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Abstract

Background

Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching

to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and

COPD patients after viral infections, but only part of the mechanism was addressed, by

focusing on defined immune cells.

Objective

We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n

= 8), asthma patients (n = 10) and COPD patients (n = 9).

Methods

BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival

was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-

blotting and ELISA were used to determine the expression of Rhinovirus interacting pro-

teins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II

(MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator

(ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as

well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK),

and cAMP.

Results

OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85

significantly increased the expression of virus interacting proteins C1q-R and β-defensin in

all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In

addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving

p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and

MHC-2 membrane proteins nor on the adaptor protein MyD88.
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Conclusion

The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presen-

tation and phagocytosis, supports its activity in host cell’s defence against Rhinovirus

infection.

Introduction

Bacterial and viral infections are the major cause of acute exacerbations in asthma and COPD,

which leads to worsening of the disease. The most frequent viral infections of the upper air-

ways are Rhinovirus (RV), Influenza virus and Respiratory syncytial virus, which mainly affect

young children and elderlies [1]. Preventive measures such as immunisations helped to reduce

viral infections but are not commonly practiced. Bacterial extracts such as Broncho Vaxom

(OM-85) reduced the duration of viral infections and improved the recovery phase in COPD

patients, childhood asthma and elderly patients [2–5]. However, despite increasing data based

on experimental models [6–13], the mechanism by which OM-85 reduces viral infections and

improves recovery is not fully understood. It can be hypothesised that OM-85 either prepares

the immune competent cells to combat with viral infections or it increases the primary host

defence of bronchial epithelial cells (BEC) [14].

OM-85 is a mixture of protein extracts obtained from 8 bacteria strains originating from 5

genera and is administrated orally. In COPD patients OM-85 reduced rate of exacerbation and

lower respiratory tract infections [5]. The evidence for potential improvement of anti-viral

response by OM-85 has been reported in animal models and in humans [15, 16]. The mecha-

nism how orally administered OM-85 improves the response of the lung may be explained by

the observation that oral vaccines can pass un-modified through M-cells and Peyers patches in

the gut and enter the lymphatic system or activate immune competent cells [17]. This mecha-

nism is supported by studies showing that nano-particles and proteins are transported through

the epithelium by specialized epithelial cells without being modified and then act on sup-epi-

thelial cells [18, 19].

Regarding its immune modulatory action, orally applied OM-85 significantly reduced the

infection rate of H1N1-influenza virus and of salmonella by unspecific activation of immune

reactive cells in animal models [6], and involved the induction of FoxP3+T-cell formation and

activity [7]. The immune modulatory effect of OM-85 may also be regulated by the reduction

Th-2 cell cytokines in favour of Th-1 cytokines, which was shown in rats [8]. In a mouse

model OM-85 reduced the expression of the high affinity IgE receptor which will reduce the

response to allergens [9, 10]. The latter effect was confirmed in patients with allergic diseases,

where OM-85 significantly reduced the level of circulating IgE in patients with allergies [20,

21].

In vitro, OM-85 has been shown to activate several intercellular signalling pathways includ-

ing Erk1/2, mitogen activated protein kinase (MAPK) and NFκB [22]. Thereby, OM-85

increased the expression of β-defensin, IgG and IgA [23, 24]. In regard to host defence, β-

defensin plays a major role to recognise micro-organisms and marked them for phagocytosis

[24]. In addition, β-defensin affects the expression of the intracellular adhesion molecule

(ICAM) which acts as a docking protein for at least RV and can be induced by OM-85 in

phagocytic cells [25]. In mice, OM-85 reduced RV infection through this mechanism [26].

This observation may be important for the preventive use of OM-85 in asthma, where ICAM-

1 mediated RV induced inflammation [27]. Therefore, we postulated that OM-85 may help to
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improve host defence by up-regulating β-defensin expression on epithelial cells, which are the

primary and major target of viral infections [28].

OM-85 has also been reported to affect other virus binding cell surface proteins on epithe-

lial cells such as the inducible T-cell co-stimulator (ICOS) and its ligand ICOSL [29]. A similar

mechanism was described in human thymus epithelial cells and in alveolar epithelial cells

where ICOSL was essential for antigen presentation to lymphocytes [30]. Both studies linked

the expression of ICOSL to ICAM-1 and major histocompatibility protein-1 (MHC1), which

mediates antigen presentation. The host defence system is also activated through the cC1qR

(calreticulin, CD93), which binds bacterial, viral and parasitic proteins to induce phagocytosis

[31].

