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Abstract

Rabbit Haemorrhagic Disease Virus (RHDV), which is a calicivirus, is used as a biocontrol

agent to suppress European wild rabbit populations in Australia. The transmission of RHDV

can be influenced by social interactions of rabbits; however, there is a paucity of this knowl-

edge about juvenile rabbits and the roles they may play in the transmission of RHDV. We

aimed to quantify the social interactions of juvenile (< 900 g) and adult (> 1200 g) rabbits in a

locally abundant population in the Central Tablelands of New South Wales, Australia.

Twenty-six juvenile and 16 adult rabbits were fitted with VHF proximity loggers to monitor

intra- and inter-group pairings. Use of multiple warrens by these rabbits was investigated

using VHF base stations at nine warrens and on foot with a hand-held Yagi antenna. Juve-

nile rabbits were strongly interconnected with both juveniles and adults within and outside

their warren of capture, and almost all juveniles were well-connected to other individuals

within their own social group. Inter-group pairings were infrequent and fleeting between

adults. Both juvenile and adult rabbits used multiple warrens. However, visits to warrens out-

side their warren of capture, particularly those within 50 m, were more common and longer

in duration in juveniles than in adults. The high connectivity of juveniles within and between

warrens in close proximity increases potential pathogen exchange between warrens. There-

fore, juvenile rabbits could be of greater importance in lagovirus transmission than adult rab-

bits. The strength of juvenile rabbit inter- and intra-group pairings, and their tendency to use

multiple warrens, highlight their potential to act as ‘superspreaders’ of both infection and

immunity for lagoviruses and other pathogens with similar lifecycles. Confirmation of this

potential is required through examination of disease progress and rabbit age-related

immune responses during outbreaks.
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Introduction

Although the European wild rabbit (Oryctolagus cuniculus) is a keystone species and recog-

nised as endangered in its native range [1], in Australasia it is a serious introduced pest and

subject to suppressive management [2]. The introduction of biological control agents has had

profound success in the management of wild rabbits in Australia [3,4]. Myxoma virus was

released in Australia in 1950 to control pest rabbit populations [5], which was followed by the

introduction of two insects to aid in its transmission [6–8]. However, natural selection led to

attenuation of myxoma virus in the field and developing resistance to the disease, both of

which resulted in lower mortality and efficacy of population control [9]. The natural outbreak

of a new disease in European rabbits in China, Rabbit Haemorrhagic Disease (RHD), in 1984

provided an opportunity for a new biocontrol agent in Australia [10].

Rabbit Haemorrhagic Disease Virus (RHDV) strains cause RHD in rabbits, and all strains

are lagoviruses of the Caliciviridae family [10]. The transmission routes of lagoviruses include

direct contact through oral, nasal and parenteral sites, and indirectly via faecal shedding,

fomites, insect vectors and from predation and scavenging on infected carcasses [5,10–13].

RHDVs have a 1–2 day incubation period before usually killing the susceptible host within 12–

36 hours (after onset of clinical signs) [11]. RHDV’s can persist up to three weeks in a carcass

above ground [10], or up to three months in carcasses inside warrens [14].

In response to the declining efficacy of myxoma virus in Australian rabbits, two variants of

the biological control agent Rabbit Haemorrhagic Disease Virus 1 (RHDV1) were released

nationally: the GI.1c variant in 1996 (originally detected in Czechoslovakia); and the K5 vari-

ant (G1.1a, originally detected in Korea) in 2017 [4,15–17]. In addition, an exotic strain

(GI.4eP-GI.1a, originally detected in China), a new wild strain (GI.1bP-GI.2, originally

detected in France) and an endemic non-pathogenic RHDV (RHDV GI.4c) are also present in

Australian rabbit populations [18–21]. The non-pathogenic RHDV GI.4c is most prevalent in

juvenile (< 900 g) rabbits and offers them partial tempory protection to infection from GI.1c

for up to 10 weeks [22].

The presence of the interacting variants complicates the epidemiology of RHD in Australia

and the role that juvenile rabbits play in the transmission of RHDV and RHDV GI.4c is some-

what uncertain [20,23,24]. They are potentially important because juveniles can carry and

shed both pathogenic and non-pathogenic RHDV [25]. Virus shedding has been detected in

juveniles up to 10 weeks after initial infection and they can transmit lagoviruses to female

adult rabbits (> 1200 g) from two weeks of age [25]. Juveniles less than 3 weeks of age may be

fully immune to lagoviruses and likely do not support replication [8]. They are generally natu-

rally resistant to RHDV1 infection up to six weeks of age [26], can develop immunity to

RHDV1 until approximately 10 weeks of age [25], and can be protected from infection of

