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Innovations in sequencing technologies have allowed biologists to make incredible
advances in understanding biological systems. As experience grows, researchers
increasingly recognize that analyzing the wealth of data provided by these new
sequencing platforms requires careful attention to detail for robust results. Thus far, much
of the scientific Communit’s focus for use in bacterial genomics has been on evaluating
genome assembly algorithms and rigorously validating assembly program performance.
Missing, however, is a focus on critical evaluation of variant callers for these genomes.
Variant calling is essential for comparative genomics as it yields insights into nucleotide-
level organismal differences. Variant calling is a multistep process with a host of potential
error sources that may lead to incorrect variant calls. Identifying and resolving these
incorrect calls is critical for bacterial genomics to advance. The goal of this review is
to provide guidance on validating algorithms and pipelines used in variant calling for
bacterial genomics. First, we will provide an overview of the variant calling procedures
and the potential sources of error associated with the methods. We will then identify
appropriate datasets for use in evaluating algorithms and describe statistical methods
for evaluating algorithm performance. As variant calling moves from basic research to
the applied setting, standardized methods for performance evaluation and reporting are
required; it is our hope that this review provides the groundwork for the development of
these standards.

Keywords: next-generation sequencing, variant calling, single nucleotide variants, indel, performance metrics

Introduction

Next-generation sequencing (NGS) has transformed microbiology, making genomic analyses
possible for a broad range of species. However, converting millions of sequencing reads per sample
into meaningful data is not trivial, and genome assembly, sequence alignment, and variant calling
can all have substantial effects on results. Considerable effort has been spent addressing these issues
in human genomes, with a primary goal of finding genomic variations linked to human disease.
Variant calling from microbial genomes presents additional challenges, such as reference genome
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selection, presence of rare variants within a culture, and use
of de novo genome assemblies for variant calling. Due to the
diversity ofmethods used to call variants frommicrobial genomes,
optimization of bioinformatics methods for specific organisms
and/or experiments is frequently required.

Variant calling can include single nucleotide polymorphisms
(SNPs), insertions and deletions (indels), and/or structural
variants. Here, we focus on SNPs and indels. Both SNP and indel
calling methods identify genome positions with polymorphisms
relative to a reference (for review, see Nielsen et al., 2011). SNP
and indel calling is achieved by either mapping reads directly to
the reference genome or generating a de novo genome assembly
from the reads and subsequently comparing the assembly to the
reference genome.

For SNP discovery, using raw reads can provide greater
resolution than using a genome assembly. With raw reads, both
the depth of coverage as well as the proportion of mixed alleles
can be quantified, in contrast to creating an assembly, in which
all coverage at a given locus is collapsed into a single base call.
When the raw reads are available they can be mapped back
to the assembly to obtain the coverage and allelic proportions.
However, lack of a closed reference genome may cause biases in
allelic proportions due tomapping errors. Updates to the sequence
alignment format (SAM/BAM) to accommodate storing de novo
sequence alignments can resolve this issue (Cock et al., 2015). For
reference-based SNP discovery, reads can fail to align to regions
of high divergence (Bertels et al., 2014) if the short read aligner is
too stringent. This can be resolvedwith some assembly-based SNP
discoverymethods, as regions can be aligned frommore divergent
sequences, allowing for the characterization of SNPs even from
different bacterial species within the same genus (Sahl et al., 2013).

Single nucleotide polymorphism identification is an important
method for bacterial comparative genomics. SNP-based analyses
have been used for outbreak attribution (Hendriksen et al., 2011),
phylogeography (Keim and Wagner, 2009), and genome-wide
association studies (GWAS; Nelson et al., 2014); SNPs have also
been used extensively in human GWAS applications (Cantor
et al., 2010). Multiple types of error, which must be explored
and accounted for to understand the evolution and relatedness
of bacterial genomes, affect SNP-based bacterial comparative
genomics.

Both similarities and differences exist between human and
microbial variant calling. The human reference genome is ∼1000
times larger than an individual microbial genome, and humans
are diploid whereas microbial genomes are generally haploid.
Therefore, the assumptions and statistics used in human variant
callers often are not optimal for microbial genomes. The smaller
number of mutations in a bacterial genome means that some
machine learning methods used to filter potential false positives
(FP) in humans will not work well for microbial genomes,
and different filtering thresholds are often needed depending
on the microbial sequencing application. In addition, some
microbial genomes have high mutation rates, so that they may
be heterogeneous, with only a small fraction of cells containing
a mutation. In this case, they are more similar to somatic variant
calling in human cancer cells. All of these differences mean that
validating variant callers for microbial sequencing should be done

FIGURE 1 | SNP calling workflow diagram. Horizontal boxes represent
steps in the workflow and arrows to the left indicate steps in the workflow
challenged with reference genomic DNA, and sequence data.

even if the same variant caller has been validated for human
sequencing.

Selecting the optimal variant calling method can depend on
the application, organism, and sequencing data (Koboldt et al.,
2009). Currently, there are no widely accepted guidelines for
evaluating SNP and indel calling methods. The lack of guidelines
has resulted in a diverse, inconsistent, and difficult-to-interpret
body of literature on SNP and indel calling method performance.
To help address this issue, we set out to provide general
guidelines for evaluating SNP and indel calling methods. We
briefly discuss SNP and indel calling procedures from NGS data
and describe the associated errors. In order to develop guidelines
for SNP and indel calling method evaluation, we discuss and
identify appropriate data for use in evaluation, present statistical
methods for evaluation, and methods for comparing variant
call sets.

SNP and Indel Calling Procedure

In order to draw meaningful conclusions from evaluation of
variant calling methods, the process used to identify the variants
must first be understood. This measurement process includes
sample processing, sequencing, mapping or de novo assembly,
followed by variant calling (Altmann et al., 2012, Figure 1).
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Sample Processing and Sequencing
DNA is extracted from a bacterial culture, purified, and during
library preparation, adapters and unique barcodes (indices) are
added prior to sequencing.

The resulting library or pooled libraries are sequenced (for
reviews ofNGSplatforms seeMetzker, 2010; Pabinger et al., 2013).