In conclusion, OM-85 may improve the host defence system through several cell surface

proteins which recognise and help to remove micro-organisms. Therefore, we assess the effect

of OM-85 on the expression of the above described cell surface proteins by human primary

BEC from patients with asthma or COPD and controls. In addition, we determined the inter-

cellular signalling pathways regulating the expression of these host defence proteins.

Materials and methods

Patients

Healthy (n = 8), asthma (n = 10), and COPD (n = 9). Healthy control patients were undergoing

diagnostic bronchial biopsy for other reasons than asthma or COPD. Asthma patients have

been classified as Mild—sever according to GINA guidelines. COPD patients were classified

according to GOLD guidelines (Table 1).

The ethical approval to obtain the required tissue samples exists as a general permission to

use not needed biopsy material for scientific studies after each patient gave written informed

consent (EKBB 05/06).

OM-85

A standard solution of OM-85 was provided by OM Pharma SA, 1217 Meyrin 1, Switzerland

Bronchial epithelial cell (BEC) isolation and characterisation

This has been published earlier [32]. In brief, small pieces (2 x 2 x 2 mm) of bronchial tissues

were placed into cell culture vessels, which were pre-wetted with BEC specific medium Cnt-

PR-A (CellnTech, Bern, Switzerland). The medium was replaced every second day and BEC

were passaged by trypsin/EDTA treatment (5 min., 37˚C), before being re-suspended in 3 ml

of Cnt-PR-A containing 25% fetal calf serum for better adherence. The adherence medium

was replaced after 18 hrs by Cnt-PR-A. BEC were characterised by positive staining of E-Cad-

herin (Abcam 15148, Abcam, Cambridge, U.K.), pan-cytokeratin (sc-8018, Santa Cruz Bio-

technology, Santa Cruz, CA, U.S.A.), cytokeratin-14 (Abcam 9220) and negative staining for

fibronectin (Abcam 23751) as shown in Fig 1A.

Rhinovirus (RV) infection and determination of infection rate

The RV strain used for the experiments has been described earlier [33] and was identified as

RV-16. For the experiments described below, we have used the same stock described earlier

[33].

BEC were used in passage 1 or 2 and were infected with 1x multiplicity of infection (MOI)

of RV for up to 3 days. The infection rate was determined by immunofluorescence staining

using an anti-RV16 antibody (cat# 18758, QED-Bioscience Inc. San Diego, USA). Cells were
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seeded into 8-well chamber slides (Thermofisher Scientific, Switzerland) and treated with RV

and other chemical compounds or OM-85, as indicated in the treatment schemata provided in

Fig 1B.

After treatment, the cells were fixed after washing with PBS in 4% formalin (in PBS) for 5

minutes. The fixed cells were washed 2x with PBS and permeabilised for 15 minutes with

0.01% TWEEN-100 in PBS. Unspecific binding was blocked in 2% bovine serum albumin (30

minutes in PBS) before being incubated overnight (4˚C) with the anti-RV16 antibody (1:100

dilution). Following 3x washes with PBS, cells were incubated with an anti-mouse FITC

labelled antibody (Abcam, Switzerland) for 1 hour at room temperature. After 3x washes with

PBS, the number of RV positive cells was counted by immunofluorescence microscopy (EVOS

FLoid cell imaging station, Thermofisher Scientific) and nuclei were stained for cell counting

using the distributor’s live cell reagent (Thermofisher Scientific).

Table 1. Patient information.

diagnosis age FEV1 gender

Control 29 ND female

55 ND female

53 ND male

39 ND female

64 ND male

63 ND female

80 ND male

54 ND female

Mean (S.E.M.) 58.29 (3.06)

Asthma 59 49 male

59 70 female

49 65 male

42 87 male

85 94 female

51 105 male

29 78 female

65 82 female

49 112 male

17 82 female

Mean (S.E.M.) 50.4 (4.47) 82.3 (5.58)

COPD 73 70 male

74 65 male

56 51 female

70 49 male

75 32 male

48 58 female

65 51 male

65 66 male

67 24 male

Mean (S.E.M.) 64.0 (2.13) 51.78 (3.84)

Patient information: NA: not available; ND: not determined

https://doi.org/10.1371/journal.pone.0188010.t001
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Immuno-blotting

Protein analysis has been described earlier [33]. Following protein separation through a gradi-

ent polyacrylamide gel (4–12%) and electro-blotting onto a PVDF membrane, proteins were

Fig 1. (A) BEC characterisation by IF-staining for: E-cadherin, cytokeratin-14, pan-cytokeratin and negative staining for fibronectin.