RHDV1 by maternal antibodies up to 12 weeks of age [27]. Transmission of GI.2 by juvenile

rabbits creates further uncertainty, as juvenile rabbits may become infected and succumb to

the disease with this strain [28]. Juvenile rabbits can also be infected with and carry the

endemic non-pathogenic lagovirus (RHDV GI.4c), which provides temporary additional pro-

tection and can be transmitted to other susceptible rabbits seven days after infection [22]. If

juveniles are infected with RHDV1 during 6–12 weeks of age, immunity may become perma-

nent and provide cross-immunity between lagovirus strains, enabling the establishment of a

resistant breeding generation [25,27]. These immunities have implications for the spread and

establishment of lagoviruses in wild European rabbit populations and hence the effectiveness

of circulating and new lagovirus strains for population biocontrol and the timing of control

programs [24]. Because juvenile rabbits can carry pathogenic viruses without developing
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disease, they are at increased likelihood of playing an important role in influencing the effects

of lagoviruses on rabbit populations through their movements and pairings with other rabbits.

Contacts between susceptible and infected animals are key drivers in pathogen transmission

[29,30]. Social factors (as described in social networks) influence contact rates and hence the

transmission of pathogens (as modelled by disease networks) [31–34], with well-connected

individuals having a greater potential to transmit a pathogen to susceptible individuals in

other social groups through population mixing [4,33,35]. Lagovirus transmission throughout a

population of rabbits depends on social interactions between infected and susceptable individ-

uals, within and between groups, and those interactions are likely to be heterogenous. How-

ever, observation and measurement of the close social interactions required to determine

direct and indirect pathogen transmission among Australian rabbits has been difficult until

relatively recently because of technological limitations. The use of proximity logging devices

has advanced knowledge about social network structure and contacts in free-ranging wild ani-

mals [36–38]. These devices provide continuous and remote collection of social interaction

information including time of day, date, frequency and duration of pairings made between

individuals carrying proximity loggers [36,37,39]. These ‘biologgers’ can provide insight into

the social interactions of many species [40] that have been difficult to track or observe such as

fossorial species (e.g. rabbits [41,42]), gregarious livestock (e.g. cattle [43]) and nocturnally

active species (e.g. vampire bats, Desmodus rotundus, [44] and raccoons, Procyon lotor, [40]).

Recently, proximity loggers and VHF devices have been used to investigate pairing rates

(i.e., when a logging device within a given proximity records another logger, which could con-

stitute a contact between the pair of individuals) for pathogen transmission between adult and

sub-adult (900 g–1200 g) rabbits [23,33,42], but not between juvenile rabbits and the other age

groups. This was mainly due to the difficulty of attaching the logger to a juvenile rabbit

[37,44]. Pairing rates of juvenile rabbits and their movements between warrens are required in

pathogen transmission modelling to inform the timing of virus release and to predict the effi-

cacy of new strains [45–47]. Although male adult rabbits can travel between warrens to mate

[48,49] and females exhibit greater site fidelity [48], adult rabbits are generally unsociable,

both within and between warren systems [48]. Juvenile rabbits will remain near the natal war-

ren for about 2–3 weeks following emergence [8,49]. However, they then begin exploring

within several hundred meters of their natal warren [32,50] before dispersing to a neighbour-

ing warren [49]. Some juvenile rabbits can travel up to 1.5 km from their natal site during

exploration and dispersal events [2]. During exploration, it is likely that more frequent pairings

are made with members of surrounding social groups with aggressive and sexual behaviours

tending to increase at the time of dispersal [14]. Juvenile rabbits possibly visit multiple warrens

and engage in longer and more frequent inter- and intra-group pairings than their adult coun-

terparts. Juvenile rabbits might also be allowed entry to non-natal warrens prior to and during

dispersal events when adults are not. If juvenile rabbits enter non-natal warrens, the protective

capabilities of maternal antibodies and RHDV GI.4c could allow them to be effective vectors

of lagoviruses through infectious contact with the social groups that they visit.

Therefore, juveniles potentially play a more important role in pathogen transmission

between warrens than adults and could be the key player in the transmission and persistence

of lagoviruses in rabbit populations. Here, we aimed to determine rates of visitation to warren

of capture and other warrens by juvenile and adult rabbits, to measure the frequency and dura-

tion of inter- and intra-group pairings among adult and juvenile rabbits, and to determine the

likely relative importance of juvenile rabbits in lagovirus pathogen transmission between rab-

bit warrens.
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Methods and materials

Study site and animals

This study was conducted on a private property located between Orange and Cargo in the

Central Tablelands of NSW (-33.367258, 148.881922, elevation 788 m; average annual rainfall

600–1000 mm, Fig 1), during spring–early summer 2017. Rabbit warrens with many burrow

openings were centred along a 330-m erosion gully that occupied approximately 5.94 ha of a

paddock used for grazing.

