1-FRB-iRFP-encoding plasmid (piRFP-N1-Akap1-FRB) was provided by

Gerry Hammond. Using primers (Table 1) Nb E_142 was PCR amplified and substituted for the FRB

module between BglII and AgeI sites, adding a Gly-Ser-Gly-Ser-Gly linker at the 3’ end. The GFP-

PLCd1 PH domain PtdIns(4,5)P2 sensor and construction of the GFP-Hs FCHO1 (1–609) and (1-467)

plasmids have been described (Umasankar et al., 2014). pCAG_EGFP-GFE3 (plasmid #79869)

(Gross et al., 2016) was obtained from Addgene. To replace the central FingR domain with Nb

E_142, PCR using primers that allowed cloning of the Nb between MfeI and BglII sites (Table 1) was

used.

All plasmid constructs were verified by automated double-stranded dideoxynucleotide sequenc-

ing (Genewiz). Full sequence details and maps are available upon request.

Recombinant protein purification
GST fusion proteins were synthesized in the E. coli BL21 codon plus RIL strain (Invitrogen). After

transformation, GST and all GST-fusion proteins were purified by a standardized protocol involving

induction of cultures grown in 2 x YT medium at 37˚C to an OD600 of ~0.6–0.8 with 100 mM IPTG at

18˚C overnight. Bacteria were then collected by centrifugation (15,300 x gmax, 4˚C, 10 min) and pel-

lets resuspended in a 3:1 mixture of B-PER and Y-PER (Thermo-Fisher) with 0.25 mg/ml freshly pre-

pared hen egg lysozyme and 50 U/ml benzonase nuclease (Sigma). During resuspension, PMSF was

added to 1 mM from a 200 mM stock solution in isopropanol. The bacterial suspension was centri-

fuged (27,000 x gmax, 4˚C, 15 min) and then the supernatant fraction collected and incubated batch

wise at 4˚C with continuous up-and-down mixing of 0.5–2.0 ml added glutathione-Sepharose (GE),

as required. After initial washing of the Sepharose with ice-cold PBS by centrifugation, the beads

were transferred to a disposable polypropylene column on ice and washed with ~10 column volumes

of PBS. Bound GST/GST-fusion proteins were eluted with 25 mM Tris-HCl, 250 mM sodium chloride,

10 mM reduced glutathione and 2 mM DTT on ice. Peak fractions were pooled and dialyzed into

PBS at 4˚C. Protein concentration was determined using the Bradford method with BSA as the stan-

dard and aliquots stored at �80˚C.

Nb production, screening and purification
For the generation of the Nb clones, immunization, library construction and screening was carried

out by the Nanobody Service Facility at the Vrije Universiteit Brussel, Belgium. The entire procedure

was as described in detail (Vincke et al., 2012). Briefly, a single llama was inoculated six times over

a 35 day period with a mixture of 250 mg purified Hs EPS15 (1-314) and Gerbu adjuvant P. Purified

lymphocytes from blood collected on day 39 were used to isolate mRNA for cDNA synthesis by RT-

PCR with and oligo(dT) primer. The immune nanobody library construction utilized this cDNA and

appropriate primers to amplify VHH antigen specific sequences. PCR products were digested with

PstI and NotI for subcloning into the phagemid vector pMECS. From the library of ~3�108 trans-

formants, 97% (93 of 95 clones) had correctly sized inserts and sequencing confirmed the presence

of germ line VHH sequences. Antigen-specific clones were identified by solid phase biopanning E.

coli TG1 infected with the library using 200 mg/ml of the immunizing EPS15 (1-314) immobilized on

plates. After two sequential rounds of selection of phagemid particles, 14 specific clones were

obtained, which sequencing revealed corresponded to seven individual VHH sequences.

