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ABSTRACT: This review aims to summarize the current knowledge on how lncRNAs are influencing aging and 

cancer metabolism. Recent research has shown that senescent cells re-enter cell-cycle depending on intrinsic or 

extrinsic factors, thus restoring tissue homeostasis in response to age-related diseases (ARDs). Furthermore, 

maintaining proteostasis or cellular protein homeostasis requires a correct quality control (QC) of protein 

synthesis, folding, conformational stability, and degradation. Long non-coding RNAs (lncRNAs), transcripts 

longer than 200 nucleotides, regulate gene expression through RNA-binding protein (RBP) interaction. Their 

association is linked to aging, an event of proteostasis collapse. The current review examines approaches that lead 

to recognition of senescence-associated lncRNAs, current methodologies, potential challenges that arise from 

studying these molecules, and their crucial implications in clinical practice. 
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Age-associated diseases such as cancer, cardiovascular  

diseases, obesity, neurodegenerative disorders, 

sarcopenia and several other conditions are dictated by 

distinct adjustments of gene expression programs that 

underlie aging. Recent research indicates that through 

examining the modifying factors of intrinsic appearance 

of senescent cells we could genetically program and 

determine their re-entry into the cellular cycle. 

Thereupon, in the future, senescent cells might be 

programmed to get involved in the treatment of cancer and 

aging-related diseases [1]. 

Aging phenotype is represented by expanded cellular 

senescence, reduction of stem cell population, altered 

proteostasis (which activates the inflammasome - 

a multiprotein oligomer responsible for inflammation), 

change in intercellular communication and loss of 

telomere function [2, 3].  

Maintaining cellular protein homeostasis, or 

proteostasis, requires correct quality control (QC) of 

protein-related processes: synthesis, folding, 

conformational stability, degradation. A complicated and 

flexible proteostasis network (PN) parallels these 

processes with molecular chaperones and their QC 
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regulators thus avoiding age-associated proteinopathies 

included in ARDs [4].     

These mechanisms are governed by proteins that bind 

RNA, DNA, as well as a diversity of long non-coding 

RNAs (lncRNAs), long nuclear RNAs greater than 200 

nucleotides, and microRNAs (miRNAs), small non-

coding RNA molecules with a length of 20-25 

nucleotides that are involved in controlling target gene 

translation and post-transcriptional modulation of gene 

expression. The regulatory function of lncRNAs, which 

are considered powerful epigenetic regulators, has been 

partially revealed in embryonic stem cells (ESCs) and in 

induced pluripotent stem cells (iPSCs) [5, 6]. The stability 

and longevity of RNA molecules provide a great 

opportunity for non-invasive diagnosis and tumoral 

assessment [7]. We present multiple strategies for 

modulating proteostasis capacity, which may aid the 

urgently-needed therapies for age-dependent pathologies 

[5, 7-9]. 

The accurate relationship between lncRNAs and 

proteostasis can be explained, both phenotypically and 

molecularly, by the lncRNAs – binding proteins (RBP) 

interactions. These interactions are essential in 

performing all cellular functions and in preserving 

homeostasis. 

RBPs, RNA binding proteins, have crucial roles in a 

myriad of cellular processes. The first step in analyzing 

their possible role includes identifying their binding 

partner. Also, lncRNAs’ homeostasis (lncRNAstasis)  

paralleled the protein disruption in cellular senescence 

thus maintaining the correct cellular quality control (QC). 

Proteostasis mechanisms support the stabilization of 

accurately folded proteins, the heat shock protein family, 

and the mechanisms for lysosome and proteasome 

mediated protein breakdown [10, 11]. 

Nuclear lncRNAs modulate transcription by 

recruiting transcription factors to specific regions of 

nuclear DNA and also for ribonucleoprotein complexes 

with RBP. They participate in chromatin organization, 

gene expression, as well as structural scaffolds of nuclear 

domains. These complexes control gene expression at 

distinct key points, illustrating the critical role of lncRNA 

interaction with certain proteins in order to maintain 

cellular hemostasis [11]. 