Base calls are automatically generated by the sequencing
platform. For each base call, algorithms assign a base quality score
(BQS), which is intended to reflect the probability that the base
was called correctly. BQS values are provided on the phred scale
(1–60), as the −10 logP, where P is the probability of an incorrect
base call (Ewing and Green, 1998; Pavlopoulos et al., 2013). For
example, a BQS of 20 indicates a 1 in 100 chance the base was
called incorrectly. BQS commonly inform variant calling software
when assigning variant quality scores (also typically expressed on
a phred scale).

Sequence Processing and SNP Calling
After the raw reads are generated by the sequencing platform,
reads can be mapped to a reference genome, de novo assembled,
or mapped and assembled in one simultaneous step (Zhong et al.,
2015). SNPs and indels relative to a reference are then identified
by comparison to a reference genome. Commonly used read
mapping and de novo assembly based approaches are discussed
in this review.

SNP Calling Following Read Alignment to a Reference
Mapping reads to a reference
To map reads to a reference genome, the location of each read,
relative to the reference genome, is predicted. To assess the
performance of short read mapping tools, studies have evaluated
different algorithms’ performance of short read alignment tools
(e.g., Fonseca et al., 2012; Schbath et al., 2012; Hatem et al.,
2013; Nagarajan and Pop, 2013). Reads are initially mapped and
then a series of steps including duplicate read removal, BQS
recalibration, and indel realignment are performed to refine the
read alignments prior to variant calling.

Most mapping programs assign phred scale mapping quality
scores to indicate the confidence that the reads are accurately
placed in relation to the reference (Gallagher and Desjardins,
2008). Mapping quality scores generated by different mapping
algorithms are generally not comparable to each other, but in
general, lowermapping quality scores are assigned to shorter reads
as well as reads mapping to multiple regions genome (e.g., repeat
regions).

The resulting mapped file, usually the binary version (BAM)
of a Sequence Alignment/Map (SAM) file, then undergoes addi-
tional processing to reduce variant calling errors. These include
duplicate read removal, BQS recalibration, and realignment
around indels. Duplicate reads originating from the DNA
sequence can arise as artifacts of the PCR step in the sequencing
library preparation process, or when the same fragment is read
twice (i.e., optical duplicate). As such, duplicates can lead to an
artificial increase in bases supporting variant calls, leading to an
erroneous increase in variant call confidence, and should therefore
be removed either before or after themapping step (DePristo et al.,

2011). For newer low cycle and “PCR-free” library preparation
methods, read duplication is less likely to occur.

Recalibrating BQS can help improve quality score accuracy and
thus, the accuracy of called variants (DePristo et al., 2011; Zook
et al., 2012). To recalibrate, the sequencing error rate for positions
in the reference genome that are known with high confidence are
compared to the sequencing platform assigned BQS. The BQS
for the entire data set are recalibrated based on differences in the
assigned BQS and the observed base call error rates for the known
positions.

Indels and other structural variants can lead to incorrect
sequence read mapping, causing false negative (FN) and
positive SNP and indel calls (Alkan et al., 2011). Therefore,
algorithms have been developed to increase the accuracy of
read mapping in these regions through read realignment (e.g.,
GATK IndelRealigner) or local de novo assembly (e.g., GATK
HaplotypeCaller), in turn reducing the number of incorrect
variant calls in these portions of the genome (Homer and Nelson,
2010; DePristo et al., 2011).

Calling SNPs using mapped read data
Finally, variant calling algorithms compare mapped reads to the
reference genome and identify potential variants. SNP and indel
calling algorithms vary in their approach to identifying candidate
variants (Altmann et al., 2012). Basic algorithms identify variants
based the on the number of high confidence base calls that
disagree with the reference bases for the genome position of
interest. More sophisticated algorithms commonly use Bayesian,
likelihood, or machine learning statistical methods that factor
parameters, such as base and mapping quality scores, to identify
candidate variants. See Pabinger et al. (2013) for a review of
different variant calling algorithms. The presumptive SNPs and
indels identified by the variant caller can be filtered using a
number of parameters associated with systematic errors discussed
in the next section, thereby reducing the number of FP variant
calls, but risking an increase in FN calls.

SNP Calling Using de novo Assemblies
De novo genome assembly
Many applications in comparative genomics, such as pan-genome
comparisons, operon structure determination, or genome synteny
in a population, require de novo genome assembly. For short
read de novo assembly, de Bruijn graph methods are typically
used (Chaisson and Pevzner, 2008), although overlap layout
consensus can also be used effectively (Loman et al., 2012). In both
methods, using paired-end and/or mate pairs can increase the
contiguity of an assembly by facilitating the generation of genomic
scaffolds, which link contigs based on insert length. For graph-
based methods, the choice of k-mer size (base string length) can
affect the contiguity and/or completeness of an assembly (Chikhi
and Medvedev, 2014). For some de novo assembly methods,
such as Velvet (Zerbino and Birney, 2008), a single k-mer
value is frequently chosen. For newer methods, such as SPAdes
(Bankevich et al., 2012) or IDBA (Peng et al., 2010), assemblies
from a range of k-mer values are merged, limiting the amount
of sequence lost from the assembly. SPAdes also incorporates the
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FIGURE 2 | Cause-effect diagram indicating the sources of error associated with different steps in the variant calling measurement process. Note that
the SNP calling is performed using one of two methods, either read mapping or de novo assembly.

BayesHammer short read correction tool (Nikolenko et al., 2013),
which in combination withmapping reads back to the assembly to
fix errors, can reduce the error profile in downstream applications.
In addition, quality filtering to remove low quality regions from
raw data has been demonstrated to improve the overall quality of
genome assemblies (Del Fabbro et al., 2013).