Images were obtained by EVOS microscope (ThermoFisher Scientific, Switzerland). (B) Treatment schemata for BEC treatment

with OM-85 and RV infection.

https://doi.org/10.1371/journal.pone.0188010.g001
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identified and their expression rate determined by Western-blotting. The following proteins

were detected: β-defensin, C1qR, ICAM1, CREB, and phos-CREB, Erk1/2, phos-Erk1/2, ICOS,

ICOSL, JNK, phos-JNK, MHC2, MYD88, p38, and phos-p38. Details of dilution and produc-

ers are provided in Table 2.

Membranes were blocked for 1 hour (room temperature) in PBS containing 0.01% Tween-

20 and 2% bovine serum albumin. The primary antibodies were added at concentrations indi-

cated in Table 2 and incubated overnight at 4˚C. Following 3 washes with blocking buffer,

membranes were incubated with secondary species specific antibodies labelled with horse rad-

ish peroxidase for 1 hour. Unbound antibody was washed off by 3 washes with blocking buffer

and protein bands were visualised by exposure to X-ray films.

Cell surface specific ELISAs

These analyses were based on the in-house developed ELISA systems for deposition of extra-

cellular matrix molecules [34]. In brief, BEC were seeded into 96-well plate and grown to con-

fluent. Cells were either infected with RV, or OM-85 or signal transduction inhibitors for

Erk1/2 MAPK, p38 MAPK or cAMP, alone or in combination as described earlier [34]. BEC

were fixed after various incubation periods with 2% formalin in PBS (4˚C, 2x5 min). Unspe-

cific binding of antibodies was blocked by 30 min incubation of the fixed cells in 2% bovine

serum albumin, in PBS + 0.01% Tween-20. The first antibody specific against one of the cell

membrane proteins (Table 2) was added to the blocking buffer and incubated over night at

4˚C. Unbound antibody was washed off 3 times with blocking buffer before the secondary

antibody was added and incubated for 1 hour at room temperature. Antibody binding was

quantitated after 3 washes with blocking buffer by the horse radish peroxidase substrates

(TBM). Optical density was determined by ELISA plate reader (Biorad) and changes of anti-

body binding were calculated as percentage of unstimulated cells.

Table 2. Antibodies used for protein analysis.

Antigen species Immuno-blot dilution Cell surface ELISA dilution producer Cat-#

C1qR 1:1,00 1:500 Abcam ab134079

ICAM1 1:500 1:500 Abcam ab2213

β-defensin 1:1,000 1:500 Abcam ab14425

MYD88 1:500 1:50 Abcam ab2068

ICOS 1:1,000 1:100 Abcam ab133680

ICOSL 1:1,000 1:100 Abcam ab138354

MHC2 1:500 1:50 Santa Cruz Biotechnology sc-73601

Erk1/2 Rabbit, pAb 1:2,000 DA Cell Signalling Technology 9102

phosphorylated Erk1/2 Rabbit, mAb 1:1,000 DA Cell Signalling Technology 4376

JNK Rabbit, pAb 1:2,000 DA Cell Signalling Technology 9252

phosphorylated JNK Mouse, mAb 1:1,000 DA Cell Signalling Technology 9255

P38 Rabbit, pAb 1:1,000 DA Cell Signalling Technology 9212

phosphorylated p38 Mouse, pAb 1:500 DA Cell Signalling Technology 9216

CREB Rabbit, mAb 1:1,000 DA Cell Signalling Technology 4820

phosphorylated CREB Rabbit, mAb 1:1,000 DA Cell Signalling Technology 9198

Antibodies used for protein analysis. DA: does not apply, mAb: monoclonal antibody, pAb: poly clonal antibody; Abcam, Cambridge, U.K.; Cell Signalling

Technology; Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A.

https://doi.org/10.1371/journal.pone.0188010.t002
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IFN-γ ELISA

Secreted IFN-γ was detected by commercial available ELISA kit (R&D Systems, UK) in the cell

culture medium of primary human BEC before and after infection with RV at 24, 48 and 72

hours. The ELISA was performed according to instructions from the supplier.