The lncRNA pRNA interacts with DNA at the 

specific interaction point DNMT3B to control rRNA 

transcription [12]. In addition, PTENP1-asRNA alpha 

blocks transcription of PTEN coding gene by to 

DNMT3A (DNA methylase) at PTEN coding gene 

promoter [13]. PTENP1asRNA beta positively provides 

post transcriptional regulation of PTENP1 mRNA [11].  

The nuclear enriched transcript 1 (NEAT) recruits 

paraspeckles RNA-binding proteins such as PSPC1, 

NONO/P54NR and PSF/SFPQ, directly or in a complex 

manner, and also suppresses gene expression by 

interaction with PRC1, PRC2, JARID1B, ESET and 

SUV39H1, chromatin binding protein/complexes [14, 

15].  

The lncRNA TERC, a telomerase RNA component, 

maintains telomere length, while the lncRNA THRIL-

hnRNPL interactions modulate (TNF) α expression [16].   

Cytoplasmic lncRNAs have different functions. They 

can act as translation regulators via base pairing with their 

target mRNAs or they can influence protein expression 

levels by increasing and decreasing mRNA stability [17, 

18]. Another function of cytoplasmic lncRNAs is 

modulating ubiquitination process or controlling the 

passage of proteins or other RNAs between the cytoplasm 

and the nucleus [11]. Some lncRNAs indirectly regulate 

protein levels by influencing the available pool of 

miRNAs and, thereby, affecting mRNA turnover and 

translation. On the other hand, some lncRNAs interact 

directly with mRNAs, in order to enhance or suppress 

their translations, or with proteins, modulating their half-

life time. For instance, the lncRNA GAS5 limits the 

“flow” of glucocorticoid receptor (GR) from the cytosol 

to the nucleus inhibiting GR mediated gene expression. In 

addition, the maternally expressed gene 3 (MEG3) which 

induces the p53 translation decreases the MDM2 

expression while HuR can   displace the lncRNA 7SL 

protein and also increases the p53 expression [19, 20]. 

Conversely, the highly expressed lncRNA 7SL could 

abolish p53 translation [11].  

 

Classification lncRNAs according to their mechanism 

of action 

 

LncRNAs are heterogeneous transcripts that are not 

translated into proteins or encoding for small proteins [9, 

21]. They can be intergenic transcripts or large intergenic 

non-coding RNAs (lincRNAs), enhancer RNAs (eRNAs), 

or sense or antisense RNAs from the same or the opposite 

strand of mRNA that overlaps other genes. LncRNAs 

produced by RNA splicing have been revealed, such as 

circular RNAs (circRNAs), to derive from vestigial genes 

without coding potential, named pseudogene-encoded 

lncRNAs, from mRNA promoter regions, described as 

promoter-associated lncRNAs, as well as from introns, 

long intronic ncRNAs [22-24]. Competing endogenous 

RNAs (abbreviated ceRNAs), which manage RNA 

transcripts by competing for shared miRNAs, and 

circRNAs are stable and accumulate in great numbers [2, 

25].  

Remarkably, these lncRNAs have crucial roles in 

gene regulation, affecting different aspects of cellular 

homeostasis such as proliferation, migration or genomic 

stability by assembling transcriptional modulators, by 

base-pairing with mRNAs, by enrolling chromatin 
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modification factors, as well as by interfering with RNA-

binding proteins and leading to age-associated phenotypes 

relevant to multiple disease pathophysiologies associated 

with the aging process [2, 24, 26, 27].  

Experimental evaluation of lncRNAs has clarified the 

importance of these biomolecules, that are not only a 

″transcriptional noise″, but they perform a function 

elsewhere in the cell after they leave the transcription site. 

The non-coding transcriptome could reveal unexpected 

molecular activities, offering a great potential to 

distinguish between normal and disease states [24].  