Multiple bioinformatics pipelines have been published for de
novo assembly, yet significant performance variation has been
observed (Magoc et al., 2013). One of the most important
discordances among assemblers is the amount of the assembly
retained, based on benchmark comparisons using completed
genomes. As sequencing platforms that generate longer reads
become more widespread, completed bacterial genomes will
continue to be automatically generated (Koren and Phillippy,
2015), removing the limitations when using incomplete draft
assemblies. Until that time, short read assemblers should be
chosen based on their completeness of draft assembly to reduce
errors in SNP calling based on the presence or absence of
homologous genomic regions.

Calling SNPs using a genome assembly
SNPs can be identified from genome assemblies, however,
since coverage is 1x at each position in an assembly, spurious
SNPs cannot be filtered due to insufficient coverage, nor can
contaminating genomes be identified and subsequently removed.
For individual genes, SNPs are identified by extracting alignments
using BLASTN (Altschul et al., 1990) followed by pairwise

alignment of the SNPs. For whole genome assemblies, SNPs are
typically identified from whole genome alignments made with
software such as MUMmer (Kurtz et al., 2004), Mugsy (Angiuoli
and Salzberg, 2011), andMauve (Darling et al., 2004). Software has
also been developed for the identification of SNPs from genome
assemblies for whole genome phylogenetics including kSNP
(Gardner and Hall, 2013) and parSNP (Treangen et al., 2014).
SNP identification using assemblies is useful when analyzing
individual genes, processing huge datasets, or if raw reads are
unavailable. However, when using assemblies for SNP discovery,
SNPs cannot be evaluated and verified with the underlying raw
read data.

Sources of Error and Mitigation Strategies

Understanding the types and sources of error associated with
a SNP and indel calling procedure will not only facilitate
evaluation of results but also enable the user to optimize method
performance. Several types of errors can impact the accuracy
of SNP and indel variant identification. These errors occur
during sample processing, the chemical and electronic processes
that occur during sequencing, as well as the bioinformatic
processing of sequence data: base calling, read mapping or de
novo assembly, and identification of SNP and indel variants
(Nielsen et al., 2011). The sources of error associated with
different steps in the measurement process are depicted in
Figure 2.
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The errors occurring during the above processes can be random
or systematic in nature. Random errors occur in an unpredictable
manner, but given a large enough sample size may not lead
to inaccurate results. Systematic errors occur in a predictable
manner and if not accounted for, may lead to inaccurate results.
Additionally, systematic errors, when unaccounted for, often
result in a bias or a predictable difference between the true value
and a measurement result.

The relative impact of the error can vary based on the sample
preparation method, sequencing platform, or bioinformatic
analyses used. The following section discusses the types of errors
that may occur, along with possible mitigation strategies to
minimize errors associated with FP or negative variant calls.

Errors Associated With Sample Processing
As most NGS platforms require amplification of the genetic
material, random and systematic sequence errors associated
with sequence library preparation are primarily due to DNA
polymerase infidelity during replication. These replication errors
result in improper bases being inserted, deleted, or substituted
at any given position (Ross et al., 2013). Substitution errors are
random and subject to the fidelity of the DNA polymerases (1
error in 103–6 bases, Showalter and Tsai, 2002), but can occur at
a rate of up to 1,000–10,000 times lower than typical sequencing
error (1 in 102–3 bases McElroy et al., 2014). With sequencing
depth commonly greater than 20X, random polymerase errors
have minimal impact on variant calls (Cline et al., 1996; Metzker,
2010; Zook et al., 2012) and are usually only of concern when
detecting minor component variants. Most current sequencing
library preparation systems involve the use of high fidelity
polymerases, further minimizing polymerase errors. However,
homopolymers (sequence of identical bases, e.g., AAAA or
TTTT) and tandem repeats (adjacent repeated patterns of two
or more nucleotides) are known to experience higher replication
indel error rates. Indel replication error rates, depending upon
size and type of repeat array, can approach sequencing error
rates (Vogler et al., 2006). Both substitution and indel polymerase
errors accumulate linearly with increasing cycle number during
amplification and then exponentially if erroneous amplification
products become the primary template for subsequent cycles
(PCR duplicates), at which point theymay significantly contribute
to variant call error (Kozarewa et al., 2009). Hence, minimizing
PCR amplification, or foregoing it altogether, will minimize
polymerase-introduced errors.

The use of paired-end library preparation methodology
can also reduce variant calling error. Standard paired-end
methodology (200–500 bp inserts between sequence reads) can
help reduce errors during read mapping. Overlapping paired-end
methodology (partial/complete overlap of forward and reverse
reads from the same molecule) can provide a filter for removing
random substitution error (i.e., only variants on both strands are
called), thereby improving the ability to detect rare substitution
variants by orders of magnitude (Schmitt et al., 2012; Chen-
Harris et al., 2013; Colman et al., 2015). An even more recent
advance is the “circle sequencing” approach, in which templates
are circularized, copied via rolling circle amplification, and
sequenced. This approach has led to exceptionally low error rates

while maintaining relatively high sequencing yields (Lou et al.,
2013).

Errors Associated With Sequencing
Sequence generation errors are dependent on the sequencing
platform and can be both random and systematic in nature,
with the latter leading to local “hot spots” for high error rates
(Ross et al., 2013). These have been found to be as high as
6% error for Illumina and 50% for Roche-454 (McElroy et al.,
2014). The Illumina platform chemistry utilizes reversible dideoxy
terminator nucleotides labeled with fluorescent dyes that have
some degree of overlap in their excitation and emission spectra.
While the overlapping excitation spectra allow for the use of
only two lasers for all four nucleotides, the overlapping emission
spectra, particularly for the G and T channels, and may result
in base calling errors (Meacham et al., 2011). In fact, a number
of systematic sequencing errors have been described for the
various sequencing platforms (Ross et al., 2013). Some systematic
sequencing errors have distinct characteristics, such as strand bias,
which can be used to distinguish them from likely true variant
calls. Other systematic errors are not well characterized, thus are
more problematic, even with higher sequencing coverage (Shen
et al., 2010), and warrant further investigation.

Errors Associated With Sequence Processing
After the sequence data are generated, and as alluded to earlier,
additional errors may occur during the mapping of the sequence
reads to a reference genome or de novo assembly, and/or during
variant calling.

