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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) methods
generate sparse gene expression profiles for thou-
sands of single cells in a single experiment. The in-
formation in these profiles is sufficient to classify
cell types by distinct expression patterns but the high
complexity of scRNA-seq libraries often prevents full
characterization of transcriptomes from individual
cells. To extract more focused gene expression in-
formation from scRNA-seq libraries, we developed
a strategy to physically recover the DNA molecules
comprising transcriptome subsets, enabling deeper
interrogation of the isolated molecules by another
round of DNA sequencing. We applied the method in
cell-centric and gene-centric modes to isolate cDNA
fragments from scRNA-seq libraries. First, we resam-
pled the transcriptomes of rare, single megakary-
ocytes from a complex mixture of lymphocytes and
analyzed them in a second round of DNA sequenc-
ing, yielding up to 20-fold greater sequencing depth
per cell and increasing the number of genes detected
per cell from a median of 1313 to 2002. We similarly
isolated mRNAs from targeted T cells to improve the
reconstruction of their VDJ-rearranged immune re-
ceptor mRNAs. Second, we isolated CD3D mRNA
fragments expressed across cells in a scRNA-seq
library prepared from a clonal T cell line, increas-
ing the number of cells with detected CD3D expres-
sion from 59.7% to 100%. Transcriptome resampling
is a general approach to recover targeted gene ex-
pression information from single-cell RNA sequenc-

ing libraries that enhances the utility of these costly
experiments, and may be applicable to the targeted
recovery of molecules from other single-cell assays.

INTRODUCTION

New methods that measure mRNA abundance in hundreds
to thousands of single cells have been used to understand
gene expression heterogeneity in tissues (1–4). But these
single-cell RNA-seq experiments have a tradeoff: instead of
surveying gene expression at great depth, they generate a
sparse gene expression profile for each cell in a population.
This information is often sufficient to identify cell types in a
population, but provides only a glimpse of genes expressed
in a given cell (5). Moreover, mRNAs in each cell are cap-
tured stochastically, leading to false negatives in identifica-
tion of expressed genes in many cells (6).

Single-cell RNA-seq experiments can identify rare cell
populations that have distinct gene expression profiles.
Previous studies have identified retinal precursors (2,7),
hematopoietic stem cells (8), rare immune cells (9), and
novel lung cell types (10) in complex populations, where
these cell types represent a small fraction of the cell mix-
ture. Historically, the information known about a cell lin-
eage is correlated with its abundance and thus these rare
cell types often contain new information for uncharacter-
ized cell types. Whereas scRNA-seq methods can identify
these rare cell populations, they provide only a glimpse of
the RNA expression patterns in rare cells because of the de-
tection bias for highly expressed RNAs. Moreover, because
the mRNAs from these rare cells represent a small fraction
of the total library, increasing the sequencing depth is not an
efficient way to learn more about these cells. More complete
analysis of their expression might identify e.g., cell surface

*To whom correspondence should be addressed. Tel: +1 303 724 5384; Fax: +1 303 724 3215; Email: jay.hesselberth@gmail.com
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-0750-1273
http://orcid.org/0000-0003-2928-6308
http://orcid.org/0000-0002-7855-9870
http://orcid.org/0000-0002-6299-179X


e20 Nucleic Acids Research, 2019, Vol. 47, No. 4 PAGE 2 OF 12

markers that could be used to isolate these rare cell popula-
tions.

Recently an approach termed DART-seq was devel-
oped that enables acquisition of both global and tar-
geted gene expression information in a single experiment
(BioRxiv: https://doi.org/10.1101/328328). In DART-seq,
gene-specific probes are ligated to oligo-dT terminated
Drop-seq beads (2), enabling both oligo-dT-primed and
site-specific cDNA synthesis during reverse transcription.
This approach is valuable if the mRNAs of interest are
known a priori to provide increased coverage for specific
mRNAs. Additionally a method to enrich cell barcodes
of interest from pooled single cell libraries was developed
that uses hemi-specific multiplexed PCR to selectively rese-
quence individual cells (11), which could be useful to more
deeply investigate cell specific gene expression patterns.

Here, we developed ‘transcriptome resampling’ to ad-
dress limitations of single-cell RNA sequencing. Many
single-cell RNA sequencing platforms have been developed
(Supplementary Table S1) and all of them incorporate a
unique DNA sequence into mRNAs derived from a sin-
gle cell. We reasoned that this sequence could serve as a
molecular handle to isolate RNAs derived from a cell of in-
terest, and that these isolated RNAs could be resequenced
to higher depth to interrogate the transcriptional profile of
targeted cells. Moreover, this same principle could be ap-
plied to isolate RNAs by their unique sequences, enabling
their detection in a second round of DNA sequencing. By
physically isolating RNA-derived cDNA fragments, we find
that transcriptome resampling can more deeply interrogate
RNAs in specific cells, or can be used to determine whether
specific mRNAs are expressed across cells in a mixture.