Rabbit capture procedures were approved by the Orange Animal Ethics Committee and

conducted under animal ethics approval ORA 17/20/004. Ninety-seven treadle-operated, wire-

mesh cage-traps (67 x 30 x 30 cm), partially covered with poly shade-cloth, were deployed at

burrows and warrens along the gully in the centre of the site (Fig 1). Because adult rabbits are

neophobic [2], cages were cable tied open and free-fed weekly with diced carrot for two

months prior to trapping. This allowed rabbits to habituate to the traps and carrot bait prior to

the capture period.

Trapping was carried out from late September to mid-December when breeding was occur-

ring. Traps were set between 1500 hr and 1700 hr, Monday–Thursday, and checked the follow-

ing morning at 0600 hr, Tuesday–Friday. Trapping was not conducted during forecasted poor

weather conditions (> 10 mm rain, heavy wind, extreme cold). Captured animals were

removed from traps and secured in calico bags. All newly captured animals were fitted with a

microchip (ID 100/1.4 Trovan Unique Midichip- Microchips, Australia) for identification

then weighed. Suitable animals were fitted with proximity loggers (see below). All animals

were released at their point of capture. It is possible that the warren of capture (WOC) for

some rabbits was not their natal warren or common social group. For this reason, rabbit loca-

tions are referred to as their ‘WOC’, rather than ‘natal warren’ [39].

Proximity loggers. VHF encounter proximity loggers (Lotek, Havelock, New Zealand,–

custom made juvenile model, E2H 162 PID 1607; adult model, E2C 171A) were used to gather

information on individual’s social behaviour. In general, each logger emitted a unique ultra-

high frequency signal while searching for the frequency of other loggers within a distance pre-

set by researchers [36]. When two loggers come within the pre-set distance, a ‘pairing’ on both

systems is recorded. Reciprocating logger identification number, date, time and the duration

of pairings were recorded and saved to each device’s internal memory. When the devices

became separated beyond the set distance and predetermined time interval, we considered the

pairing to be concluded.

Prior to deployment, we tested each logger for faults, set the pairing range at 30–50 cm

(close proximity deemed to be a pairing between two rabbits), and set the separation time to

30 seconds. Due to concerns about battery life, an additional transmitter (A2455 1.2 g, set at 24

pulses per minute for 140 days- Advanced Telemetry Systems, Isanti, USA) with its frequency

matched to the corresponding logger, was glued to the VHF proximity radio-loggers (Sellys1

Quick Fix™ super glue). Mesh wings were glued to the ventral side of the logger to increase the

surface area for attachment to the rabbits. Given the length of antennas for juvenile loggers (32

cm), antennas were curled to 3 cm diameter, then heat-shrunk into place to limit the chance of

entanglement with obstructions in the field.

Loggers were only fitted to juvenile rabbits that were within the 600–750 g weight range

(n = 26). This ensured that the data collected would be from rabbits that were still in the juve-

nile life stage for the duration of the study, but that were large enough for the loggers to

be< 5% of their body weight. The hair between the shoulder blades of juvenile rabbits was

trimmed and shaved so that the proximity logger could be glued to the animal. Proximity log-

gers were then secured by folding the surrounding longer guard hairs over the mesh wings
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Fig 1. Location of base stations (green circles) in Central West New South Wales, Australia. Trapping of rabbits was

conducted on warrens highlighted in white (1–7), while warrens highlighted in yellow were not trapped (8 and 9). Base

stations were placed at the centre of warrens (3, 4, 6, 7, 8, and 9) or at either end for larger warrens (warrens 1, 2 and 5),

Mapping was undertaken with ESRI software [26].

https://doi.org/10.1371/journal.pone.0271272.g001
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[41]. Collars were used to attach VHF proximity loggers to adult rabbits (> 1200 g) [23,42]

and all adult loggers were deployed during the study (n = 16). No loggers were attached to sub-

adults as this age class was not the focus of this study. All loggers used on juvenile rabbits

detached from individuals before they reached 900 g (based on an average growth rate of 10 g

per day) due to grooming, hair growth and general wear and tear associated with the fossorial

behaviours of the rabbits. The battery life of the logger was ~80 days, allowing for use on multi-

ple juveniles if sufficient battery life remained after detachment. Loggers for adults remained

on the same individual for the life of the study. All study animals were humanely killed at the

completion of the study to comply with the State’s Wild Rabbits Pest Control Order (NSW
Local Land Services Act, 2016), and tissue samples were taken for a wider study investigating

the serology of wild European rabbits. To recover loggers and extract the data, adults were

either re-trapped and then humanely killed by stunning with a captive bolt followed by cervical

dislocation (separating the brain from the spinal cord: Standard Operating Procedure

GEN001: Methods of euthanasia [51]), or shot under spotlight by an experienced licenced

shooter.