SNP Calling Errors When Mapping Reads to a
Reference
Read mapping errors
The two most common sources of true read mapping errors are
genomic duplication and structural variation (Alkan et al., 2011).
If multiple regions contain only slightly divergent sequences, then
reads can potentially map incorrectly, leading to FP variant calls
at those positions. Reads that map to “duplicated” regions in
the reference genome are usually given a low mapping quality
score by the algorithm, which are typically filtered. As previously
mentioned, the use of paired-end libraries can reduce duplicate
mapping errors if one member of the read pair maps to a unique
location, thereby acting as an anchor for the proper mapping of
the paired read to the correct duplicated region. Filtering out
ambiguously mapped reads can mitigate FP variant calls due to
mapping errors, butmay also remove correctlymapped reads with
true variants, potentially resulting in FN variant calls.

Alignment errors can also occur in regions containing small
indels or structural variation if reads are mapped to the correct
location but misaligned or allowed to extend into the structural
variant, resulting in FP or FN variant calls (Subramanian et al.,
2013). Optimizing the mapping criteria (e.g., k-mer size, number
of ambiguous bases per k-mer allowed, etc.) for the organism
under study can help mitigate the above errors. In general, highly
diverse regions of the genome are more prone to mapping and
alignment errors than lower diversity regions (Nielsen et al., 2011).
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SNP calling errors using mapped reads
In an attempt to minimize variant calling errors, many variant
calling algorithms calculate statistics such as strand bias, base
quality rank sum, and neighboring base quality. In addition,
Bayesian statisticsmay be used to incorporate themapping quality
scores assigned by the mapping algorithm (Li, 2011). These
statistics can be used to filter or remove FP variants, as discussed
below (McKenna et al., 2010; Meacham et al., 2011; Zook et al.,
2014). However, base call and mapping quality scores are not
always strongly associated withmany systematic sequencing, local
alignment, or mapping errors (Dohm et al., 2008).

To remove likely FP variants, many variant callers often use
additional filters such as a minimum depth of coverage threshold,
base call frequency (e.g., > 90% of calls at a position being
identical), masking of homopolymer and repetitive/duplicated
sequence regions, and trimming of poor quality bases from the
ends of reads. These filters can be hard filters with carefully chosen
cut-offs, or can be chosen by machine learning algorithms if
sufficient training data are available (e.g., human genomes). One
such algorithm is the GATK Variant Quality Score Recalibration
(DePristo et al., 2011). It is important to recognize that real
variants can be filtered out with FP, leading to higher FN rates.
To reduce FN, manual inspection of reads mapped to filtered
variants can be used to help identify true variants, thus reducing
the number of FN variant calls (Zook et al., 2014). Also of note,
strand bias can be defined in two ways: (1) a disproportionate
number of reads from only one strand mapping to the reference
or (2) a disproportionate number of reads with variant bases from
only one strand. The second definition is particularly useful for
identifying systematic sequencing errors caused by a particular
motif (e.g., the GGT to GGG error with Illumina chemistries,
which only occurs in reads in one sequencing direction;Meacham
et al., 2011; Ross et al., 2013).

Variant Calling Errors When Using de novo
Assemblies
De novo assembly errors
When using genome assemblies for variant detection, errors can
be introduced in multiple ways, including the intrinsic error rate
attributed to each sequencing platform. One approach to limit
the effects of the errors inherent with short read chemistries is to
use short read error correctors such as Musket (Bian et al., 2013)
and Hammer (Medvedev et al., 2011) prior to genome assembly.
Following assembly, these errors can be difficult or impossible
to identify (Baker, 2012). After the genome is assembled,
systematic errors can be corrected using bioinformatics tools
such as the PAGIT pipeline (Swain et al., 2012). The recently
published Pilon pipeline (Walker et al., 2014) can correct both
SNPs and short insertions/deletions, and can also identify and
fix incorrectly joined contigs. These best practices to reduce
assembly errors can reduce their effect on downstream SNP
applications.

Variant calling from de novo assemblies
Assembly errors are not the only form of error that can affect
SNP calling applications using genome assemblies. For example,

the whole genome alignment step can introduce errors. One of
the most commonly used whole genome alignment methods is
MUMmer (Delcher et al., 2002), which includes the nucmer
program for aligning nucleotide sequences (Kurtz et al., 2004).
By default, nucmer will align through large stretches of SNPs
potentially introduced by misjoined sequence, or through artifact
sequence introduced into the assembly (e.g., adapter sequence).
Although these artifacts can typically be identified and removed,
they can potentially introduce large numbers of erroneous
variants into an analysis.Modifying nucmer parameters to specific
datasets can help diminish the background noise introduced by
these artifacts.

Another source of error for variant discovery in genome
assemblies is the incorporation of homopolymer stretches, which
are common to specific sequencing platforms (Loman et al., 2012).
The incorporation of homopolymers into genome assemblies
could generate incorrect variant calls, especially in the case of
indels. Therefore, indels that are composed of homopolymers
need to be verified with direct read mapping.

Additional errorsmay occurwhen calling variants that could be
part of a mixture of multiple alleles. During assembly, a mixture
of bases at a given position is collapsed down into a single base
call. Although some of these errors can be corrected withmethods
discussed above, not all can be corrected and will serve as a source
of error in downstream applications.

General Guidelines for SNP Calling Method
Evaluation

Defining analytical requirements is critical to method evaluation.
The accuracy requirements of SNP and indel callingmethods vary
by application. For example, a small number of inaccurate SNP
and indel calls may not alter phylogenetic inferences made for
samples when a large number of SNPs and indels are available
for analysis (Harris et al., 2013). However, for smaller total
numbers of variants, individual SNPs and indels can have a greater
impact on the phylogenetic interpretation. For example, for the
investigation of the 2011 E. coli O104:H4 outbreak in Germany,
only 19 SNPs were used to differentiate the isolates (Grad et al.,
2012). Similarly, isolates from the Bacillus anthracis Ames strain
and Haitian Vibrio cholerae outbreak investigations were based on
relatively few SNPs (Hendriksen et al., 2011; Rasko et al., 2011),
thus, accurate SNP calls were essential. Currently, the impact of
individual variant calls on a phylogenetic analysis in relation to the
total number of variants used to generate the analysis is unknown,
but warrants further exploration.