MATERIALS AND METHODS

Cell isolation and single cell RNA-seq generation

For the mouse/human experiment, NIH:3T3 and 293T
cells were grown in standard media and mixed at a 1:1 ra-
tio prior to capture. For the mouse xenograft experiment,
an estrogen receptor positive patient derived xenograft
primary cell line (UCD65 (12)) was labeled with luc-
eGFP using lentivirus (13). Cells were xenografted into
NOD/SCID/IL2rg−/− mice via intracardiac injection to
generate disseminated metastases or injected into the mam-
mary pad to generate a primary tumor. Cells were isolated
from the primary cell line, a primary fat pad tumor, a brain
metastasis and a bone metastases. Contaminating murine
bone marrow cells copurified with human tumor cells iso-
lated from the bone metastasis. Single cells were then cap-
tured using the iCell8 system from WaferGen Bio-Systems.

For the Jurkat libraries, Jurkat cells were thawed from a
frozen vial, grown for one passage in RPMI-1640 + 10%
FBS media and diluted to 500 cells/�l for capture on the
10X Genomics Chromium controller. For the megakary-
ocyte experiment, blood from healthy controls between ages
15 and 55 was collected in heparinized tubes and periph-
eral blood mononuclear cells (PBMC) were isolated by den-
sity gradient centrifugation using Ficoll to obtain the buffy
coat.

Wafergen libraries were prepared according to the man-
ufacturer instructions. 5′ and 3′ gene expression libraries

were prepared on the 10× Genomics Chromium controller
and libraries were prepared according to manufacturer pro-
tocols. TCR enrichment libraries were generated using the
10X Genomics 5′ library construction and VDJ enrichment
kit.

PCR primer design and synthesis

For 10× Genomics cell barcode pulldown libraries, 5′ bi-
otinylated oligos with 4 bp of consensus sequence followed
by the 16 bp barcode with LNA bases added every third
base. These 6 LNA base pairs allow for increased binding
specificity of the barcode sequence. For 10× Genomics gene
pulldown libraries, 5′ biotinylated oligo probes were de-
signed against selected CD3D using primer3 (14). For LNA
probes, LNA bases were added every 4th base. Regions to
target were selected based on inspection of read coverage of
the 5′ UTR of the CD3D gene (see Figure 4H for genome
browser tracks). LNA molecules were purchased from ei-
ther Exiqon or Qiagen. For Wafergen libraries, 5′ biotiny-
lated oligos with 17 bp of consensus sequence followed by
the 11 bp barcode were designed containing three phospho-
rothioate bonds on the three terminal 3′ positions to prevent
degradation. All oligonucleotides used in this study are de-
scribed in Supplementary Table S2.

Library preparation and sequencing

10× Genomics Illumina libraries at 2 nM concentration
were diluted 20-fold and PCR amplified with Truseq Pcr F
and R oligo for 14 cycles with 1 unit of Phusion. PCR am-
plification was confirmed by gel electrophoresis and the re-
maining sample was Ampure XP purified at a ratio of 1.8×
bead/PCR volume. Samples were eluted in 10 �l and mo-
larity was determined using a Qubit. 10 �l of a 100 nM li-
brary was mixed with 10 pmol LNA molecule in annealing
buffer (10 mM Tris 8.0, 50 mM NaCl) and heated to 98◦
for 10 min followed by slow cooling to 59–64◦C depending
on the LNA and held overnight at the annealing tempera-
ture. Annealed DNA was added in equal volume to washed
Dynabead M270 streptavidin beads at the annealing tem-
perature. Beads were incubated for 15 minutes with gentle
shaking. Beads were washed five times in binding buffer
at the annealing temperature. Hybridized molecules were
eluted in 20 �l of elution solution buffer (50 mM NaCl, 0.1
mM EDTA) by heating for 10 min at 100◦C and centrifug-
ing briefly to pellet the streptavidin-bound LNA molecules
(which can inhibit PCR). The elution was performed two
times to ensure all the DNA was removed from the LNA.
10�l of streptavidin purified input DNA was added to PCR
using primers Truseq PCR F and R for 8 cycles. PCR prod-
ucts were ampure purified, analyzed by Tapestation D1000,
quantified by the Qubit, and sequenced on an Illumina
MiSeq or Nova Seq 6000.

Wafergen Illumina libraries at 2 nM concentration were
diluted 20-fold and PCR amplified with 1 unit of Phusion
and the cell specific biotinylated primer and Nextera read
2 sequencing primer to specifically amplify the sequences
from the selected cells for 14 cycles. PCR amplification was
confirmed by gel electrophoresis and the remaining sam-
ple was purified with Ampure XP beads at a ratio of 1.8×
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bead/PCR volume. Samples were eluted and added in equal
volume to prepared Dynabead M270 streptavidin beads.
Beads were incubated for 15 min at room temperature with
gentle rotation. Beads were washed 5× in bind and wash
buffer and eluted in 20 �l of water. 10 �l of streptavidin-
purified input DNA was added to PCR using PEPCR-
Primer 1.0 and Nextera N703 for 9 cycles. PCR products
were AMPure purified, confirmed on the Agilent TapeSta-
tion D1000, quantified by Qubit and submitted for sequenc-
ing.