Table 1 continued

Primer pair Plasmid Method FORWARD 5’ sequence REVERSE 3’ sequence

MfeI EPS Nb142 FORWARD for
GNbE3/BglII EPS15 Nb142
REVERSE for GNbE3

G-Nb E_142-E3
pCAG_EGFP

Directional
cloning

5’-TCGAGCAATTGATGGCAGA
AGTTCAGGTGCAGCTGCAGG AG-3’

5’-GGTAAGATCTTCCTGAGGAG
ACGGTGACCTGGGTCCCCTGG
CCC-3’

DOI: https://doi.org/10.7554/eLife.41768.021
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Small-scale periplasmic extracts were prepared from 60 ml overnight cultures of E. coli XL1-Blue

transformed with the appropriate Nb clone in pHEN6c (Vincke et al., 2012). Bacteria were initially

grown at 37˚C to an OD600 of ~0.8–1.0 in LB supplemented with 0.1% glucose, 2 mM magnesium

chloride and ampicillin and then IPTG added to a final concentration of 1 mM before incubation

overnight at 28˚C. Large-scale inductions were carried out similarly but using 500 ml cultures. Bacte-

ria were collected by centrifugation (9000 x gmax, 4˚C, 15 min) and resuspended in ice-cold TES

buffer (200 mM Tris-HCl, pH 8.0, 0.5 mM EDTA, 500 mM sucrose). The bacterial suspension was

incubated at 4˚C with continual vigorous mixing at 250 rpm on an orbital shaker for ~60 min before

addition of 2 volumes of 1/4-strength TES (50 mM Tris-HCl, pH 8.0, 0.125 mM EDTA, 125 mM

sucrose). After an additional 60–90 min incubation at 4˚C with continual mixing at 250 rpm, the bac-

teria were pelleted by centrifugation at 10,000 � gmax at 4˚C for 30 min and the supernatant (peri-

plasmic extract) aspirated and stored in aliquots at �80˚C. Before use in biochemical binding assays,

samples of periplasmic extract were adjusted to 125 mM sodium chloride by addition of 1/40 vol of

a 5 M stock solution on ice and then centrifuged at ~125,000 x gmax (45,000 rpm, Beckman TLA 55

rotor) at 4˚C for 20 min. Aliquots of the clarified supernants were added to immobilized GST/GST-

fusion proteins bound to washed glutathione-Sepharose beads for pull-down assays.

To purify the Nb E_142-His6 protein from periplasmic extract, the protein was first purified over a

1.5 mL column Ni-NTA-agarose (MC Labs), eluted with 500 mM imidazole, concentrated to 5 ml

using an Amicon Ultra 15 device with a 3000 nominal molecular weight limit and then 2.5 ml fraction-

ated at 0.8 ml/min in the upward direction over a HiLoad Sephacryl S-100 HR column (16 � 60 mm,

GE) equilibrated in 50 mM Tris-HCl, pH 7.6, 150 mM sodium chloride. Peak 2 ml fractions identified

by SDS-PAGE were pooled, and concentrated with an Amicon Ultra device to ~4 ml with a protein

concentration of ~1.75 mg/ml. Aliquots of the purified Nb E_142 were stored at �80˚C.

For biochemical interaction assays, first, purified GST or the appropriate GST-fusion protein (25–

200 mg) was immobilized on 25 ml of packed glutathione-Sepharose (GE) by incubation in 750 ml PBS

at 4˚C for ~2 hr with continual mixing. The beads were then recovered by centrifugation at 10,000 x

gmax for 1 min and washed into either PBS or assay buffer (25 mM Hepes-KOH, pH 7.2, 125 mM

potassium acetate, 5 mM magnesium acetate, 2 mM EDTA, 2 mM EGTA and 2 mM DTT) and resus-

pended to a total volume of 50 ml in residual wash buffer. Clarified periplasmic extract or HeLa cell

Triton X-100 lysate was added to the washed beads and incubation continued at 4˚C for 60 min with

continuous up-and-down mixing. The beads were again sedimented by centrifugation (10,000 x

gmax, 1 min) and a 70 ml aliquot of each supernatant fraction removed and transferred to a new

microfuge tube on ice. After aspirating the remainder of each supernatant, the pellets were washed

4 x with 1.5 ml/wash ice-cold PBS and then the Sepharose bead pellet resuspended in SDS sample

buffer to a final volume of 100 ml. After briefly boiling, aliquots of 2% of each supernatant and 10%

of each supernatant were resolved by SDS-PAGE and either stained with Coomassie brilliant blue in

40% methanol, 10% acetic acid or transferred to nitrocellulose in a cold buffer of 15.6 mM Tris, 120

mM glycine at 110V for 75 min. After staining the blots with 0.1% (w/v) Ponceau S in 5% acetic acid

(Sigma) to identify and mark the molecular mass standards, the nitrocellulose was cut into appropri-

ate replicate sections, destained in transfer buffer, and blocked overnight in 5% non-fat milk powder

in TBST (25 mM Tris-HCl, pH 7.5, 150 mM sodium chloride, 0.1% Tween 20) at room temperature.