A few general principles can help guide method evaluation.
First, benchmarking datasets or samples used for evaluation
must be critically evaluated with credible accuracy and be
representative of the range of sample types used in the
study or application (Ellison and Williams, 2012). Whenever
possible, evaluation should be performed with data from
well-characterized genomic DNA reference materials (RMs)
or plasmid standards, if available and representative. Second,
there must be one or more metrics for evaluating algorithm
performance.
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Selection of Material for use in Benchmarking
Selection of appropriate samples, datasets, and reference genome
is critical to robust characterization and evaluation of a variant
calling measurement process.

Benchmarking Samples
The use of well-characterized genomic RMs allows for evaluation
of the variant calling measurement process from sample
processing through variant calling (Figure 1). Furthermore,
to evaluate variant calling methods, the same data set must
be processed by each of the different analysis pipelines being
evaluated. The use of the same dataset is problematic because
many variant callers are specific to a single sequencing platform
or aligner, therefore evaluation of these variant callers using
datasets generated by other platforms or aligners would lead to
a biased representation of the caller’s performance. Therefore,
the only way to perform complete and adequate comparisons is
to use the same RM to generate data from different sequencing
platforms and chemistries that the variant calling method will
encounter.

A number of genomic RMs, along with respective reference
sequence data, are available or are being developed. The genome
sequences for currently available microbial genomic DNA RMs
have not yet been rigorously characterized, to the authors’
knowledge. The National Institute of Standards and Technology
(NIST) is currently developing whole genome microbial and
human DNA NIST RMs (Zook et al., 20141). These microbial
RMswill provide valuable resources for challenging variant calling
algorithms using well-characterized data. The microbial whole
genomeRMs are candidateNISTRMs 8375, 8376, 8377, and 8378.
TheRMstrainswere selected based on relevance to food safety and
clinical settings and to represent a range in GC content. The four
microbial genomes are Salmonella enterica subsp., enterica serovar
Typhimurium LT2 (RM8375), a Staphylococcus aureus clinical
isolateMRSA strain (RM8376), aPseudomonas aeruginosa clinical
isolate (RM8377), and a Clostridium sporogenes isolate (RM8378).

Another sample resource may be a set of plasmids containing
known variants. The development of plasmid sequencing controls
may be the best option for laboratory RM for rare variant
detection. Through a collaboration, the Translational Genomics
Research Institute (Flagstaff, Arizona) and Northern Arizona
University (Flagstaff, Arizona) have developed a plasmid control
using the pUC18 plasmid backbone, a widely used and commonly
available cloning vector. DNA replication in vivo based on a
plasmid represents the highest fidelity system for producing
a sequence standard. The pUC18 plasmid is ∼2.7 Kbp, and
DNA fragments containing SNPs or indels of interest can be
readily inserted or deleted. By mixing different SNP- or indel-
containing plasmids at known proportions, one can readily
evaluate sequencing reads of these known mixtures. Another
group successfully used plasmid controls to aid in the evaluation
of rare variant detection (Cushing et al., 2013). An added benefit
of plasmids as RMs is that their small size allows them be added
into sequencing runs as internal controls alongside other samples.
The error rate for plasmids within each sequencing run can then

1http://genomeinabottle.org

be directly measured. In fact, this is common practice with the
phiX genome in Illumina sequencing runs.

Benchmarking Datasets
Sequencing datasets can be used to evaluate the variant calling
measurement process, but do not aid in evaluation of sample
processing and sequencing components of the measurement
process (Figure 1).

Real sequencing data
Real data are the ideal source of sequence data for use in evaluating
variant calling algorithms. Sequence data for the NIST microbial
reference data are available through the NCBI sequence read
archive (BioProject Accession PRJNA252728). Current efforts are
underway to characterize the genome sequence of these RMs and
will be made publicly available for use in variant calling method
evaluation. While sequence data from well-characterized RMs
are ideal, these data are not always available or representative of
the intended use cases. When appropriate reference data are not
available, alternative sources of sequence data are needed.

One such alternative source is sequence data from isolates
sequenced on multiple sequencing platforms by multiple
sequencing centers. Sequencing manufacturers commonly use
Escherichia coli K-12 DH10B and MG1655 strains to benchmark
new sequencing chemistries and provide this data on their web-
sites. In addition, the Broad Institute (Cambridge, MA, USA),
Joint Genome Institute (Walnut Creek, CA, USA), and J. Craig
Venter Institute (Rockville,MD,USA)useE. coliK-12MG1655 for
quality control, and some of the quality control data are available
through the GenBank Sequence Read Archive (Interactive web
application for exploring datasets2). Multiple sequence datasets
are also available (archived in GenBank SRA) for Staphylococcus
aureus subsp. aureus TW20 and Bacillus subtilis strain 168.
However, it is important to keep in mind that sequence variation
may exist between stock cultures of the same strain at different
sequencing centers. This is the primary advantage of RMs, as
they are characterized for material homogeneity within a batch.
Although a well-characterized genome sequence may not be
currently available for these organisms, validated variant call sets
can be generated using approaches described in the next section.

Once a dataset has been selected, there are several approaches
for generating a genome sequence as the reference sequence data
source. One approach is to combine sequence data sets from
multiple sequencing platforms (Zook et al., 2014). Integrating
data from multiple platforms has two key advantages: biases
from each platform can be identified and down-weighted when
integrating the data and variant callers can be tested on data from
different sequencing platforms. Additionally, some laboratories
have used SNP arrays to confirm SNP calls from NGS platforms
(Goya et al., 2010; Subramanian et al., 2013). This approach
works for already identified and more easily characterized SNPs,
but is cost prohibitive for newly discovered SNPs. Furthermore,
arrays do not always work when there are SNPs neighboring
the variants of interest or in low quality mapping regions (Zook
et al., 2014). With a characterized genome sequence, a known

2https://github.com/nate-d-olson/snp_eval_shiny

Frontiers in Genetics | www.frontiersin.org July 2015 | Volume 6 | Article 2357

http://genomeinabottle.org
https://github.com/nate-d-olson/snp_eval_shiny
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Olson et al. SNP evaluation review

set of variant calls can be further validated through comparison
of the characterized genome sequence to phylogenetically-related
organisms or through the insertion of simulated variants.