Data analysis

We provide our data analysis pipeline and custom scripts
in a github repository (https://github.com/rnabioco/scrna-
subsets). Single cell RNA-Seq libraries were preprocessed
to append the read 1 sequence to the paired read 2 read
id followed by quality trimming and poly(A) tail removal
from read 2 using cutadapt (v. 1.8.3) (15). Reads were next
aligned with STAR (16) to either the human genome as-
sembly (Gencode GRCh38) for the PBMC experiments
or a genome with both human (GRCh38) and mouse
(GRCm38) sequences for all other experiments. Sequence
headers in the human/mouse combined genome were pre-
fixed with either an ‘H ’ or ‘M ’ to designate human or
mouse references respectively.

Following alignment, BAM files were processed to ex-
tract the cell barcode and UMI sequences into tags (CN
and BX) within the BAM file. The cell barcode was er-
ror corrected against a list of cell barcodes, either as
known well barcodes (Wafergen experiments), or gener-
ated from the original 10x Genomics single cell libraries
processed with the 10× Genomics software cellranger (v.
2.1.1). Cell barcodes within an edit distance of 1 of the
known barcodes were considered valid cell barcodes and
corrected to the known barcode. Alignments not designated
as multi-mapping that overlapped distinct exonic features
were tagged in the BAM file (subread v. 1.6.0) (17). Gencode
v25 annotations was used for human data, and a union ref-
erence containing Gencode v25 and mouse v11 was used for
human/mouse datasets. UMIs per gene were enumerated
per cell using umi-tools (v 0.5.3) (18) using the directional
method to disambiguate similar UMI sequences.

tSNE projections were generated using the Seurat R
package (19). Briefly, PCA analysis was performed on
scaled, log-transformed, library-size-normalized UMI ma-
trices using variable gene sets. PCA was used to reduced the
dimensionality and tSNE projections were generated with
a perplexity of 30. Graph-based clustering was performed
to identify clusters using the first 15 principal components.
Markers per cluster were identified using a Wilcoxon rank
sum test. K-nearest neighbors were identified using the top
20 PCA dimensions using the RANN R package.

RESULTS

A strategy to recover individual transcriptomes from scRNA-
seq libraries

The cDNA molecules in single-cell RNA sequencing li-
braries contain unique oligonucleotide barcodes that are

used to associate a sequencing read to its cell of origin (Fig-
ure 1A and B). Because these barcodes are typically long
(11–19 continuous or discontinuous base pairs, depending
on the platform, Supplementary Table S1) and are present
in every molecule in the library, we reasoned that these se-
quences could be used as sites for oligonucleotide hybridiza-
tion, enabling selective recovery of specific molecules from
a pool of molecules containing many different barcodes.

As proof-of-principle, we resampled a mouse and a hu-
man cell transcriptome from a mixed-species single cell
RNA-seq library. We generated a 3′ end single cell library on
the 10X Genomics Chromium platform with a 1:1 mixture
of mouse NIH-3T3 fibroblasts and human 293T cell lines
(Supplementary Figure S1). After sequencing and analysis
of this library, we selected a single mouse cell and a single
human cell and designed oligonucleotide probes to target
their unique cell barcodes (16 nt) and a short common re-
gion (4 nt) 5′ of the cell barcode for each cell library (Figure
1B, Supplementary Table S1). To increase the specificity of
hybridization, we incorporated locked nucleic acid (LNA)
nucleotides at six sites in the oligo, increasing the Tm to
74◦C. Biotin was added to the 5′ end of the oligo to enable
purification of hybridized DNA using streptavidin beads.
These probes were hybridized with PCR amplified library
DNA. Following streptavidin purification and elution, the
enriched libraries were reamplified with PCR primers con-
taining common Illumina sequences and sequenced.

After resampling, the targeted cell barcodes were the
most abundant barcodes detected in the sequencing li-
braries (Figure 1C and D). The number of UMIs for the
resampled cells increased by 1.56-fold and 2.85-fold for
mouse and human, respectively, while non-targeted cells
were largely depleted at the expense of the resampled se-
quences (Figure 1E). A useful measure of complexity in
single-cell mRNA sequencing libraries is ‘saturation’, which
is an estimate of the number of single mRNAs (as mea-
sured by UMI counts) captured from each cell in the ex-
periment. The original single cell RNA-seq libraries were
sequenced to an average saturation (i.e. the proportion of
UMIs observed for a given cell at a given sequencing depth)
of 21.75% ± 2.4, and after resampling the saturation for
the selected cells increased to 45.44% (mouse) and 76.63%
(human) (Figure 1F). Finally, we examined the number of
both genes and UMIs recovered in each resampled cell and
found largely the same genes and UMIs previously observed
in each cell (Figure 1G and Supplementary Figure S2A).