BEC

BEC isolation and characterisation has been published earlier [34]. Small pieces of bronchial

tissues were placed into cell culture vessels, which were pre-wetted with BEC specific medium

Cnt-PR-A (CellnTech, Bern, Switzerland). The medium was replaced every second day and

cells were passaged by mechanical shaking of dividing cells. Cells were characterised by posi-

tive staining of E-Cadherin and Pan-Keratin, and negative staining for fibronectin (supple-

ment Fig 1B).

Statistics

The Null hypothesis was that OM-85 does not affect RV infection, or the expression cell mem-

brane proteins, or intracellular signalling proteins. Student’s t-test (paired, two-sided) and

Wilcoxon test were used for statistical analysis. P-values < 0.05 were considered significant.

Results

OM-85 reduced RV infection and RV-induced cell death

BEC were pre-treated with OM-85 at various concentrations (0.1, 1, 10 μg/ml) and infected

with 1 MOI of RV. The number of RV infected cells was detected by immuno-fluorescence

(IF) as depicted in Fig 2A. In addition, we show the effect of OM-85 and RV infection on the

morphology of primary BEC by light microscopy (Fig 2A). The preventive effect of OM-85

pre-incubation on RV infection of BEC became significant when the cells had been pre-incu-

bated with OM-85 for 48 hrs (Fig 2B–2D). The beneficial effect of OM-85 was detectable in all

three cell donor groups with not significant difference comparing the groups to each other.

The results used to create Fig 2 are available in online-data pdf.

RV infection of primary BEC decreased cell survival in a time dependent manner, with no

significant difference comparing the effect in BEC obtained from controls (Fig 3A), asthma

(Fig 3B) or COPD patients (Fig 3C). The survival of BEC after RV infection decreased over

three days. After one day, approximately 60% of BEC survived which decreased to 50% after 2

days and further declined to 40% after 3 days, with no significant difference comparing the

three donor groups to each other. When the cells have been pre-treated with OM-85 for 24

hours prior to RV infection, the survival in all three groups significantly increased in a dose

dependent manner (Fig 3). The results used to create Fig 3 are available in online-data pdf.

OM-85 activates Erk1/2 MAPK and cAMP signalling in BEC

In order to understand which signalling pathways are activated by OM-85 in primary BEC, we

exposed confluent cell layers for various time periods (0, 15, 30, 60 minutes) to OM-85 (10 μg/

ml). We assessed the effect of OM-85 on all three MAPK pathways (Erk1/2, p38, JNK) but

only Erk1/2 MAPK was slowly, but significantly activated by OM-85 at 30 and 60 minutes (Fig

4A) as previously demonstrated on human primary dendritic cells [22].

OM-85 activated the formation of intracellular cAMP significantly within 15 minutes, and

sub-sequent decline, we observed no difference comparing the three diagnostic groups (Fig

4B). cAMP activation was followed by an increase of CREBP phosphorylation as determined
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by immune-blotting (Fig 4C). This finding is in line with the earlier described high basal activ-

ity of Erk1/2 MAPK in asthmatic airway smooth muscle cells [35].

In order to exclude any effect of signal transduction inhibitors on the susceptibility of BEC

to RV infection, cells were pre-treated with either DDA, SB203580, PD98059 or OM-85 for 30

minutes prior to infection and the cells were grown for additional 24 hours. RV infection was

not affected by inhibition of Erk1/2, p38 MAPK or cAMP, while OM-85 had reducing effect

(Fig 4D). The results used to create Fig 4 are available in online-data pdf.