Simulated sequence data
Simulated sequencing datasets can be used to validate variant
calling methods when the available reference datasets do not
adequately represent the variant calling methods. A primary
advantage of using simulated data for method evaluation is that
the true variants are known. Additionally, simulated datasets can
be used in conjunction with reference datasets to test method
robustness. Numerous sequencing read simulators are available,
but differ in the error model (empirical or theoretical) used to
generate sequencing datasets. Additionally, some read simulators
do not introduce sequencing errors and thus can be used to define
a baseline for algorithmperformance in the absence of such errors.

Empirically-based read simulator algorithms vary in
complexity. GenSim 1.0 (Engle and Burks, 1992) and MAQ
(Gallagher and Desjardins, 2008) assume a uniform or constant
error rate for all positions within a sequencing read. However,
error rates are known to increase toward the ends of sequencing
reads. Thus, more sophisticated error models have been
developed to incorporate position-specific error rates (Engle
and Burks, 1994; Richter et al., 2008; Holtgrewe, 2010; Jia et al.,
2013). A number of read simulators use error models with
sequence-specific error rates, for example homopolymers (Hu
et al., 2012; McElroy et al., 2012). The benefit to this approach
is that it more closely models sequence-specific errors in true
sequencing datasets compared to models that utilize uniform
or position-specific error rates. Quality scores from sequenced
datasets can also be used to model error rates (Frampton and
Houlston, 2012; Jia et al., 2013). Coverage bias and/or low
coverage in GC-rich regions are also incorporated into some
empirical error models (Frampton and Houlston, 2012; Hu et al.,
2012). Some read simulators provide algorithms that allow the
user to generate new error models, e.g., GemErr (McElroy et al.,
2012; Jia et al., 2013). Whether a default error model is used
or the user generates his/her own error model, a dataset with
ground truth base calls is necessary in order to generate accurate
error models, as inaccuracies in the reference genome would be
incorporated as sequencing errors in the model.

Sequencing read simulators can also use theoretical error
models based on the sequencing chemistry and sample
preparation, and the reaction detection methods (Myers,
1999; Hazelhurst and Bergheim, 2003; Richter et al., 2008; Angly
et al., 20123). The advantage of theoretical models is that they are
able to incorporate sources of error that are difficult to include in
empirical models.

In addition tomodeling base call error rates, it is also important
to model BQS. However, some read simulators do not provide
quality scores, e.g., metaSim (Richter et al., 2008), celsim (Myers,
1999), and GenSim (Engle and Burks, 1992). Alternatively, fixed
quality values are generated by Grinder (Angly et al., 2012).
Correct bases are assigned a quality score of 30 and error positions
are assigned a score of 10. The pIRS byHu et al. (2012) uses quality

3http://www.ebi.ac.uk/goldman-srv/simNGS/

scores from an existing sequence dataset. While this approach
is more representative of the distribution of quality scores in a
sequencing dataset, it assumes the quality scores are accurate.

The assigned BQS can also reflect the model uncertainty. For
example, flowsim (Balzer et al., 2010) uses Bayes theorem to
assign quality values for simulated base calls. Huang et al. (2011)
takes the opposite approach, modeling quality scores and using
those assigned quality scores for the base call error model. Using
an empirical approach to simulate BQS values, Li et al. (2008)
generated a position-specific quality score model for error and
non-error bases bymodeling the quality score distribution using a
first order Markov chain. To fully evaluate SNP calling algorithms
using simulated sequence data, both sequences and quality scores
must simulate real sequence data as accurately as possible.

Finally, when using simulated datasets, a random number seed
value must be defined. Random numbers are used during the
generation of simulated reads and they require a seed number.
This seed number is used to produce the set of random numbers.
Reusing the same seed number results in the production of the
same set of randomnumbers. To enable reproducibility in the SNP
calling algorithm evaluation procedure, the user should rerun the
simulation using the same seed value, however, different seed
numbers should be used when generating replicate datasets.

Reference Genome Selection
The choice of the reference genome for SNP calling can bias
which SNPs are called, e.g., SNPs in genes not in the reference
genome will not be called, and these effects can be observed
after phylogenetic tree construction. This potential bias has
less of an effect in clonal bacteria, in which there are few
genomic variants among the clones, even when the clones are
compared to different species (Foster et al., 2009; Pearson et al.,
2009). When working with genetically diverse genomes, using
multiple references (Bertels et al., 2014) better reflects the diversity
in the number of SNPs and genomic complexity (e.g., repeat
regions and structural variants) the algorithm will face. While
accurate phylogenetic reconstruction of genetically diverse strains
requires using multiple reference genomes representing a range
of genomic similarity to the strains being compared, the same
biases and challenges exist for SNP calling. In fact, SNP calling
can be conducted against multiple references during validation
of the SNP discovery process (Shen et al., 2010; Pightling et al.,
2014).

Just as simulated whole genome sequence data can be
used to evaluate algorithm performance, reference genomes
with simulated mutations can also be used. The benefit to
using reference genomes with simulated mutations is that they
can provide a ground truth while using actual sequencing
reads. Reference sequence mutation algorithms can simulate
substitutions, as well as insertions and deletions. Some examples
of reference sequence modification tools able to introduce SNPs
into a reference sequence include: fakemut, part of the Maq
sequence mapping algorithm tool (Gallagher and Desjardins,
2008), GemHap from GemSim (McElroy et al., 2012), and
mutatrix4.

4https://github.com/ekg/mutatrix
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TABLE 1 | Definitions of common performance metrics used in evaluating variant callers.