Quantitative binding assays (Pollard, 2010) were performed at 4˚C for 60 min in PBS containing 100

mg/ml carrier BSA. The final assay volume was 400 ml, to allow calculation of molarities using the

molecular weights of 13,683.2 for Nb E_142-His6, 26,200 for GST, 38,271.3 for GST-Hs EPS15 (1–

109/EH1) and 60,924.7 for GST-Hs EPS15 (1–314/EH1-3). The Nb E_142 concentration was fixed at 2

mM and GST-Hs EPS15 (1-109) varied from 0.5 to 20 mM while (1-314) was titrated over the range

0.25–10 mM. The intensity of the Nb E_142 band in the supernatant fractions, collected under equi-

librium conditions (Pollard, 2010), was determined with ImageJ/Fiji (Schindelin et al., 2012;

Rueden et al., 2017) and data normalized to the Nb E_142 found in the GST control supernatant

fraction.

A complete list of the primary antibodies used in this study are provided in Table 2. Primary anti-

bodies were diluted in 1% non-fat milk in TBST and typically incubated with the nitrocellulose-immo-

bilized protein antigens at room temperature for 2 hr. After thorough washing with TBST,

appropriate HRP-conjugated anti-mouse/rabbit/goat antibodies (Amersham/GE Healthcare) diluted

in 1% milk in TBST were added and incubated at room temperature for 60 min. Following extensive
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washing in TBST, blots were briefly incubated with ECL-type reagent mixture (HyGLOW, Denville)

and signals collected on X-ray film.

Cells lines and tissue culture
The parental cell line HeLa SS6 (Elbashir et al., 2001), derived from the female cervical adenocarci-

noma HeLa line, has the characteristic compact, dense epithelial morphology and was verified of H.

sapiens origin by sequencing results (Umasankar et al., 2014). Cell line authentication using autoso-

mal short tandem repeats (STRs) by the University of Arizona Genetics Core coincides with HeLa

above an 80% match threshold. The HeLa SS clone #64/1.E (clone 1.E cells) were produced previ-

ously by sequential TALEN-mediated gene disruption of the FCHO2 locus on chromosome five and

the FCHO1 locus on chromosome 19 (Umasankar et al., 2014). TALEN-mediated generation of

clones #15, #19 and #40 from the #64/1.E line was as we have described; assembly of the TALEN

arrays (Joung and Sander, 2013), transfection and selection were by the procedures outlined

(Umasankar et al., 2014). All HeLa cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM, Lonza) supplemented with 10% FCS (Atlanta Biologicals) and 2 mM L-glutamine (Gibco) in a

humidified 5% CO2 atmosphere at 37˚C. K-652 cells were grown in RPMI 1640 medium supple-

mented with 5% FCS and 2 mM L-glutamine at 37˚C. K-562 cells, derived from a female pleural effu-

sion (Lozzio and Lozzio, 1975), were not STR authenticated, but grow in suspension culture as

Table 2. Primary antibodies.

Antigen Species Designation/clone Catalogue number Supplier/Source Application

b-actin mouse mAb C4 sc-47778 Santa Cruz Biotechnology immunoblot

AP-2 a

subunit
mouse mAb C-8 sc-17771 Santa Cruz Biotechnology immunoblot

AP-2 a

subunit
mouse mAb AP.6 — Frances Brodsky immunofluorescence

ARH rabbit antigen affinity purified pAb — Traub laboratory immunoblot

AP-1/2 b1/b2 subunit rabbit antigen affinity purified pAb GD/1 — Traub laboratory immunoblot

CALM goat affinity purified pAb C-18 sc-6433 Santa Cruz Biotechnology

clathrin heavy chain mouse mAb TD.1 — Frances Brodsky immunoblot

Dab2 rabbit antigen affinity purified pAb — Traub laboratory immunoblot

Disabled-2/p96 mouse mAb 52/p96 610464 BD Transduction
Laboratories

immunoblot

Eps15 rabbit affinity purified pAb C-20 sc-534 Santa Cruz Biotechnology immunoblot