 

Table 1. lncRNAs in proteostasis. 

 

lncRNA ARDs Function in 

proteostasis 

Target gene The cellular and molecular 

effects of the lncRNA 

Ref. 

LncRNA-

MALAT1  

-highly expressed in 

cancer; Diabetic 

nephropathy; 

-atherosclerosis; 

- neurodegenerative 

processes 

 

Protein turnover 

Scaffolding 

Autophagy 

-HMGB1; β‐

catenin; 

- B-MYB; 

- PDGF-BB 

- ATG7 

(miR142-3p) 

-Inhibition of Tumor Cell Apoptosis; 

- kidney fibrosis; restored podocytes 

function; 

- Phenotypic switching of VSMCs  

  

[34], 

[77], 

[81], [82] 

LincRNA-p21 -skin cancer 

-colorectal cancer 

-prostate cancer 

 

Protein turnover  

p53; 

 HIF-1α 

β‐catenin 

Jun B mRNA 

cell cycle arrest; apoptosis in 

keratinocytes; represses translation of 

cancer proteins 

[7], [37], 

[54], 

[83], [84] 

LncRNA 

CND1/cyclin 

D1 

- many cancer types; 

- BCL2; 

-breast cancer  

-Protein turnover  - TLS 

-cyclin D1 

- cell cycle regulator in cancer 

-benefits in breast cancer therapy 

[38], [39] 

LncRNA-

HOTAIR 

-breast, gastric, and 

colorectal tumors; 

- nasopharyngeal 

cancer 

-Protein turnover; 

- Scaffold function 

-PRC2 

- Snurportin-1; 

Ataxin-1 

• cell proliferation, invasion, 

aggression, and metastasis; 

inhibition of apoptosis  

•  prevents cellular senescence 

[31], 

[29], 

[42], [45] 

Lnc AS Uchl1 -neurodegenerative 

diseases; 

-cancer; 

-auditory cortex 

senescence 

Protein turnover  -MDM2; 

-UPS-related 

proteins: p53, 

p14; ARF, 

p27KIPI, 

ubiquitinated 

proteins, 

monoubiquitin, 

BE1, PSMA7  

- intensifies translation of 

UCHL1, which plays an important 

role in the UPS system 

[49], 

[50], 

[51]  

LncRNA 

GAS5 

 

-gastric carcinoma 

-prostate cancer 

-Protein turnover; 

-Membrane 

trafficking  

YBX1; 

E2F1; 

P27Kip1 

-Inhibits cellular proliferation 

- a growth arrest lncRNA 

[52], [85] 

Lnc RNA 

PANDA 

-senescence. Membrane 

trafficking 

FAS; BIK; p53 inhibits DNA-damage-induced 

apoptosis 

[86] 

Lnc 

ANRASSF1 

-breast, osteosarcoma, 

colorectal, liver, 

bladder, renal 

cell carcinoma 

-Membrane 

trafficking; 

-Scaffold function 

PRC2 Control of proliferation, metabolism, 

apoptosis and senescence; histone 

modifications 

[36], [87]  

LncRNA 

Gadd7 

- is expressed in 

response to oxidative 

stress 

Membrane 

trafficking 

TDP-43, 

modulates Cdk6 

levels 

controlling cell-cycle progression [88] 

LncRNA 

7SL 

-widely upregulated 

in cancer tissues 

-Autophagy 

-Protein trafficking 

p53; 

HuR 

cellular senescence [70], [36] 

 

Lnc RNA 

DICER1 

-ovarian cancer; 

- tongue squamous cell 

carcinoma 

Autophagy miR-675  -A key synthesis-related factor of 

miRNA related to tumor cell 

activities; 

- cellular proliferative and invasive 

capacities 

[89] 

LncRNA 

HULC 

 - tumor 

chemoresistance; 

-hepatocellular 

carcinoma 

Autophagy -COX-2  

USP22/COX-2" 

axis; 