Metric Calculation Interpretation (Ideal) Alternative names

Accuracy TP+TN
TP+FP+TN+FN Ratio of correct calls to total calls and variants (1)

Specificity TN
TN+FP Non-variants not called as variants relative to the total non-variants (1)

Sensitivity TP
TP+FN True variants called relative to all variants (1) Recall, true positive rate (TPR), positive call rate

Precision TP
TP+FP True variants called relative to total calls (1) Positive predictive value (PPV)

False positive rate FP
TN+FP Non-variants called relative to the total non-variants (0)

Performance Metrics
A variety of performance metrics have been derived and/or
borrowed from other disciplines, including calculations of true
and FP and negative call rates, as well as more sophisticated
calculations that attempt to summarize algorithm performance in
a single value (Table 1). Graphical representation of thesemetrics,
such as precision versus recall plots and Receiver Operating
Characteristic (ROC) curves, can be very useful in visually
depicting the different performance aspects of various algorithms.
This section discusses common performance metrics, use of
replicates for determining metric uncertainty, as well as data
visualization approaches for interpreting performance metrics.

Selection and Calculation of Performance Metrics
Contingency tables, also referred to as confusion matrices, are
used to evaluate classifiers such as variant calling algorithms
(Figure 3). Two by two contingency tables present the relationship
between variant labels assigned by an algorithm and labels from a
declared truth set. The four basic values in a 2 × 2 contingency
table: true positive (TP), true negative (TN), false positive (FP),
and false negative (FN), are used to assess algorithm performance.
Of note, contingency tables can be functions of a parameter
value or threshold choices. For example, changing the variant call
quality score threshold used to determine variant call sets can alter
the resulting contingency table.

Several performance metrics have been developed to
characterize classifiers using contingency tables (Baldi et al.,
2000). Here, we discuss five of the most commonly used metrics
(Table 1). Accuracy is a single numeric summary of the four
values representing the ratio of the correct calls and non-calls
to the total number of variant and non-variant positions. The
other four metrics can be interpreted as conditional probability
statements relating the algorithm’s variant calls to a reference
variant call set. Specificity is the probability that a reference
non-variant is called as non-variant. Sensitivity is the probability
that a reference variant is called as a variant. Precision estimates
the probability that a variant call is truly a reference variant,
whereas the FP rate is the probability that a variant call is falsely
called in the sample.

Determining which metric to use is up to the user; however,
the authors suggest some or all of the commonly used metrics
presented here should be included when evaluating algorithms.
When determining which performance metrics to use, one
should consider the assumptions and requirements for the
performance metric (Table 1). For example, some metrics
depend on the proportions of positive and negative variants

FIGURE 3 | Contingency table. True Positive, False Positive, False
Negative, and True Negatives are defined based by the relationship between
variants called by the SNP calling algorithm and known differences between
the reference genome and the analyzed sample.

in the benchmark dataset, whereas sensitivity and specificity
are independent of these proportions. Another consideration
for selecting performance metrics is whether the purity or
completeness of a call set is more desirable. For example,
strict filtering criteria are used to identify high predominately
TP variant calls, however this may leave the set incomplete
and potentially misrepresentative of the population of variants.
Accuracy and precision provide insight into completeness,
whereas sensitivity and specificity measure completeness. In the
end nomatter what metric is used, it must be properly interpreted
based on the application or context in which it is applied.

When comparing performance metrics across different variant
calling algorithms, it is important to consider each metric’s
associated uncertainty. The performance metric uncertainty
applied to variant calls from data may be quantified using
a bootstrapping protocol. For simulated datasets, repeated
simulations can be used to calculate performance metric
uncertainty. For example, Zeng et al. (2013) performed 10
replicate simulations and compared sensitivity, specificity, and
F-score [2 × (precision × recall)/(precision + recall)] for four
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FIGURE 4 | Comparison of two variant calling algorithms using two of
the performance metrics in Table1, true positive rate and false positive
rate, calculated from contingency tables over a range of quality score
thresholds (left) and a fixed quality score threshold (right). Methods A
(red) and B (teal) indicate two different variant calling methods. Left: A
smoothing function (generalized additive model) was used to summarize the

contingency table metrics across the considered quality score interval. Red and
teal lines are smoothing functions, and the gray area represents the 95%
confidence interval. The vertical dashed line indicates the quality score cutoff
(Q = 3195) for the static tables. Right: Boxplots are used to summarize the
performance metrics calculated from the contingency table value for the
replicate datasets at the defined cutoff value.

variant callers at three different coverage values (5X, 10X, 15X).
The desired performance metrics were then calculated for each
dataset and the resulting values were used to calculate the
performance metric uncertainty. Replicate simulations can be
generated for either the sample dataset or reference sequence.
If the sample dataset is replicated, the variant calling algorithm
performance can be evaluated for specific variant locations as
well as for overall performance. However, as variant detection can
be sequence context-dependent, using only one set of simulated
variants may lead to bias in favor of variant calling algorithms
better suited for the sequence context of that variant call set.

Resources for Comparing and Classifying Variant
Calls
A variety of tools have been developed for assessing performance
of variant calls with respect to benchmark variant calls for a
sample. Currently, these tools are mostly command line based
and optimized for human genomes, but many can be applied

to microbial genomes as well. The bcbio.variation tool5 can
regularize vcf files, compare them to a benchmark call set, and
generate a variety of metrics, including sensitivity, specificity,
and genotyping error rate. The SMaSH benchmarking toolkit
(Talwalkar et al., 2013) can generate metrics for precision and
recall of mappers and variant callers. A novel aspect of SMaSH
is the calculation of uncertainty of precision and recall due to
imperfect benchmark call sets. Another tool, the vcflib library6,
can normalize many complex variants, generate ROC curves, and
perform comparisons across vcf files. The USeq VcfComparator
tool7 can generate ROC curves and compare only variants inside
bed files. GATK also has tools to combine and compare variant
and genotype calls (McKenna et al., 2010; DePristo et al., 2011;
Van der Auwera et al., 2012). Finally, the vcfeval tool in RTGtools
can compare a vcf file to a benchmark dataset and produce ROC
5https://github.com/chapmanb/bcbio.variation
6https://github.com/ekg/vcflib
7http://useq.sourceforge.net/
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FIGURE 5 | Scatter plot showing the relationship between two performance metrics for variant call sets. The individual data points are based on metrics
calculated from static contingency tables. The error bars represent the 95% confidence interval for each performance metric.

curves and lists of TP, FP, and FN variants (RTG paper under
review8). Two other new tools being developed bymembers of the
Global Alliance for Genomics and Health Benchmarking Team
are hap.py9 and vgraph10, both of which are able to compare
complex variants using graph representations. Many of these tools
are being actively developed and their application to microbial
systems presents an opportunity for future research.