Loggers were fitted to 77% of captured adults and 36% of captured juveniles. The low rate

for juveniles was because many were too small. Of the 42 VHF proximity loggers deployed,

only two were recovered and re-used after cleaning with 2% hyperchlorite solution. Rede-

ployed loggers were re-labelled with a decimal (e.g. 2.1 and 2.2) to distinguish between the two

rabbits. We recovered 40 logging devices at the completion of the study (adult logger numbers

38 and 46 could not be found). All juvenile loggers were found, either on the surface or in war-

rens. Six loggers (juvenile n = 4, adult n = 2) did not provide data either due to logger failure

or no interactions with other logging devices, or provided a series of broken one-second pair-

ings greater than five minutes apart (see Data cleaning below).

Base stations. Base stations were used to record pairing information when rabbits come

within a predefined distance of an area of interest. We deployed 12 base stations over nine war-

rens (trapped and un-trapped; Fig 1) to determine visitations by rabbits wearing VHF proxim-

ity logging devices. Two base stations were positioned at opposite ends of three larger warrens

(1, 2 and 5- Fig 1). Base stations were tested for faults and the detection range set at 1.5 m prior

to deployment.

Data cleaning

Proximity loggers. Performance of proximity loggers might not have been identical,

which would cause asymmetries in data between paired devices [36]. Orientation and signal

obstruction (presence of surrounding objects, size of the animal and fossorial behaviour) may

have impacted upon the collection of data [36], and it is important that these limitations are

considered.

Using the statistical platform R [52], obscure logger numbers and pairing characters (e.g.

alphabetical instead of numeric) were removed from the data. Logger pairings within 12 hours

of initial deployment were also removed from the data to reduce the effect of unusual behav-

iour caused by handling [42].

We considered that each logged one-second proximity was a brief passing encounter that

was unlikely to facilitate pathogen transmission because transmission likelihood is a product

of contacts and their duration [46]. However, clusters of short sequence pairings of 1-sec

between the same individuals would likely be cumulatively sufficient for pathogen transmis-

sion. Therefore, to ensure that pairings were of sufficient duration to enable disease propagule

transmission between individuals for network analyses, all one-second pairings between the

same two individuals within five minutes were conservatively considered sufficient for
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pathogen transmission. All other one-second pairings were removed from the data (2,050 out

of 28,421 encounters).

Two loggers (2.1 and 16) were excluded from this display as they only occurred as ‘encoun-

ters’. Blank spaces are used to identify loggers that failed to record data, produced no pairings

following data cleaning, recorded invalid pairings or were not recovered at the completion of

the study (see text).

Base stations. Data from all base stations were cleaned according to rabbit transponder

deployment and retrieval dates, as described for VHF proximity loggers. Base station numbers

were replaced with warren number, and where two base stations were located on a warren, the

data were merged with information on WOC.

Field tracking of rabbits. Rabbits were located using an extended three element folding
handheld Yagi antenna and receiver (Ultra receiver, Lotek, Newmarket, Canada), Monday–Fri-

day at 05:30 and 16:00, and once more at a random time between 22:00 and 02:00 (to eliminate

observer bias [53]). This provided additional information on the space rabbits occupied, day-

time resting locations and mortalities.

Analyses

Duration of pairings. Total pairing duration was calculated for each logger pair. Using

labels i and j to denote any pair of loggers, total pairing time with logger j was extracted from the

logger i record and total pairing time with logger i was extracted from the logger j record. The

two totals were never in agreement due to the operational issues described earlier. Therefore, the

larger of the two values was taken to represent total time in pairing for the observation period.

Pairings were grouped according to age class pairs (i.e. between juvenile rabbits [hereafter

‘J–J’], between adults and juveniles [hereafter ‘A–J’] and between adults [hereafter ‘A–A’]) and

the distribution of duration times within each group presented graphically (Fig 2). A formal

statistical comparison between pair classes was not conducted due to strong variance heteroge-

neity and asymmetry within groups even after log10 transformation. The log scale durations

for each group were summarised by average and 95% confidence intervals (Fig 2) to enable

informal statistical comparison.

Pairing networks. A network representation of pairing between logger pairs was con-

structed using the igraph package [16] in the R environment [52] by using pair duration to

define the graph edges and age class to define the nodes. A similar analysis of interaction

between individuals and the base stations was also conducted.

Results

Sample population

One hundred individual rabbits were trapped in 297 capture events over 45 trapping nights.

Of these rabbits, 76% were juvenile, 22% were adults, and 2% sub-adults were captured. Nine

adults were recaptured at least once during trapping events and 64% of the juveniles were

trapped twice or more times. Using the total number of individuals that we trapped as a mini-

mum number known alive at the completion of trapping, a minimum density of rabbits across

the study site was 16.8 rabbits ha-1.

Pairings between rabbits

After data cleaning, 26,371 pairings were recorded across all individuals (range: 1 sec–1 hr, 29

min and 57 sec). However, most (59.8%) pairings were of 1 sec in duration. There were 10,499

J-J pairings of> 1 sec duration, but only 44 such A-J and 11 such A–A pairings).
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Pairings between juveniles were more common and of longer duration than A-J pairings or

A-A pairings (Fig 2).