OM-85 increases antigen presenting cell surface proteins

The cell surface expression of C1qR by BEC was not affected by RV expression but was signifi-

cantly increased in all three groups by OM-85 (10 μg/ml) and not affected by RV infection

(Fig 5A). The up-regulation of C1qR was mediated by cAMP since it was prevented when BEC

Fig 2. (A) Representative IF images for RV infection (green) in primary BEC; nuclei were stained for cell counting by EVOS live cell staining kit

(Thermofisher Scientific). Light microscopic images are depicted for the effect of OM-85 and RV infection on BEC phenotype. (B-D) Quantitation of RV

infection of BEC by IF. BEC were pretreated for 24 or 48 hrs with OM-85 (10 μg/ml). Bars represent mean±SEM of RV positive BEC derived from: non-

asthma, non-COPD controls (n = 8), (C) COPD (n = 10) and (D) asthma (n = 9). Statistics were performed with paired Student’s t-test, two-sided.

https://doi.org/10.1371/journal.pone.0188010.g002
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had been pre-treated with DDA and similarly by the Erk1/2 MAPK inhibitor PD98059 (Fig

5B). In all analysis, we did not observed a disease specific effect on OM-85-induced C1qR

expression. OM-85 treatment significantly increased the expression of β-defensin, which

again, was not affected by RV infection (Fig 5C). As shown in Fig 5D, inhibition of Erk1/2

MAPK significantly reduced β-defensin expression in BEC while inhibition of Erk1/2 MAPK

did not achieve significance. The results used to create Fig 5 are available in online-data pdf.

In contrast the two previous surface receptors, ICAM1 expression was significantly

increased by RV infection, while OM-85 alone had no effect (Fig 6A). However, when the cells

were pre-incubated with OM-85 for 48 hours, RV infection dependent expression of ICAM1

was significantly reduced in BEC of asthma and COPD patients, while the effect was not signif-

icant in control cells (Fig 6A). Assessing signal transduction, we observed that the inhibition of

Erk1/2 MAPK reduced ICAM1 stimulation by RV in BEC of asthma patients and controls but

not COPD patient (Fig 6B). In addition, inhibition of cAMP signalling by DDA significantly

reduced RV induced ICAM1 expression in asthma and control cells (Fig 6B). When additional

signal transduction was inhibited in BEC pre-treated with OM-85 and infected with RV, Erk1/

2 MAPK and cAMP prevented the inhibitory effect of OM-85 in all three groups thus confirm-

ing that OM-85 signals through these three signalling routes (Fig 6B).

Fig 3. Dose-dependent preventive effect of OM-85 pre-incubation (2 days) on RV-induced cell death as determined by direct cell

counting with Trypan blue exclusion staining. Box-plots represent median and 95 % confidence intervals for BEC derived from: (A) non-

asthma, non-COPD controls (n = 8), (B) asthma (n = 9) and (C) COPD (n = 10). Statistics were performed with paired Student’s t-test, two-

sided.

https://doi.org/10.1371/journal.pone.0188010.g003
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The secretion of IFN-γ by primary human BEC was detected before and after infection and

showed a similar increase after 48 hours in all three patient groups (Fig 6C). Pre-incubation

with OM-85 further induced the secretion of IFN-γ significantly in cells of all three patient

groups (Fig 6C).

OM-85 had no significant effect on the expression of MyD88 by BEC over 48 hours, only a

trend of increase expression was observed (Fig 6D). None of the other investigated RV docking

proteins (ICOS, ICOSL) were modified by incubation of BEC with OM-85 over 3 days (data

not shown). The results used to create Fig 6 are available in online-data pdf.

Discussions

Considering the cell receptor-mediated maturation and activation induced by OM-85 on mye-

loid cells (from rodent and human origins) and its anti-viral activity, both demonstrated in

Fig 4. OM-85 induced various cell signalling. (A) Representative Western-blot of the ratio of total and phosphorylated Erk1/2 MAPK and bar chart

analysis based on three additional Western-blots in BEC. (B) OM-85 induced activation of intracellular cAMP determined by ELISA in 5 BEC lines. Bars

represent mean ± S.E.M. and asterix indicate significant difference compared to non-stimulated BEC. (C) Representative Western-blot of the ratio of total

and phosphorylated CREB. Bar chart analysis based on three additional Western-blots in BEC. (D) RV infection was determined by IF and was not

affected by inhibition of Erk1/2, p38 MAPK or cAMP (n = 5).

https://doi.org/10.1371/journal.pone.0188010.g004
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vitro and in vivo using various immune myeloid lineage and lung tissue, we have postulated

that OM-85 could directly interact with the immune epithelial cell layer from the lung. In the

present study, we provide evidence that OM-85 improves cells survival of primary human

BEC, which were infected with RV. This beneficial effect was paralleled by the increase of C1q-

R and b-defensin, two cell surface proteins known to bind RV and helped killing the virus

intracellularly. Furthermore, OM-85 reduces the expression of ICAM1, which has been

described to help RV to infect the host’s cells. The regulation of cell surface proteins by OM-85

involves two signalling pathways: Erk1/2 MAPK and cAMP. Together, these results suggest

that OM-85 improves hosts defence of human BEC.