The novel UMIs recovered in the resampled cells had
diverse sequence content compared to previously detected
UMIs from the same gene, indicating that the novel UMIs
were not simply due to resampling artifacts (Supplemen-
tary Figure S3A). UMIs recovered in the resampled tran-
scriptomes were largely assigned to the expected species, al-
though the species purity decreased by 6.06% (human cell)
and 2.23% (mouse cell) upon resampling, likely reflecting
increased detection of free RNA molecules present in each
droplet (Supplementary Figure S4A). In addition, increased
sequencing depth correlates to decreased species purity in
our original scRNA-seq library as well as in publicly avail-
able datasets (Supplementary Figure S4B, C). Overall these
data demonstrate the feasibility of resampling individual
cell transcriptomes using LNA-based hybridization and
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that the rate of misassignment of reads to resampled cells
is low relative to the gains achieved by resampling.

Isolation and resequencing of rare cell transcriptomes

We next sought to more fully characterize transcriptomes
derived from rare cells in a complex cell population. We
generated a 10× Genomics 3′ end scRNA-seq library from
a sample of peripheral blood mononuclear cells (PBMCs)
taken from a healthy human adult (Figure 2A). Megakary-
ocytes are present at ∼0.1% in the bone marrow (21), have
been found to populate the lung (22), and are rare in a typ-
ical PBMC sample from a healthy person. We found that
megakaryocytes represented 2.2% of the PBMCs as judged
by expression of the megakaryocyte marker PF4 (Supple-
mentary Figure S5). We selected four megakaryocytes for
resampling to further characterize the transcriptomes of
these cells. After hybridization and resequencing, the bar-
codes for selected cells were enriched over non-targeted cell
barcodes (Figure 2B), were driven to a higher sequencing
saturation (65.21% ± 1.1 in original, 93.86% ± 2.8 in re-
sampled, Figure 2C), had increased numbers of cell-derived
reads (typically an order of magnitude), and resulted in
the detection of an additional 677.25 ± 143.1 genes per
cell (Figure 2D). To assess the specificity of cell type iden-
tification after resampling, we supplemented the original
scRNA-seq dataset with the resampled cell transcriptomes.
The resampled transcriptomes maintained the megakary-
ocyte identity as based on t-SNE visualization (Figure 2E–
G), and the nearest neighbor for each resampled cell in PCA
space was the original cell transcriptome selected for resam-
pling (Supplementary Figure S6). From these data we con-
clude that transcriptome resampling is an efficient method
to efficiently isolate and more deeply analyze the transcrip-
tome of targeted cell types.

Identification of novel marker genes from resampling data

One goal of scRNA-seq experiments is to define novel
marker genes that characterize a cell population. To address
the utility of transcriptome resampling for this application,
we examined the gene expression patterns of the resam-
pled megakaryocyte transcriptomes. Genes most strongly
enriched in the resampled libraries were more lowly ex-
pressed in the original libraries, and also had reduced lev-
els of sequencing saturation (Figure 3A). In addition to
detecting more genes, each resampled cell also contained
more marker genes of megakaryocytes defined from the
megakaryocyte cluster in the original library (Figure 3B).

A key parameter to motivate a resampling experiment
is to determine the appropriate number of cells to resam-
ple to gain additional insight into the gene expression pro-
file of a particular cell population. In our megakaryocyte
resampling experiment, we resampled 4 of the 69 (∼5%)
megakaryocytes from the dataset. However, with only ∼5%
of the megakaryocytes resampled, we did not find an in-
crease in the number of genes that are differentially ex-
pressed (i.e. marker genes) between the megakaryocyte clus-
ter and other clusters in the dataset (674 marker genes in the
original library; 669 in the resampled). The resampled cells
have lower normalized gene expression values (Supplemen-
tary Figure S7) due to increased gene diversity, particularly

for highly expressed genes, resulting in small decreases in the
number of novel markers detected in the resampled data.

We next investigated the relationship between the number
of resampled cells in a cell population and the ability to de-
tect new cell-specific markers. We computed differentially
expressed genes between the four megakaryocyte cells se-
lected for resampling and all other non-megakaryocyte cells
in the PBMC dataset, and then iteratively supplemented the
four cells with additional megakaryocyte cells until all of the
megakaryocytes were present in the cluster (Figure 3C). At
small cluster sizes, the resampled cells provided additional
power to detect novel markers, but the relative increase in
markers detected decreased with increasing cluster size.

Finally, we examined the relationship between the num-
ber of resampled cells and the overall number of genes
recovered in the megakaryocyte cluster after resampling.
Supplementing the cluster with the resampled libraries in-
creases the overall number of genes recovered; however, at
higher cells numbers the relative increase in genes detected
is smaller (Figure 3D). Overall, we increased the total num-
ber of detectable genes in the megakaryocyte cluster from
11,209 to 11,377. These results demonstrate that the resam-
pled libraries allow for increased recovery of marker genes
in a cell population, but the contribution of any specific re-
sampled cell will be influenced by the initial size of the cell
population sampled and the increase in the number of re-
covered genes in resampled cells.