- Sirt1 

Increase triglyceride and cholesterol 

levels in hepatoma cell  

[64] 

Lnc MEG3  -colorectal cancer 

- Huntington’s disease 

Autophagy 

Growth arrest 

MDM2; 

p53 

-blocks apoptosis [20] 
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LincRNA H19 -breast cancer; 

-human tumor growth; 

- Gastric 

Carcinogenesis  

Scaffold function -E2F1, PRC2, 

HuR, KSRP 

-suppression of RBmRNA via 

miR675; 

-DNA methylation; cell division 

cycle 

[102], 

[103], 

[104] 

LncRNA 

PRNCR1 

-prostate cancer 

-CRC 

Scaffold function - AR - regulation of AR-dependent gene 

activation events- 

[74], [90] 

LncRNA 

PCGEM1 

-prostate cancer Scaffold function - AR -tumor type-specific super-enhancer [74], [90] 

LncTERC -premature neural 

aging in terc KO mice  

Scaffold function TRF1, TRF2 - Promotion of telomere extension 

-controlling the survival of NSCs 

- prevention of premature senescence 

and aging 

[2], [30], 

[91] 

Lnc TERRA -neural aging Scaffold function TRF1, TRF2 -Suppression of telomere extension  

-survival of NSCs 

[2], [30]  

Lnc ANRIL -upregulated in 

prostate cancer; 

- myocardial infarction 

- hyper-

cholesterolemia 

-Protein turnover; 

-Scaffold function 

-CBX7  

- let-7a/TGF-

β1/Smad 

signaling 

pathway 

-proliferation and migration of 

prostate cancer cells 

- antisenescence function 

-histone modification 

[41] 

 

Abbreviations: ANRIL- antisense non-coding RNA from the inhibitor of kinase 4  (INK4); AR- androgen receptor; ARF- ADP-ribosylation factor; Lnc 
AS Uchl1 - ubiquitin C-terminal hydrolases L1; ATG7- autophagy-related 7; BCL2- B-Cell CLL/lymphoma 2; BIK - ; CBX7- chromobox 7 protein; -
COX-2-Cyclooxygenase-2; CRC-colorectal cancer; E2F1- transcription factor that interacts directly with RB; FAS -; Gadd7- growth-arrested DNA 

damage-inducible gene 7; GAS5- Growth arrest specific transcript 5; HIF-1α - Hypoxia-inducible factor 1-alpha;  HMGB1- High-mobility group box 
protein 1; MALAT1- Metastasis Associated Lung Adenocarcinoma Transcript 1; MDM2- mouse double minute 2 protein;  KSRP- KH-type splicing 
regulatory protein; MEG3- maternally expressed gene 3; B-MYB - Myeloblastosis Viral Oncogene; NSCs- neural stem cells; PANDA- ; PDGF-BB- 

platelet-derived growth factor- BB; PRC2-; PRNCR1- prostate cancer non-coding RNA 1; PCGEM1- prostate cancer gene expression marker 1; PSMA7-
proteasome subunit alpha type 7; RB- retinoblastoma protein; Sirt1- silent information regulator 1 protein;; TERC- Telomerase RNA Component; TERRA 
- telomeric repeat containing RNA; TGF-β1- ;TLS- translocated in liposarcoma protein; TRF1, TRF2- telomere repeat factors; VSMCs- vascular smooth 
muscle cells; UCHL1- ubiquitin carboxyterminal hydrolase 1; USP22- ubiquitin-specific peptidase 22; YBX1- Y-box binding protein 1. 

LncRNAs in proteostasis 

 

Aging is associated with the progressive deterioration of 

proteostasis, a portmanteau of two words, protein and 

homeostasis. It encompasses competing and 

integrated processes that control protein biogenesis, 

folding, interactions, trafficking and degradation within 

and outside the cell. Proteostasis dysfunction, including 

autophagy and the ubiquitin-proteasome pathways, leads 

to age-related diseases (ARDs) such as Alzheimer’s 

disease, cancer and other degenerative disorders, being an 

accepted aging factor [2, 28, 29]. In line with this, we 

summarize proteostasis-related lncRNAs associated with 

protein turnover (synthesis and degradation), trafficking 

and autophagy (Table 1).  