In children with re-occurring respiratory tract infections, oral application of OM-85 over

cycles of 10 days of 3 consecutive months significantly reduced infections with influenza virus.

However, this effect could not be explained through a change in immune globulin levels [16].

A protective effect against respiratory tract infections was also reported in 104 HIV patients

who used OM-85 as supplementary therapy [36]. Our finding suggests that OM-85 activates a

different line of host’s defence. In animal models, there is sufficient data proving that OM-85

Fig 5. Differential regulation of cell surface RV binding proteins by OM-85 and RV infection. (A) Expression of C1q-R after 48 hrs

incubation with OM-85 (10 μg/ml). Box-plots represent median and 95% confidence interval for BEC derived from: non-asthma, non-COPD

controls (n = 6), asthma (n = 10) and for COPD (n = 7). (B) shows the effect of cell signal inhibitors (DDA for cAMP; SB203580 for p38 MAPK

and PD98059 for Erk1/2 MAPK) on C1q-R expression induced by OM-85. The analysis was performed in 5 BEC lines across all three

patient groups. (C) Expression of β-defensin after 48 hrs incubation with OM-85 (10 μg/ml). Box-plots represent median and 95% confidence

interval determined in BEC of non-asthma, non-COPD controls (n = 6), asthma (n = 10), and COPD (n = 7). (D) shows the effect of cell signal

inhibitors (DDA for cAMP; SB203580 for p38 MAPK and PD98059 for Erk1/2 MAPK) on β-defensin expression induced by OM-85. The

analysis was performed in 5 BEC lines across all three patient groups. All statistics were performed with paired Student’s t-test, two-sided.

https://doi.org/10.1371/journal.pone.0188010.g005
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improves recognition, antigen presentation and intracellular killing of viruses in [7, 8, 13, 22].

In mice, OM-85 increased the expression of MHC2, CD86 and CD40 expressions while it

decreased the expression of ICOSL; together, these effects seem to increase the production of

anti-virus anti-bodies by B-cells [11]. In a murine model for RSV and influenza virus infection,

OM-85 has been demonstrated to reduce the infection rate through Toll-like receptors (TLR)

signalling, and TLR adaptors Trif and MyD88 [37, 38].

As it had been reported for other viruses, OM-85 significantly improved the survival of

human BEC after RV infection. This protective effect of OM-85 was dose and time dependent.

The observation that the lytic activity of cell supernatant was reduced indicates that OM-85

either reduced the infection rate of RV and/or improved the intracellular killing of RV. In

order to understand the mechanism by which OM-85 reduces RV infection of BEC, we

Fig 6. RV induced expression of ICAM-1 on BEC is prevented by OM-85 through cAMP and Erk1/2 MAPK. (A) Increased expression of ICAM-1 by

RV and its inhibition by OM-85 pre-incubation (24 hrs). Box-plots represent median and 95% confidence interval of BEC derived from: non-asthma, non-

COPD controls (n = 6), asthma (n = 10), and COPD (n = 7). (B) Show the effect of cell signal inhibitors (DDA for cAMP; SB203580 for p38 MAPK and

PD98059 for Erk1/2 MAPK) on ICAM-1 expression induced by RV in the presence and absence of OM-85 (10μg/ml). (C) RV and OM-85 induced the

secretion of IFN-γ by primary human BEC (n = 5 in each group). (D) OM-85 has a non-significant increasing effect on MyD88 expression by BEC (n = 5 in

each group).

https://doi.org/10.1371/journal.pone.0188010.g006
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determined the compound effect on RV binding proteins and the underlying intracellular sig-

nalling mechanism.