Specificity of cell barcode targeting

We considered whether hybridization-based isolation of
cell-specific transcriptomes might lead to stochastic enrich-
ment of other, non-targeted cells, so we examined the level
of cross-reactivity between hybridization probes and non-
targeted cell barcodes. For both the human/mouse cell and
megakaryocyte experiments, we compared the level of en-
richment for targeted and non-targeted barcodes with their
propensity for cross-hybridization using a Smith-Waterman
alignment-based score and their Hamming distance (Sup-
plementary Figure S8). For the targeted human and mouse
cells, we found that the cognate cell barcode was the high-
est alignment score and lowest Hamming distance to the
hybridization probe (Supplementary Figure S8A). We also
found two non-targeted cell barcodes with elevated enrich-
ments above two-fold and we currently cannot explain why
they are enriched. It is possible that this apparent enrich-
ment is due to stochasticity in the low numbers of UMIs
recovered for these cells. Alternatively, it is possible that
these barcodes may have been enriched due to hybridization
to intervening sequence in the cDNA, which is invisible in
the experiment because we collected short reads from either
end of the amplicon (Supplementary Figure S8A). We per-
formed a similar analysis for targeted megakaryocytes and
found that for all four cell barcodes targeted by hybridiza-
tion, the cognate barcodes had the highest alignment scores
and lowest Hamming distances of any recovered barcodes
(Supplementary Figure S8B), and we did not find any en-
richment for non-targeted barcodes.

Enhanced recovery of TCR mRNAs from single cells

Another common scRNA-seq application is profiling VDJ-
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(n = 3190) are untargeted cells. (C) Sequencing saturation of the targeted cells in the original library and after resampling. Colors are the same as in B.
(D) Number of genes or UMIs in the resampled megakaryocyte (MK) cells that are either newly detected in the resampled library (orange), previously
detected in the original library (blue), or previously detected in the original library but not found after resampling (green). (E) tSNE projection of the
original scRNA-seq dataset supplemented with the resampled cells. Cells are colored by the expression (natural log) of the megakaryocyte marker PF4. (F)
tSNE with the original cell transcriptomes (blue), resampled transcriptomes (orange), and non-targeted cells (gray). The rectangle indicates the location
of cells highlighted in panel G. (G) tSNE projection of resampled cells in the region highlighted in panel F.
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Figure 3. Enrichment of megakaryocyte markers in resampled cells. (A) Relationship between sequencing saturation and enrichment of genes in the resam-
pled libraries. X-axis indicates the normalized expression as the average of the expression values in the original and resampled libraries. Y-axis indicates
UMI enrichment. Genes are binned into hexagons colored by their sequencing saturation (1 – UMIs/reads) calculated from the original library values
(scale bar from 0 to 1.0). For genes not detected in the original library, the average sequencing saturation from all megakaryocytes is displayed. (B) The
number of genes recovered in each resampled cell that were defined as megakaryocyte markers in the original scRNA-seq dataset. Orange dots are for the
resampled libraries; blue is from the original. (C) Markers for megakaryocytes were calculated using the resampled cells (first set of dots), using either the
UMI counts from the original library (blue dots) or the UMI counts from the resampled library (orange dots). The same procedure was repeated with
increasing numbers of randomly selected non-resampled megakaryocytes supplementing the resampled cells. The random selection was repeated 10 times
and the average is shown with the standard deviation displayed in the shaded areas. (D) Number of unique genes detected in a hypothetical megakaryocyte
cluster containing the cells selected for resampling from the resampled library (orange line) or the original library (blue line) with increasing numbers of
randomly selected non-targeted megakaryocytes supplementing the resampled cells. The random selection was repeated 100 times and the average is shown
with the standard deviation displayed in the shaded areas.

rearranged B and T-cell receptor sequences. We applied
LNA-based hybridization method to resample individual
cells to recover additional VDJ rearranged receptor se-
quences. A TCR receptor enrichment library was prepared
from the 5′ end Jurkat cell library using targeted PCR with
primers specific for the TCRA and TCRB mRNAs (Fig-
ure 4A). We selected two cells for which the TCRB chain
was assembled, but in which the TCRA chain had not been
successfully assembled. After resampling we detected en-
richment for the targeted cells (Figure 4B), and were able
to assemble full-length TCRA chain in these cells after re-
sampling (Figure 4C and Supplementary Figure S9). The

resampled cells had additional read coverage that spanned
the consensus Jurkat TCRA and TCRB chains (Figure 4D).
These results demonstrate that resampling can be applied
to recover single cell VDJ-rearranged TCR sequences from
libraries that did not yield fully assembled TCR receptor
genes.