Eps15 rabbit antigen affinity purified pAb — Ernst Ungewickell immuno
fluorescence

Eps15R rabbit mAb ab53006 EP1147Y AbCAM immunoblot

epsin 1 rabbit antigen affinity purified pAb — Traub laboratory immunoblot

FCHO1 rabbit antigen affinity purified pAb — Traub laboratory immunoblot

FCHO2 rabbit antigen affinity purified pAb NBP2-32694 Novus Biologicals immunoblot

GAPDH mouse mAb Y1041 UBP Bio immunoblot

GFP rabbit antigen affinity purified pAb — Phyllis Hanson immunoblot

GFP-Booster llama anti-GFP Nb Atto 488 conjugate gba488-100 Chromotek immunofluorescence

Hrb/RIP/Rab goat affinity purified pAb
C-19

sc-1424 Santa Cruz Biotechnology immunoblot

Hrb/AGFG1 mouse mAb H-2 sc-166651 Santa Cruz Biotechnology immunofluorescence

Intersectin 1 mouse mAb clone 29 611574 BD Transduction Laboratories immunoblot

LAMP-1 mouse mAb clone 1D4B AB_528127 Developmental Studies Hybridoma Bank immunoblot

mNG mouse mAb clone 32F6 32f6-100 Chromotek immunoblot

DOI: https://doi.org/10.7554/eLife.41768.022
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expected, react with human-specific antibodies, and express both FCHO1 and FCHO2 proteins

(Umasankar et al., 2014) and EPS15 and EPS15R, as predicted by mRNA expression profiling

(Uhlén et al., 2015). Cells tested negative for mycoplasma using a PCR-based assay, and were rou-

tinely discarded after no more than 30 passages.

Triton X-100 whole cell lysates were prepared from parental HeLa SS6 cells cultured in at least

5 � 15 cm Petri dishes and collected into CellStripper dissociation reagent (Corning).

For transfections, Lipofectamine 2000 (Invitrogen) was used. First, media from the cells plated in

35 mm culture dishes or 6-well trays was aspirated and replenished with 2 ml of fresh DMEM, 10%

FCS, 2 mM glutamine. Aliquots of the appropriate endotoxin-free mini/midiprep plasmid DNA (0.4–

1.0 mg) diluted into 375 ml Opti-MEM (Gibco) were incubated at room temperature for ~15 min with

occasional mixing before addition of 5 ml of the Lipofectamine 2000 stock solution to each tube of

DNA. After incubation at room temperature for an additional ~45 min, the transfection mixture was

added drop wise to the cells and incubated at 37˚C overnight in a humidified atmosphere with 5%

CO2. After 16–20 hr, cells were used for endocytosis assays or either fixed for morphological analysis

or processed for immunoblotting. Cells were detached by incubation at room temperature with Cell-

Stripper and collected into microfuge tubes on ice. After rinsing the dishes with PBS and pooling

with the CellStripper suspension, cells were recovered by centrifugation (500 � gmax for 5 min at 4˚

C) and the supernatants aspirated and discarded. Each pellet was resuspended in hot SDS sample

buffer and boiled before analysis by SDS-PAGE.

For transferrin uptake assays, cells on cover slips were first incubated in a starvation medium com-

posed of DMEM, 25 mM Hepes, pH 7.2, 0.5% BSA and 2 mM L-glutamine, for 60 min at 37˚C in 5%

CO2 to discharge intact apotransferrin from surface transferrin receptors. For the 5 min pulse experi-

ments, cells were incubated in 500 ml starvation medium supplemented with 25 mg/ml Alexa Fluor

568-conjugated human transferrin (Life Technologies/Thermo Fisher) at 37˚C, then placed immedi-

ately into an ice/water bath and rapidly washed three times with ice-cold PBS before fixation in ice-

cold 4% paraformaldehyde (Electron Microscopy Sciences) in PBS on ice for 10 min. For the modified

uptake assay (Reis et al., 2015), starved HeLa clone #40 cells were incubated 25 mg/ml Alexa Fluor

568-transferrin in 500 ml at 37˚C for 2 min, transferred to an ice/water bath and washed three times

with 0.2 M acetic acid, 0.5 M sodium chloride, pH 2.5 (Lamb et al., 1983). Then 500 ml of warmed

starvation medium was added to the cells and incubation continued at 37˚C for a further 2 min

before fixation in paraformadehyde on ice.