 

LncRNAs associated with protein turnover 

 

Protein turnover represents the balance between protein 

synthesis and protein degradation. This process decreases 

with age in all senescent organisms. Protein turnover 

occurs in the brain and may contribute to protein 

aggregation and neurodegeneration, disturbing 

physiological neurogenesis and synaptic plasticity [2, 

30].  

Protein degradation is driven by the ubiquitin 

proteasome pathway. Protein synthesis depends on 

mRNA level. The translation rate is modulated by 

lncRNAs indirectly by affecting the pool of miRNAs, 

suppressing the mRNA turnover and translation 

(lincRNA-ROR and linc-MD1), or through direct 

interaction with proteins and mRNAs, modifying their 

translation [2].  

Perturbations of protein-RNA interactions are 

involved in metabolic and autoimmune diseases, cancer, 

neurological and muscular disorders. Many RNA-binding 

proteins (RBP) such as heterochromatin protein 1, male-

specific lethal-1 (MSL), the catalytic subunit of MSL 

histone acetyltransferase (HAT) enzyme complex (MOF), 

deafness dystonia peptide 1 (DDP1), Trithorax-group and 

Polycomb-group implicated in distinct tumor stages bind 

lncRNAs [31].  

LncRNA-MALAT. LncRNA metastasis-associated 

lung adenocarcinoma transcript 1 (MALAT1), a cell 

cycle regulator whose depletion triggers G1 or G1/S arrest 

by suppressing cell proliferation and growth activating 

senescence phenotype [32] and a high expression 

molecular predictor of poor survival rates in cancer, 

interacts with splicing regulatory (SR) protein family 

members. This lncRNA triggers two cell-cycle regulators, 

cyclins A2 and B1, and controls the oncogenic 

transcription of myeloblastosis viral oncogene B (B-

MYB) [33, 34].  

LincRNA-p21 regulates p21 by recruiting hnRNPK 

and reducing cell proliferation. It also affects somatic cell 

reprogramming via cell senescence or apoptosis pathway 

[32]. This lincRNA, interacting with cadherin-associated 

protein, beta (CTNNB) mRNAs, encoding βcatenin via 

the Wnt/βcatenin signaling pathway and decreasing 

oxidant stress, could have antisenescent effects in 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2483460/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2483460/
https://en.wikipedia.org/wiki/Biogenesis
https://en.wikipedia.org/wiki/Proteolysis
https://en.wikipedia.org/wiki/Protein_synthesis
https://en.wikipedia.org/wiki/Protein_synthesis
https://en.wikipedia.org/wiki/Proteolysis
https://en.wikipedia.org/wiki/Senescence
https://en.wikipedia.org/wiki/Protein_synthesis
https://www.sciencedirect.com/topics/medicine-and-dentistry/adenocarcinoma
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doxorubicin (Dox)treated HL1 murine cardiomyocytes, 

where it was shown to have a high expression [35]. 

LincRNA-p21 is also induced by hypoxia-inducible factor 

1α (HIF-1α), being able to bind this factor, and by UVB 

via the p53 pathway, having an important role in UVB-

induced apoptosis. Urinary levels of LincRNA-p21 

lncRNA may help discriminating between prostate cancer 

and benign prostatic hyperplasia [7, 36, 37].  

LncRNA CND1/cyclin D1, a cell cycle regulator in 

many cancers, is transcribed from the cyclin D1 gene 

promoter region. It interacts with the translocated 

liposarcoma (TLS) protein, a sensor for the detection 

of DNA damage [38]. High levels of cyclin D1 expression 

are associated with better outcomes of adjuvant 

trastuzumab therapy in HER2-positive early breast cancer 

[39]. 