Although there were 630 possible pairings within our sample of 36 rabbits, the total number

of observed contact combinations was 79, comprising 56 J–J pairs, 20 A–J and three A–A.

The network analysis indicates a possible eight social pairing groups existed in the study

population (Fig 3), as the interactions between rabbits indicated there could have been two

social groups coexisting within the one warren system (warren 2, Fig 3). Four of the eight sam-

pled groups consisted of a mix of juvenile and adult rabbits, only adult proximity collars were

deployed in warrens 5 and 6 and only juvenile rabbits were sampled in warren 4.

Juvenile rabbits, unlike adult rabbits, made strong connections with individuals from out-

side of their social group (Fig 3), with more frequent and longer duration pairings with other

juveniles from neighbouring warrens. Pairings made between juveniles from warrens 1 and 2,

and from 3 and 4, were particularly strong (Table 1). These four warrens were all within 30–50

m of each other (Fig 1). Pairings between juvenile rabbits from more distant warrens occurred

(e.g. warren 1 with warren 7), but these J–J pairings were less common (S = 378 seconds).

Pairing between adults from different social groups were very uncommon (adult intra-group

pairings n = 2, S = 18 seconds). Inter-group pairings between adults were from warrens 6 and

7, which were less than 10m apart, and may potentially represent one social group.

Most juveniles from the same social group were connected and shared strong bonds (as

indicated by line thickness between nodes: Fig 3). However, some juveniles from the same

social group did not pair with each other (9, 4, and 12 with 14 and 8). Juvenile-juvenile con-

nections were stronger than A–J and A–A connections (J–J = 408,491 sec, A–J = 1,406 sec and

A–A = 58 sec). In total, juvenile rabbits from within the same social group were connected to

Fig 2. Distribution of total time in pairing for all observed pairs of rabbits classified by age class. Solid symbols

and lines denote group averages and 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0271272.g002
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more rabbits (juvenile and adults) to each other than the adults of the same social group. For

example, adults 37 and 40 were only connected to one juvenile, while almost all juveniles were

connected to more than three other rabbits. Adult rabbits were indirectly connected with all

individuals within a social group through the high connectivity of their associated juveniles.

For example, adult 37 is indirectly connected to juvenile 26 through juvenile 11 and so on.

Despite adult rabbits carrying loggers for longer (Fig 4), intra-group connections between

Fig 3. Graphical representation of individual rabbits and pairings between logger pairs (n = 79). Each social group is made up

of nodes (circles indicating logger identification number) and connecting lines between nodes. Node colours indicate warren of

capture and node size indicates rabbit age class (adult and juvenile). Edge thickness (10 seconds- 5000 seconds) is proportional to

total time in pairing (log10 scale).

https://doi.org/10.1371/journal.pone.0271272.g003

Table 1. Total duration of pairings between pairs of rabbit warrens for three pairs of rabbit age class (J–

J = juvenile-juvenile, A–J = adult-juvenile and A–A = adult-adult).

Interaction type Warren pairs Total pairing duration

(Sec)

J–J 1–2 19,986

J–J 3–4 2,215

J–J 1–7 378

A–J 1–2 119

A–A 6–7 18

A–J 1–7 12

A–J 2–6 5

A–J 2–7 4

A–J 2–3 4

J–J 2–2 3

J–J 2–4 2

https://doi.org/10.1371/journal.pone.0271272.t001
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adults were infrequent and weak in strength. The longest duration a logger was attached to an

adult was 13 weeks, and to juveniles was approximately 3.5 weeks. However, only adult loggers

33 and 32 (58 sec), 31 and 39 (14 sec), and 44 and 39 (4 sec) made pairing during the study

period.

Multiple warren use

Of the 12 base stations deployed, two did not produce any data (one each on warren 1 and 2).

However, given that these warrens had two base stations deployed, contact data from these

warrens were still collected. The base stations logged encounters with 37 rabbits (adult n = 13,

juvenile n = 24). Base stations were associated with rabbit’s WOC and are referred to as inter-

and intra-warren detections (Fig 5).

Of the 24 juvenile rabbits detected by base stations, 15 visited one or more warren systems

(Figs 2 and 5). Most juvenile inter-warren detections were over shorter distances (inter-warren

pairing duration S = 730,005 sec). For example, the majority of juveniles associated with war-

rens 3 and 4 were detected at either warrens 3, 4 and/or 9, which were all within 50 m of each

other (Figs 1 and 5). Although less frequent, some juveniles did travel greater distances. Two

juvenile rabbits (loggers 8 and 23) were detected at four and six different warrens respectively,

spanning the 330 m of the study area (Figs 1, 5 and 6A). Interestingly, some juvenile rabbits

captured at warren 2 were only detected at warren 1. All but 2 juvenile rabbits (loggers 2.1 and

2.2) had stronger intra-warren connections than adults.