Isolation and resequencing of targeted mRNA subsets

The hybridization-based resampling method can in princi-
ple be applied to isolate arbitrary oligonucleotide sequences
in a single cell RNA-seq library. A common challenge with
single cell RNA-seq libraries is the low cellular detection
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rate of low or moderately expressed genes due to stochas-
tic capture of mRNA molecules from cells. These ‘gene
dropout’ events (i.e. false negative mRNA identifications)
can prevent the identification of cells expressing key marker
genes or trangenes designed to identify cell populations. We
therefore examined the suitability of the resampling method
to enrich specific mRNA sequences and enable interroga-
tion of the expression of specific mRNAs across all cells.

As a proof of principle, we generated a non-saturated 5′
end gene expression library on the 10x Genomics platform
from Jurkat cells (an immortalized human T cell line). An
initial round of sequencing showed that the mRNA for delta
chain of the CD3 T-Cell coreceptor (CD3D) was only de-
tectable in 59.7% of cells despite being highly expressed in
this cell line (23). To increase the cellular detection rate of
the CD3D mRNA, we designed hybridization probes that
target the 5′ end of CD3D mRNA (Figure 4). We considered
several points in the design of probes to the CD3D mRNA.
When designing probes against an mRNA sequence there
are fewer sequence constraints than with cell barcodes with
fixed position and length, and therefore longer DNA-only
probes might be used to increase the probe Tm. Both LNA
and DNA hybridization probes directed to the 5′ ends of
CD3D mRNA were designed and used to isolate CD3D
fragments from 5′ gene expression libraries. We first iden-
tified a region with high read coverage in the original li-
brary near the annotated CD3D transcription start site. We
then used a oligonucleotide probe design tool (Primer3)
to pick candidate ∼25 nt sequences for LNA probes; we
also used these sequences a basis for DNA hybridization
probes, but included another 10–15 bases on each side of
the LNA probe candidate sequences. Next, we used BLAST
to rule out probes with poor E-scores or long stretches of
off-target complementarity in human DNA. Finally, we se-
lected probes with GC content >50% (especially at their 3′
ends), Tm values between 75 and 85◦C, and a low propen-
sity form secondary structures at the predicted Tm. In ad-
dition to an LNA containing probe (20 nt, Tm = 71◦C), we
also generated a DNA only probe (40 nt, Tm = 66◦C) to
determine whether LNAs would be necessary for specific
hybridization (Figure 4E).

After resampling with the LNA and DNA probes we ob-
served specific enrichment of the CD3D mRNA (Figure 4F
and G), increasing the cellular detection rate of CD3D from
59.7% to 100% of cells. In addition, other CD3-associated
mRNAs (CD3E and CDEG) were not enriched after resam-
pling (Figure 4G). After resampling, the read coverage pro-
files across the CD3D mRNA remained similar, indicating
minimal bias in the read coverage introduced by resampling
(Figure 4H). These results demonstrate the utility of using
LNA and DNA hybridization probe for resampling specific
mRNA species.

Recovery of individual transcriptomes by targeted PCR

We additionally tested a PCR-based strategy to recover tar-
geted single cell transcriptomes. The 10x Genomics plat-
form uses cellular barcodes that are at a minimum Ham-
ming distance 2 apart, which cannot be reliably distin-
guished by standard PCR approaches. In contrast, other
platforms such as the Wafergen iCell8 system, have more

diverse barcodes (Hamming distance of 3), with limited
numbers of barcodes detected per experiment (1000s of de-
tectable barcodes versus 100,000s of barcodes in 10× Ge-
nomics or DropSeq libraries). The Wafergen iCell8 libraries
contain an 11 nucleotide cell barcode (Supplementary Fig-
ure S10A).

To investigate the utility of a PCR-based approach, we
designed PCR primers to anneal to cell barcodes and re-
cover the transcriptomes of single cells from a scRNA-seq
library. We tested three PCR approaches to recover single
cell transcriptomes. The first strategy used standard DNA
primers, the second strategy incorporated a 5′ biotin to en-
able stringent purification of PCR products, and the final
strategy additionally incorporated phosphorothioate link-
ages into the terminal three 3′ nucleotides to prevent 3′-to-5′
exonucleolytic cleavage by the proofreading Phusion DNA
polymerase (see Supplementary Table S2 for primer design).

To test these PCR strategies, we selected either 10 (stan-
dard and biotinylated approach) or 5 cells (phosphoroth-
ioate approach) that spanned ∼100-fold in sequencing cov-
erage and were derived from either human cells (from a
breast cancer tumor xenograft) or mouse cells (host mouse
bone marrow derived cells). We performed two rounds of
PCR with low cycle numbers to enrich the libraries. We per-
formed 14 cycles of amplification in individual reactions,
then either pooled the resulting PCR products for the stan-
dard approach, or for the biotinylated and phosphoroth-
ioate approach purified the PCR products using AMPure
purification followed by streptavidin magnetic beads to re-
move unamplified library material. Lastly, we performed a
second round of PCR to incorporate library indexes and
sequences required for flow cell clustering. We observed
7.7-, 8.6- and 19.7-fold enrichment for the targeted barcodes
in the resampled sequencing libraries, for the standard,
biotinylated, and biotinylated with phosphorothioate ap-
proach respectively (Supplementary Figure S10C–E). Both
the standard PCR and biotinylated purification approach
were enriched for many non-targeted sequences. In con-
trast, barcodes were specifically enriched over non-targeted
barcodes by the third PCR approach. These results indi-
cate that incorporation of phosphorothioates is necessary
to achieve specific amplification, and suggests that 3′-to-5′
exonucleolytic activity of the Phusion polymerase is respon-
sible for the observed non-specific amplification.