Immunofluorescence analysis
After removing culture medium, cells attached to 12 mm round glass cover slips were fixed in ice-

cold 4% paraformaldehyde in PBS on ice for 10 min. The cells were then washed three times with

ice-cold PBS before incubation in 5% normal goat serum (Sigma), 0.2% saponin (Sigma) in PBS at

room temperature for at least 30 min. For incubation with primary antibodies, appropriate dilutions

were prepared in 5% normal goat serum, 0.2% saponin in PBS and centrifuged at 15,000 � gmax for

10 min before addition to the fixed and permabilized cells. Incubation with primary antibodies was

for 60 min at room temperature, followed by three washes with PBS. Fluorochrome-coupled second-

ary antibodies (Invitrogen) were similarly diluted (1:1,000) in 5% normal goat serum, 0.2% saponin in

PBS and centrifuged at 15,000 � gmax for 10 min before addition of aliquots of the clarified superna-

tant to the cells. For double transfection experiments involving both iRFP and GFP, where the effi-

ciency of GFP expression is sharply reduced, an anti-GFP nanobody (GFP-Booster, Chromotek)

conjugated to Atto 488 was used to detect GFP-expressing cells unambiguously. After incubation at

room temperature for 30–45 min, the cells were washed three times with PBS, in some cases incu-

bated briefly in 2 mg/ml Hoechst 33258 DNA dye in PBS, and mounted on glass slides in either Cyto-

seal (Thermo Fisher) or SlowFade Diamond (Life Technologies) mounting medium.

Confocal microscopy and image processing
All images were acquired using an Olympus FV1000 confocal microscope equipped with a

60 � PlanApo (NA 1.42) oil objective lens and controlled by the Olympus Fluoview FV1-ASW 4.1

software. Fluorochromes were excited with the laser bench combiner as follows: a 405 nm laser for

Hoechst, the 488 nm laser for Alexa Fluor 488, Atto 488, GFP and mNG, the 559 nm laser for Alexa

Fluor 546 and �567, and the 635 nm laser for Alexa Fluor 647. The 1,024 � 1,024 pixel images, with
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12-bit depth per color channel, were always acquired by sequential scanning with line-based Kalman

averaging filter mode and saved as TIFF files. Sequential z-stacks were collected with a 0.3 mm-step

size between sections. Minor adjustments to intensity and contrast were performed in Adobe Photo-

shop CC and composite images were assembled and annotated in Adobe Illustrator CC.

Quantitation of fluorescence confocal images was similar to that described previously (Ma et al.,

2016), but performed using the Nikon NIS Elements 5.11.01 analysis package. In some cases, confo-

cal z-stack images were first deconvoluted and assembled into a single maximum-projection image

as previously described (Ma et al., 2016). For all images, after threshold-based background correc-

tion of raw files, a binary mask of objects was generated by processing for punctate structures (using

the Advanced Denoising and Detect Regional Maxima function), and then individual statistics for

object size computed. Fluorescence intensity measurements were determined by analyzing full 3D

volumes, again by using the Denoising function, smoothing, deconvolution, and 3D binary threshold-

ing and segmentation in NIS Elements. The original transferrin channel was then quantified using the

process-generated mask. In the 1,024 � 1,024 pixel images acquired with the FV1000

60 � objective and 2 � magnification, the individual pixel size is 0.103 nm. For comparisons in the

transiently-transfected cell image data sets, region-of-interest segmentation was performed on the

basis of the distribution of the fluorescence signal in transfected cell marker channel. Counted

objects were classified into area-based or volume-based category bins as described previously

(Ma et al., 2016). In most instances, comparable total cell areas were compared, as stated in the

individual figure legends. Usually, five separate data sets were analyzed, and the data combined for

presentation in the figures. Dot/boxplots were generated using PlotsOfData (Postma and Goed-

hart, 2019).
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