Ten adult rabbits were detected at multiple warrens (2–4 warrens: inter-warren pairing

duration S = 6,815 sec), three were only detected at their WOC (Figs 5 and 6B) and one adult

logger was not detected at all. Males appeared to visit warrens other than their WOC whereas

females did not. However, the sample size of these observations was too small for a firm con-

clusion. The strength of connections varied with some adult rabbits showing strong intra-war-

ren connections (S> 1,500 sec, n = 4), while all others displayed similar multiple inter-warren

connections. No adults were detected at warren 9, despite it being close to warren 6 and 7 (~35

m). Warren use by adults at warrens 6 and 7 overlapped (loggers 31, 39 and 44: Fig 5), while

most other pairings were fleeting in comparison with those of juveniles (Fig 6). Adult logger

32 appeared to have strong connections with warren 5 (WOC), however, excavation deter-

mined that it had died in the warren directly below base station 5 (Fig 6B).

Field tracking detections

Locations collected with the hand-held VHF antenna confirmed that adults used larger areas

than juveniles. Although most frequently located in their WOC, six juveniles were occasionally

detected in warrens other than their WOC (Fig 7). For example, juveniles from warren 4 were

found in warren 3. Similarly, juveniles from warren 1 were found to have moved to warrens at

the northern end of the study area. Seven adult rabbits were also detected in multiple warrens

during the study (Fig 7). Some adults travelled greater distances than juveniles, for example,

adult loggers 34, 36 and 45 and 48 travelled outside of the numbered warrens (greater than 330

m). Four adult rabbits were twice found feeding together away from their WOC during even-

ing surveys; however, pairing between loggers was not recorded.

Rabbit mortalities

Three rabbits were known to have died during the study. One juvenile rabbit (300 g) and one

adult (1000 g) without loggers were confirmed, by an independent laboratory (via serology

test), to have seropositive results to GI.2 (approximately halfway through the study period, 8th

and 10th of November 2017 respectively), which may have caused their death. The third rabbit
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(adult logger number 32: 1300 g) tested negative to virus, and the cause of death could also not

be determined. We suspected that three other rabbits were taken by predators: one juvenile

logger (logger number 21) was found near a red fox (Vulpes vulpes) den under a blackberry

(Rubus fruticosus) shrub and two adult collars (logger numbers 39 and 45) were found with

fox bite marks and evidence of chewing. Two other rabbits (logger number 38 and 46) went

Fig 4. Study time-line showing logger activity (timing and duration of loggers that paired during the study (vertical axis)), between deployment (green

points) and retrieval dates (blue points) of juvenile (red) and adult (black) loggers (n = 34 unique loggers with valid pairing data).

https://doi.org/10.1371/journal.pone.0271272.g004
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missing during the study and were not recovered despite searches in and adjacent to the study

location.

Discussion

Inter-group pairings and population mixing

Our data confirmed that juvenile rabbits could play a substantial role in pathogen transmission

through inter-group and inter-warren pairings. Because social networks influence disease net-

works (at the population level) [31], these inter-group pairings are essential for pathogen trans-

mission in wild populations. This is particularly so for lagoviruses because the main

transmission mode is via direct contact [12,21]. Because juvenile rabbits are potentially

Fig 5. A network of logger pairings with base stations. Nodes (circles indicating logger identification number) represent rabbits and

lines between nodes indicate the strength of the pairing. Edge thickness (10–30,000 seconds) is proportional to total time in pairing

(log10 scale). Nodes and squares are coloured according to the base station location (coloured squares, prefix ‘B’, n = 9) and warren of

capture (n = 7) for the loggers. Base stations are numbered as per each warren number.

https://doi.org/10.1371/journal.pone.0271272.g005
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Fig 6. Time stream of juvenile (a) and adult (b) encounters with each base station, represented by warren number (vertical axis). Encounters are colour coded

according to warren of capture (n = 7). Each line represents one logger, and vertical positioning of the logger indicates the base station number (warren

number, n = 9) of detection. Overlapping data points are scattered for clarity. Only warren 5 had two functioning base stations, and data from both were

merged.

https://doi.org/10.1371/journal.pone.0271272.g006

Fig 7. Detections of each logger using a hand-held Yagi antenna and receiver throughout the study. Detections

occurred at 05:30, 16:00 and randomly between 22:00–02:00, Monday–Friday. Colours indicate the warren of capture

(n = 7). Black squares indicate estimated warren extent. Circles represent juveniles and crosses represent adults. Axes

are scaled to equal distance.

https://doi.org/10.1371/journal.pone.0271272.g007
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resistant to RHDV1 and can carry and shed virus [25,47], inter-group pairings with susceptible

rabbits from other social groups could be of particular importance in facilitating the transmis-

sion of both pathogenic and non-pathogenic RHDV.