Finally, when a well-characterized set of variant calls is not
available for benchmarking, latent mixture models can be used
to predict rates for the truth table values (Kim and Speed, 2013;
Cantarel et al., 2014). Latent mixture models predict the model of
the underlying data (true variant call set) based on the responses
from multiple variant calling algorithms. Latent mixture models
treat the true mutation status as the latent or unknown variable.
The model can then be used to estimate the FP and FN rates
from which the TP and TN rates are calculated. While this
8http://realtimegenomics.com/products/rtg-tools/
9https://github.com/sequencing/hap.py
10https://github.com/bioinformed/vgraph

method has been frequently used to validate biomedical assays,
evaluation of algorithm performance relative to a known truth is
preferred, as the latent mixture model may be susceptible to an
unknown bias.

Visual Comparison of Performance Metrics
Graphical presentation of performance metrics can facilitate
the comparison and evaluation of algorithm performance.
The appropriate data visualization method depends on the
discreteness or continuity of the variables involved. For variant
algorithm evaluation, a single set of variants generated by an
algorithm provides an example of a discrete variable, and the
quality value assigned to each candidate variant provides an
example of a continuous variable. We analyzed 16 replicate
datasets using two different methods (A and B), generating 32
sets of variant calls. The variant call sets were then used to
demonstrate different methods for visually comparing variant
calling algorithms and their performance metrics discussed in
the previous section. The R code and input data used to

Frontiers in Genetics | www.frontiersin.org July 2015 | Volume 6 | Article 23511

http://realtimegenomics.com/products/rtg-tools/
https://github.com/sequencing/hap.py
https://github.com/bioinformed/vgraph
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Olson et al. SNP evaluation review

FIGURE 6 | Curves represent the relationship between the two performance metrics, in this case true positive and false positive rate. Replicate
samples are plotted individually to indicate the robustness in the relative performance of the two methods.

generate the figures are available at https://github.com/nate-d-
olson/snp_pipeline_evaluation.

Plotting the value of a performance metric as a function of
the chosen threshold value for the continuous variable can be
useful when comparing algorithm performance over a range of
cutoff values. Figure 4 depicts the relationship between algorithm
performance and variant quality values. The boxplots show how
method A has higher FP and TP rates compared to B for a single
threshold value. The dynamic plot with the smoothed data shows
the range of threshold values for which this relationship holds.
The range of threshold values for which a trend (e.g., method
A has a higher FP rate compared to method B) is observed is

an indication of the robustness of the trend. The ideal values
for FP and TP rates are 0 and 1 respectively. As method A has
higher values for both metrics compared to method B, a trade-
off between accepting FP vs. FN will determine which method to
use. Visualizing two metrics plotted against one another can more
clearly present the trade-off between the methods. To compare
method performance for two metrics with a fixed threshold, a
scatter plot can be used (Figure 5). When considering a range
of possible thresholds, one metric can be plotted as a function
of a second metric (Figure 6). A ROC curve is an example of
a comparison between two performance metrics over a range of
threshold values. Values of the threshold or additional metrics can

Frontiers in Genetics | www.frontiersin.org July 2015 | Volume 6 | Article 23512

https://github.com/nate-d-olson/snp_pipeline_evaluation
https://github.com/nate-d-olson/snp_pipeline_evaluation
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Olson et al. SNP evaluation review

be indicated through variations in symbol or line color, width,
or pattern. When many metrics are presented, it may prove most
effective to plot each metric against a common variable, such as
threshold. The uncertainty of the metrics can be presented in a
number of ways. Here the uncertainty is represented qualitatively
through the comparison of the two methods relative performance
across a collection of 16 replicates. The uncertainty of the metrics
can also be presented as error bars representing the uncertainty of
one metrics given a fixed value for the second metric (marginal
distributions), or the combined distribution of both metrics (joint
distribution).

While ideal for many purposes, available reference variant call
sets may not be appropriate for a desired application. When an
appropriate benchmark variant call set is not available, Venn
diagrams can be use to compare variants called using different
methods. However, use of Venn diagrams for method comparison
should be supplemented with simulated data for the target
application. It is important to note, however, that variants called by
multiple algorithms are not necessarily true variants, as multiple
variant callers can be susceptible to the same biases.

Conclusions

When using genomic variants for phylogenetic analysis,
comparative genomics, or outbreak investigations, it is critical
to properly evaluate the variant calling method. Many sources
of error are associated with sequencing as well as variant calling.
To optimize the quality of the data used to generate the variant

calls, it is advised to minimize amplification during sequencing
library preparation, perform paired-end sequencing, remove
duplicate reads, realignment around indels, and perform BQS
recalibration.

A thorough evaluation of variant calling methods would
include: (1) The use of multiple datasets with known authoritative
variant call sets that represent the range of data the algorithm
will evaluate. The datasets used for evaluation could be real,
simulated, or a combination of both; (2) Replicates of different
sequence datasets or reference genomes to calculate performance
metric confidence intervals; (3) Performance metrics that aid
in evaluating algorithm performance. With method evaluation
performed in this manner, the user will be able to understand
positives and negatives of algorithms for the application of interest
and characterize the level of confidence in variant calls. We are
currently working to follow this review with the development of
complementary open source tools for use in evaluating variant
calling algorithm performance, with a focus on calculating and
presenting performance metrics.
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