LncRNA ANRIL. This lncRNA, transcribed from the 

inhibitor of kinase 4 (INK4) locus, is the antisense non-

coding RNA in INK4 (ANRIL). It interacts with both 

CBX7, a component of the polycomb group protein 

regulator of cytokinesis (PRC1), where it activates 

epigenetic silencing of the CDKN2A/CDKN2B loci, and 

SUZ12, a component of PRC2. Its down-regulation 

induces translation of the cell cycle inhibitors such as P14, 

P15 and P16. Additionally, the lncRNA MIR31HG 

interacts with both PRC1 and PRC2 complexes to 

suppress the P16INK4A expression [Ghanam]. LncRNA 

ANRIL is upregulated in prostate cancer, interacting with 

the chromobox 7 (CBX7) protein, part of the polycomb 

group protein regulator of cytokinesis (PRC1) protein 

complex [31, 40]. This lncRNA activates the proliferation 

and migration of prostate cancer cells through the let-

7a/TGF-β1/Smad signaling axis [41].  

LncRNA HOTAIR, up-regulated during the aging 

process, increases ubiquitination degradation of 

Snurportin-1 (SNUPN) and Ataxin-1 (ATXN1) by 

functioning as a scaffold for DAZ interacting zinc finger 

protein (DZIP3) and Mex-3 RNA binding family member 

B (MEX3B) and their corresponding substrates [11].  

HOTAIR is one of the first lncRNAs linked to cancer. 

It interacts with polycomb repressive complex 2 (PRC2), 

a histone methyltransferase and lysine-specific histone 

demethylase 1A (LSD1), an illustration of histone 

demethylase [31, 42, 43]. During aging, this lncRNA is 

degraded by the senescence repressor HuR, a miRNA-

200a dependent RBP, due to its binding to the 3′UTR of c-

Jun mRNA in a region including this miR binding site 

[44]. HOTAIR prevents cellular senescence through the 

decay of Snurportin-1 and Ataxin-1 targets via the 

ubiquitination pathway. Ectopic expression of lncRNA 

HOTAIR determines inflammation through NF-κB 

activation and through interleukin (IL)-6 expression [45, 

46, 47]. MiRNA-203 inhibits HOTAIR, regulating 

tumorigenesis via the epithelial-to-mesenchymal 

transition (EMT) pathway [48] (Fig. 1).  

Lnc AS Uchl1 (ubiquitin C-terminal hydrolase L1) 

intensifies translation of UCHL1, which plays an 

important role in the ubiquitin proteasome system 

(UPS) and in many other cellular processes such as 

differentiation, cell proliferation, as well as in brain 

function and in neurodegenerative diseases. Loss of 

function of UCHL1 leads to serious degenerative 

modifications in the central nervous system, this 

proteolytic deficit contributing to neurological conditions 

[49, 50]. Overexpression of UCHL1 decreased mouse 

double minute 2 (MDM2) levels, a factor involved in 

cancers, and increased the UPS-related proteins such as 

p53, p14, ADP-ribosylation factor (ARF), p27KIPI, 

ubiquitinated proteins, monoubiquitin, BE1, proteasome 

subunit alpha type 7 (PSMA7) and the proteasomal 

activity, the last five systems being implicated in auditory 

cortex senescence [49, 51]. 

LncRNA GAS5. Growth arrest specific transcript 5 

(GAS5) was shown to interact with Y-box binding protein 

1 (YBX1) through the GAS5/YBX1/p21 pathway, and the 

knockdown of lncRNA GAS5 was demonstrated to 

accelerate YBX1 protein turnover without affecting its 

gene expression. LncRNA GAS5 downregulation lowers 

YBX1 protein concentration, interfering with YBX1-

transactivated p21 transcription and abrogating G1 phase 

cell cycle arrest in gastric carcinoma. The lncRNA 

GAS5/YBX1/p21 axis was proved to be a useful target for 

developing lncRNA-based treatment for cancer [52].  