Adult-juvenile pairings were more frequent and longer in duration than A–A pairings, and

as juveniles can shed virus for many weeks after infection [50], these inter-group pairings

potentially enable this cohort to directly and indirectly transmit pathogenic lagoviruses to sus-

ceptible adults. As expected, A–A inter-group pairings were very infrequent and short adult

rabbit inter-group pairings were infrequent, which corroborates Marsh et al [42]. The low fre-

quency of A–A inter-group pairings limits the ability of this age class to exchange virus

through direct pairing, which further highlights the potential importance of A–J inter-group

pairings in lagovirus transmission.

In our study, J-J inter-group pairings were longer and more numerous than A–J and A–A.

These factors are likely sufficient for the expression of behaviours that enable the direct and

indirect transmission of virus between social groups. The substantially longer J–J inter-group

pairing time increases the likelihood of associated susceptible juveniles becoming infected.

The length of time and type of transmission behaviours are also just as important in pathogen

exchange within a pathogen network [37]. Transmission behaviours for juvenile rabbits such

as cuddling, allogrooming and, in some cases, aggression, promote the likelihood of bodily

fluid (saliva, urine, faecal matter and blood) exchange [54]. These behaviours, often longer in

duration, can facilitate pathogen transmission [10,54]. The duration of inter-group J–J pairings

we observed suggest there was ample opportunity for transmission behaviours to occur, result-

ing in the potential transmission of lagoviruses. However, we do not know the exact type of

behaviour that occurred during the pairings, which could further influence the likelihood of

lagovirus transmission.

Due to particularly high connectivity, some individuals could play a larger role in lagovirus

transmission than others. Highly connected individuals, or ‘superspreaders’ [55,56], have a

greater capacity to transmit virus at a population level, particularly in species such as rabbits,

as these individuals form connections between social groups that might not occur between

adults [25,30,35]. Almost all juvenile rabbits paired with juveniles from neighbouring social

groups, and some with potentially susceptible neighbouring adults. Given J–J and A–J pairings

were longer and more numerous than A–A, some juvenile rabbits could be potential super-

spreaders of lagoviruses because they were well-connected over multiple warrens and social

groups.

Juvenile rabbits are likely also important for spreading acquired immunity. Like RHDV,

RHDV GI.4c can be shed by juveniles up to seven days after infection, providing temporary

immunity against RHDV1 [22]. This further complicates rabbit disease networks, as the spread

of RHDV GI.4c can create a resistant breeding population [25,26]. Through their strong con-

nections, juveniles therefore have a greater ability to transmit RHDV GI.4c, which could

increase immunity against RHDV1 in rabbit populations.

Intra-group pairings

Pairings between members of the same group are also important for pathogen transmission

[10,35,47]. Juvenile rabbits had the strongest intra-group connections. The high connectivity

of juvenile rabbits with littermates and their mothers during the early weeks of life that we

observed has been shown in other studies [2,54]. The likelihood of between-juvenile rabbit

pairings within the warren is inherently higher because, given that the average litter size is

four-six kittens per female [1] and that a female produces between 18 and 30 young per year

[2], juveniles are more common than adults during breeding seasons. This likely increases the
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probability of virus transmission between littermates and to susceptible individuals within

their group. As RHDV typically takes one-two days to kill its host [6], and juveniles have

heightened protection from lethal lagoviruses due to maternal antibodies (up to approximately

12 weeks) [27], this well-connected cohort has an increased likelihood of encountering multi-

ple susceptible individuals during this time.

Juvenile rabbits are naturally resistant to RHDV1s up to about six weeks of age [45], but

resistant individuals can shed a lethal virus load post-infection for up to 10 weeks [25]. The

strength of juvenile intra-group connections means this cohort has the potential to transmit

virus to almost all members of their social group. Greater virus spread within groups increases

the likelihood of virus spread between groups. This increases the likelihood of individuals

spreading infection and/or immunity across populations.

Multiple warren use

More than half of the juvenile rabbits used multiple warrens, confirming the potential of them

spreading and shedding virus outside of their WOC. Juvenile rabbits can travel up to one and

a half kilometres from their natal site [2,33]. This is consistent with our finding that juvenile

rabbits moved across the entire study area (approximately six hectares) and encountered

potentially susceptible adults from different social groups. This is particularly important for

pathogen transmission because juveniles are capable of transmitting virus to neighbouring

warrens and over great distances. Furthermore, because the exploration range of juvenile rab-

bits increases as they grow and age [57], the pathogen transmission range could follow a simi-

lar trend. This highlights the critical role that juveniles can play in facilitating disease

epidemics in this system. Further investigation into the relationships between age, distance

travelled, and the number of inter-group and inter-warren pairings may help define an age

threshold for maximum mortality by infection.