A caveat of using a direct PCR resampling approach is
the potential for rebarcoding of similar barcode sequences.
Non-specific hybridization to similar barcode sequences
would result in the amplification of non-targeted cell bar-
code sequences. These off-target sequences would be mis-
classified as a resampled cell due to the PCR primer se-
quence rebarcoding the original off-target cell barcode. To
investigate the extent of rebarcoding in these libraries we as-
sessed the proportion of UMIs that were found in multiple
cells in the original library and the resampled library. In the
LNA-based hybridization method, the fraction of UMIs
that were detected in multiple cells in the original library did
not appreciably increase in the resampled libraries (0.76%
± 0.26 shared in original library, 1.80% ± 0.47 shared in
resampled libraries) (Supplementary Figure S3B), indicat-
ing that the novel UMIs recovered after resampling were
not likely derived from other cells. In contrast, resampling
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with the PCR method resulted in increases in the propor-
tion of UMIs that were found in multiple cells (0.39% ±
0.26 to 3.52% ± 1.75 for the phosphorothioate approach)
(Supplementary Figure S10G). Additionally the percentage
of UMIs assigned to the correct species was lowered after
resampling with the PCR approach (for the phosphoroth-
ioate approach, 91.26% ± 8.8 in the original library com-
pared to 76.66% ± 27.5 for the resampled library) (Sup-
plementary Figure S10H). These results demonstrate that
a direct PCR based resampling approach can result in un-
desired off-target rebarcoding, which for the purposes of ex-
amining single cell gene expression profiles makes the PCR
approach less desirable that the LNA-based approach.

DISCUSSION

Here, we demonstrate how resampling of individual tran-
scriptomes from scRNA-seq libraries provides richer in-
formation for selected cell and mRNA populations. One
consideration in the design of probes for the resampling
approach is the design and structure of barcode informa-
tion in single-cell mRNA sequencing libraries. We lever-
aged the contiguity of the cell barcode in 10× Genomics
and Wafergen libraries to design probes and primers that
can effectively target molecules by hybridization. Such an
approach could also be used for other platforms where
a contiguous cell barcode is synthesized on each bead
(e.g. Drop-seq, Supplementary Table S1) (2). The 10× Ge-
nomics Chromium platform uses a small set of fixed cell bar-
codes (737,280 in version ‘737K-august-2016.txt’) and each
of these have on average ∼13 sequences within Hamming
distance of 2. For 10× Genomics libraries, we opted for the
hybridization approach as it is less likely to lead to ‘recod-
ing’ of cells in the library. Moreover, because cell barcodes
are short in 10× Genomics libraries (16 nt), we used locked
nucleic acid probes that target only the barcode region.

A recent study used hemi-specific primers to amplify
cell barcodes of interest from 10× Genomics scRNA-seq
libraries (11). This study showed enrichment for the tar-
geted barcodes of interest (up to ∼100-fold), and the re-
covered libraries had similar expression profiles to the orig-
inal expression. However, we found that PCR resampling
is subject to artifacts because primers designed against one
barcode might misprime on and amplify a related bar-
code, causing inclusion of mRNA from an unrelated cell in
the resampled transcriptome (Supplementary Figure S10).
In addition, primers that mishybridize to a template are
subject to 3′-5′ exonuclease activity by proofreading DNA
polymerases (e.g. Phusion) during PCR, causing amplifi-
cation of non-targeted barcodes and reducing recovery of
targeted barcodes. Terminal phosphorothioate linkages ef-
fectively mitigate this exonuclease activity (Supplementary
Figure S10E), improving specific recovery of targeted bar-
codes. Addition of 3′ phosphorothioate linkages is therefore
strongly recommended if a PCR approach is used for resam-
pling.