 

LncRNAs in protein membrane trafficking 

 

Membrane trafficking is the cornerstone of molecular 

biology. It compartmentalizes cells into functional 

recognizable units for signal initiation and processing. It 

is generally accepted that deregulated membrane 

trafficking leads to pathological aging. Kes1/Osh4, a 

member of the oxysterol binding protein-related protein 

(ORP) superfamily, and other ORPs, activate cell-cycle 

control functions, inhibiting phosphatidylinositol transfer 

protein (Sec14)-dependent membrane trafficking using 

the trans-Golgi (TGN)/endosomal network, inhibiting the 

G1/S transition, when cells are under caloric restriction 

(CR). Therefore, replicative aging is encouraged. Kes1-

dependent cell-cycle control depends on the 

Greatwall/MASTL kinase ortholog Rim15 and is in 

opposition to the Sec14 action in a mechanism 

independent of Kes1/Sec14 total membrane-trafficking 

actions. ORPs define a family of stage-specific cell-cycle 

regulation factors with tumor suppressor-like functions 

[53]. 
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Figure 1. Altered HOTAIR regulation contributes to ARDs/ senescence. HOTAIR, overexpressed during aging, activates 

proliferation and invasion. miR-141 levels are inversely correlated with malignacy by binding to this lncRNA and thus abrogating its 
transcription. Both interact with/are linked to Argonaute 2 (Ago 2) complex. A positive feedback mechanism from senescent cells  

upregulates miR-141. The level of HOTAIR could be reduced in a micro-dependent manner by an RNA binding protein (RBP), the 

senescence-repressor HuR, which degrades this lncRNA. In addition, HOTAIR facilitates ubiquitination and proteolysis of Snurportin-

1 and Ataxin-1. HOTAIR interacts with E3 ubiquitin ligases and with their ubiquitination substrates, Ataxin-1 and Snurportin-1. 

HOTAIR facilitates the ubiquitination of Ataxin-1 by Dzip3 and Snurportin-1 by Mex3b and accelerates their degradation. HOTAIR has 
a key role in cellular senescence through inducing extended expression of NF-κB target genes and also NF-κB activation during DNA 

damage. An NF-κB-HOTAIR axis leads to a positive-feedback loop cascade contributing to cellular senescence and chemotherapy 

resistance in cancers. Overexpression of miR-203 inhibits HOTAIR, triggering epithelial- mesenchymal-transition (EMT), therefore 

inducing cell-cycle arrest and apoptosis. The expression of phosphatase and tensin homolog (PTEN), E-cadherin and claudin is increased 

by blocking invasion and metastasis while p21 and p27 are downregulated.  

Cell cycle is strictly regulated by cyclin-dependent 

kinases (CDKs) and several related pathways such as p53 

and the retinoblastoma protein (pRB). Current research on 

lncRNAs outlines their involvement in the control of key 

cell cycle regulators such as p53, pRB, cyclins, CDKs, 

and CDK inhibitors. These lncRNAs are epigenetic 

regulators and transcription and post-transcription 

regulators for primary control cellular levels of cell cycle 

modulators through different mechanisms. Sometimes, 

certain lncRNAs are induced by DNA damage, leading to 

cell cycle arrest or apoptosis as a response to DNA 

damage. Consequently, deregulations of lncRNAs are 

involved in tumoral genesis and in chronic inflammation 

and they could represent possible molecular targets for 

both cancer diagnosis and therapy [54]. 

LncRNA-P21-associated ncRNA DNA damage-

activated (PANDA) is specifically induced by DNA 

damage through the p53 pathway, through binding the 

nuclear transcription factor Y subunit α (NF-YA). Its 

activation is prevented and the expression of proapoptotic 

genes is suppressed. The interaction between NF-YA and 

p53 disrupts the cell cycle and senescence [8, 53]. 