Exploration by juvenile rabbits prior to dispersal provides them with information on

resource availability and hierarchical structure of neighbouring groups [2,32,48]. Although

most juveniles spent most of their time at their WOC, there were four cases where juveniles

were only ever detected away from their WOC. It was possible that these juveniles were

trapped during exploratory events, and therefore their WOC was not their natal warren.

Another explanation is that they were never detected by the base station on their natal warren

and were only ever detected during their exploratory events on other warrens. Given the large

size of these warrens (warrens 1 and 2), this second option is possible.

Not all individuals within a warren system use or have access to the entire warren [23].

Although juvenile rabbits are likely to have less restriction moving through their natal warren,

our observed dispersion by juvenile rabbits suggests that most exploration is likely to be out of

the natal warren rather than within. These findings raise three important points for pathogen

transmission: 1) juvenile rabbits might not interact with all surrounding social groups; 2) as

juveniles prepare to disperse, they spend more time investigating warrens and social groups

away from their natal warren; and 3) juvenile exploration could partially account for pulsing

of disease outbreaks because births often pulse in response to seasonal conditions [40], as did

dispersals and interactions between warrens and warren clusters. This also implies that flow

rate for pathogen transferred by juvenile rabbits to other social groups will vary because some

groups will not be socially connected. Under these circumstances, transmission of pathogens

would depend on other modes such as insect vectors [13].

Surprisingly, most adult rabbits were detected by base stations at more than one warren.

Previous studies using VHF tracking found that most adult rabbits remained within the con-

fines of their social territories [42]. However, it is likely that infrequent instances of pairing
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with other warrens were not detected during that study because of limitations of VHF track-

ing. The majority of such warren visits were by rabbits in close proximity to their WOC, and

as a whole, warren visits were largely infrequent and short. Our data indicated that male adults

were more likely to visit warrens other than their WOC. This is consistent with the finding of

DiVincenti and Rehrig [48] that female rabbit home ranges were often smaller, while male

home ranges were larger and influenced by availability of breeding females. Therefore, use of

multiple warrens by adults in our study was likely driven by demographic factors such as sex

and reproductive status, particularly as the study was undertaken during the late breeding sea-

son. The timing of inter-warren visits is likely to influence pathogen transmission. If adults are

covering greater distances during particular times of the year (e.g. breeding seasons [25]), the

chance of lagovirus transmission through both direct and indirect pairing with juveniles from

multiple warrens is increased.

Effects of mortality

Several mortalities were observed in our study, and both GI.2 and predation were identified as

the causes of the mortality events. The outbreak of GI.2 could have affected the pairing fre-

quency and duration of pairings. We possibly underestimated the frequency of pairings

between rabbits, and potentially overestimated the duration of pairings, e.g. the 5 hr 51 min

outlier pairing between an adult and a juvenile (Fig 2) could have been between live and mori-

bund infected rabbits.

Because rabbits form a significant part of introduced predator diets (wild dogs [58], foxes

and cats (Felis catus) [39]), predation or scavenging of infected carcases can aid in transmis-

sion of pathogens through faecal shedding by predators over their home range [10]. Further-

more, transmission of lagoviruses could be facilitated by insects around areas of high

predation activity (e.g. fox dens) due to greater presence of dead infected rabbits [13].

Although we observed mortalities that were likely due to predation, these were too sparse to

inform us about the likely impacts on pathogen transmission.

Further considerations

It is unknown what effects that lagovirus observed clinical signs [9,34,43,59], population size,

dispersion and density, and landscape features (e.g. topography, soil structure) had on rabbits’

behaviours and movements, and which could therefore influence the spread of lagoviruses.

Our study population was localised but of high density for Tablelands regions (1–16 rabbits

ha-1 [12]) and might not have been representative of contact networks in other environments.

Further research into the effects of lagovirus infection and different rabbit population sizes on

animal movement and transmission behaviours is suggested. In addition, it is possible that the

rabbits trapped and monitored during our study exhibited different behaviours to those that

were not trapped and monitored.

Conclusions

As lagoviruses are spread by both direct and indirect pairing, the high connectivity of juvenile

rabbits may increase their potential in transmitting the pathogens across social groups. In par-

ticular, the strength of A–J inter-group pairings and juvenile inter-warren use, confirmed the

potential for juveniles to act as superspreaders of lagoviruses [37,55]. This is of particular

importance for RHDV-mediated biocontrol transmission, as juvenile rabbits can shed RHDV

for many weeks following infection, without developing the disease. This has implications for

the timing of virus release, and further investigation should focus on the effect this may have

on a resistant breeding population versus increased virus spread for the management of wild
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European rabbits [24]. Further investigation should also be made into the effect of juvenile

shedding status, and temporal variation in juvenile rabbit behaviour on the transmission of

lagoviruses could lead to improved timing of RHDV-mediated biocontrol and better manage-

ment of lagoviruses for the preservation of rabbit populations in their native range [11,60].
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