Before embarking on a resampling experiment one must
ensure that a single-cell mRNA sequencing library is suf-
ficiently complex as to yield additional information after
targeted resampling and resequencing. Libraries with high
overall saturation observed in the first round of sequencing

are unlikely to benefit from resampling because most UMIs
have already been observed. We selected libraries with less
than ∼66% saturation to maximize the information gained
from specific cells, although libraries with higher saturation
levels could still provide novel UMI or gene discovery, the
relative enrichment will be diminished as the saturation in-
creases. New methods that increase cell numbers in single-
cell experiments (BioRxiv: https://doi.org/10.1101/237693
and https://doi.org/10.1101/315333) will benefit from tran-
scriptome resampling because as cell numbers increase,
DNA sequencing becomes limiting and fewer reads are re-
covered per-cell from these more complex libraries. Tran-
scriptome resampling may enable an initial low-depth ex-
amination of many cells followed by more targeted analy-
sis of defined populations. As an example, we increased se-
quencing coverage for four megakaryocytes (out of a library
with 3194 detected cells; Figure 2A) between 6- and 20-fold
after resampling. The current recommended maximum for
captured cells in the 10X Genomics workflow is 10,000 cells;
therefore if a cell were resampled from this larger popu-
lation, we would expect and 18- to 60-fold increase in its
sequencing coverage, assuming the same sequencing depth
and efficiency of hybridization for cell-specific probes.

Both LNA and DNA probes performed well for CD3D
mRNA, increasing the percentage of cells with detected
expression from 59.7% to 100%. We also found a DNA
probe that targeted the same region of CD3D provided en-
hanced recovery of UMIs associated with CD3D mRNAs
(Figure 3C). We attribute the superior recovery of DNA
compared to the LNA probe to the increased length of the
DNA probe (40nt DNA versus 20nt LNA), as the Tm of
the DNA probe (66◦C) was not appreciably different from
the LNA probe (71◦C). DNA probes are less expensive than
LNA probes (∼$60 per probe for biotinylated DNA ver-
sus ∼$200 per LNA probe) and may be more cost effec-
tive when targeting multiple mRNAs. In theory a PCR ap-
proach could also be used to target specific genes for resam-
pling, however we instead used a hybridization approach
which can be scaled to target 10s or 100s of target mR-
NAs with minimal modification to the method. We envi-
sion pooling subsets of mRNA-specific probes to more fully
characterize gene expression programs in cells from specific
contexts (e.g. interferon-stimulated (24) or stress-response
(25) expression programs).

In principle, transcriptome resampling might be used to
query other features of mRNA expression and process-
ing. For example, full-length mRNAs might be studied in
greater detail with single-molecule sequencing approaches
by isolating molecules from libraries or library prepara-
tion steps that contain full-length cDNA (e.g., Smart-Seq2
(26) or the full-length cDNA generated during the 10×
Genomics library preparation). Indeed in a recent study,
T-cell and B-cell receptor mRNAs were isolated via hy-
bridization from full-length cDNA from a 10× Genomics
library and subjected to single-molecule sequencing, en-
abling characterization of immune repertoires in paral-
lel with gene expression (BioRxiv: https://doi.org/10.1101/
424945). However, probe-based mRNA isolation is subject
to some caveats. Several biological processes create varia-
tion at mRNA 3′ ends including alternative polyadenyla-
tion and 3′ UTR splicing. In addition, 3′ end libraries have a

https://doi.org/10.1101/237693
https://doi.org/10.1101/315333
https://doi.org/10.1101/424945
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large degree of internal mispriming at genomically-encoded
poly(A) stretches (27), potentially rendering a large propor-
tion of the cDNA from a given mRNA unable to be cap-
tured using a 3′ end targeted probe. It is possible that 5′
gene expression libraries have a more homogeneous repre-
sentation of a given mRNA 5′ end, enabling the design of
hybridization probes that target a majority of mRNA iso-
forms.

We anticipate that the recovery of individual transcrip-
tomes will facilitate characterization of rare cell populations
identified in scRNA-seq experiments. However, the struc-
ture of DNA barcodes in a scRNA-seq library impacts the
generality of the resampling approach. We applied resam-
pling to libraries wherein cell barcodes are encoded by a
contiguous region of DNA. As such, a single hybridization
probe can specifically recover information for an individ-
ual cell. Other library designs employ discontinuous cell bar
codes (e.g. sci-RNA-seq (4)); here the information needed to
associate an mRNA with a single cell is present at different
sites in the molecule (i.e. a linker sequence in addition to the
two library indices). In this case, enrichment for a portion
of the cell barcode would likely provide additional informa-
tion for the cell of interest, but would also enrich for other
unrelated cells because some cell barcode information is dis-
tant to the site of hybridization.

Resampling could also be used to recover molecules
from other types of complex single cell libraries. Single-cell
ATAC-seq and DNA-seq have been used to probe chro-
matin accessibility and copy number variation in individual
cells (28–30). Because the amplicons in these libraries have
structure similar to scRNA-seq libraries with a cell barcode
and UMI, one could resample cells with interesting chro-
matin properties from these mixed populations. Detection
of regulatory regions and transcription factor footprints is
highly dependent on read coverage (31) and deeper sequenc-
ing of recovered libraries could provide more insight into
gene regulation than can be gained from the mixed popula-
tion, possibly enabling interrogation of how promoters and
enhancers are correlated in accessibility in single-cell ATAC
experiments or providing increased depth of coverage for
targeted domains in single-cell Hi-C (32).
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