OM-85 has been shown to modify the expression of several membrane proteins in immune

cells as well as in epithelial cells and it was suggested that this process involves MAPKs through

the TLR, most probably through TLR4 and TLR2-dependend signalling [12, 37]. It was indi-

cated that TLR-membrane proteins respond to OM-85 only when a second adaptor protein

MYD88 is present. In line with these earlier results, OM-85 did not up-regulate the expression

of MYD88 in BEC. Since there is no specific target of MYD88 the possible modifying effect of

OM-85 on the function of MYD88 was not further investigated. Further work to address the

involvement of this key adaptor protein in OM-85 signalling could be approached by siRNA

or knock-out studies.

The activation of Erk1/2 MAPK by OM-85 stimulated the action of transcription factor

NFκB, which increased the secretion of various cytokines in macrophages and it was discussed

that the consequence is an activation of the immune response [13]. In dendritic cells of

patients with COPD, OM-85 increased the secretion of IL-1α, IL-1β, IL-6 and TNF-α, which

was regarded as a strengthening of the immune response during viral infection [20, 22]. Our

results on BEC show that OM-85 activates Erk1/2 MAPK but had no effect on p38 or JNK

MAPKs, similar results were reported in healthy cells earlier in other cell types [12, 18]. This

finding indicates that the activation of Erk1/2 MAPK is a response to OM-85, which is inde-

pendent of the target cell type.

In BEC, OM-85 did not up-regulate the expression of ICAM1, which is in contrast to previ-

ous studies showing stimulatory effect of the substance on ICAM1 in monocytes, granulocytes

and dendritic cells [26, 39]. Opposing to these earlier results, ICAM1 expression induced by

RV infection in BEC was significantly reduced by OM-85. Thereby, OM-85 may have reduced

the docking of RV to BEC in a secondary infection cycle but not for the primary infection.

However, overall OM-85 might reduce the infection rate in vivo by modulation of ICAM1

expression [40, 41]. These results stress the importance of addressing receptor and cell signal-

ling in each cell type, in particular when the drug is used to target BEC. Accordingly, these

results provide for the first time a direct effect on these cells.

BEC expressed β-defensin which helps to clear RV infection and involves the action of IL-

17a [41]. In another study, it was indicated that RV infection increased the expression of β-

defensin through the activation of TLR3. However, this study determined only the effects on

mRNA but not on the protein [42]. In primary BEC, RV had no significant stimulatory effect

on β-defensin within the observation period of 3 days, while OM-85 significantly increased its

expression through the activation of Erk1/2 MAPK. This effect may further strengthen the

protective ability of OM-85 against RV infection of BEC.

In BEC, OM-85 up-regulated the expression of C1qR, which is also known as either calreti-

culin, surfactant protein receptor, mannan binding ligand receptor, CD93 or Aa4. C1qR is

mainly expressed intracellular but also signals apoptosis when expressed on the cell surface

[43]. Here it can bind heat shock proteins, integrins as well as viral and bacterial proteins [44].

It has been shown that C1qR response to the presence of viral capsid components as well as to

bacterial wall proteins. The activation of C1qR increases the number of B-cells and their secre-

tion of IL-10 [45], this may indicate an anti-inflammatory effect of OM-85. In dendritic cells,

the activation of C1qR enhanced the secretion of IFN-γ and the expression of CD40, which

both reduced inflammation and combat viral infections [46]. RV infection stimulated the

secretion of IFN-γ by primary human BEC with no disease specific effect, suggesting a general

anti-viral response. Previous studies demonstrated the capacity of OM-85 to elicit anti-viral

responses by stimulating the production of type I IFN [22, 38]. In the present study, RV-

induced secretion of IFN-γ was significantly enhanced when the cells were pre-incubated with
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OM-85, while the substance alone only had a mild effect. It had been described earlier that

OM-85 increases the secretion of IFN-γ by immune cells and thereby improves the combat

against viral infections [38]. However, the mechanism by which OM-85 stimulates IFN-γ
secretion, especially in combination with viral infection remains to be further investigated.

In conclusion, our data demonstrated that OM-85 stimulated anti-viral activities in BEC

obtained from all tested probands, including non-diseased, asthma or COPD. The anti-viral

activities of OM-85 in BEC were mediated by the selective modulation of various receptors

and effector proteins involved in RV infection. Consequently, OM-85 increased the survival of

BEC and thereby may benefit the patient’s defense system against RV infection.
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