Lnc RNA GAS5 is a growth arrest lncRNA involved 

in human malignancies. It inhibits the transcription of 

glucocorticoid receptor (GR) by blocking this nuclear 

receptor in the cytoplasm [52, 55]. Later on, it was shown 

to have a role on mESC proliferation. LncRNA Gas5 has 

a key role in controlling iPSC reprogramming, self-

renewal and pluripotency of mESCs. The knockdown of 

Gas5 facilitates endodermal differentiation of mESCs and 

reduces the efficiency of iPSC reprogramming through 
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the Dicer-miR291a–cMyc axis. It is also involved in the 

DNA demethylation course in mESCs [5]. 

ANRASSF1. This lncRNA forms an RNA/DNA 

hybrid at the transcriptional start site of RASSF1A, a gene 

encoding the Ras association domain-containing protein 

1. It becomes hypermetilated during aging. Ras proteins, 

members of a superfamily of GTP-ases, have a key 

position in numerous signaling networks, counting the IIS 

action, controling proliferation, metabolism, apoptosis 

and senescence. The hyperactivation of Ras or mutant Ras 

proteins is difficult to target (the intrinsic enzyme activity 

becomes defective and it freezes them in a highly active 

oncogenic GTP-bound state) [36].  

Gadd7. It supervises cell growth and the G1/S 

checkpoint induced by oxidative stress and DNA damage, 

destabilizing CDK6 mRNA through direct association 

with TAR DNA-binding protein 43 (TDP-43). This leads 

to cell senescence and it could be a possible biomarker for 

frontotemporal lobar degeneration (FTLD) [52, 56, 57].  

7SL. This widely expressed lncRNA in cancer cells is 

involved in cell proliferation and is an integral component 

of "signal recognition protein" (SRP) [58]. 7SL interacts 

with RBP HuR, promoting translation of p53, the most 

important growth regulator and tumor suppressor protein 

[59].  

 

LncRNAs in autophagy 

 

Autophagy is a versatile and protective degradation 

process supervising cellular quality control during the 

aging process [60]. The autophagic flux depends on direct 

improvement in somatic conservation and proteostasis. 

Therefore, the intracellular proteostatic signalling 

pathways are involved in transfering autophagic status 

between cells and tissues, controlling ARDs on a systemic 

level [61]. Certain lncRNAs were recently found to 

control autophagy.  

H19, a suppresed lncRNA in patients with high blood 

sugar and diabetic cardiomiopathy, abolishes autophagy 

by repressing a GTPase DIRAS3, a tumor suppresing 

gene, therefore regulating ATG7 gene expression [61, 

62].   

LncRNA DICER1 - antisense RNA 1 (AS1) has an 

important role in autophagy and tumoral progression. 

Overexpressed in osteosarcoma cells, this lncRNA 

knockdown could suppress autophagy by inhibiting the 

expression levels of certain proteins as 

follows:  autophagy-5 (ATG5), microtubule-associated 

protein light chain 3 (LC3-II) involved in autophagosome 

membrane expansion, and beclin 1, an apoptotic 

promoter. Moreover, miR-30b targets 3'-UTR of 

DICER1-AS1 and ATG5 [63].  

LncRNA HULC. Considerable research has revealed 

that autophagy is a key factor in tumoral chemoresistance 

and that lncRNA HULC is highly induced in liver cancer 

by therapy with antitumoral reagents such as oxaliplatin, 

5-fluorouracil and pirarubicin (THP), which leads to 

protective autophagy.  In human HCC tissues, the 

mechanism is mediated by the silent information regulator 

1 (Sirt1) protein, the level of HULC being positively 

correlated with that of Sirt1. The pathway 

‘HULC/ubiquitin-specific peptidase 22 

(USP22)/Sirt1/protective autophagy’ increases HCC cells 

sensitivity to chemotherapeutic agents. This pathway 

could be a novel target for sensitizing HCC cells to HCC 

chemotherapy [64]. Mechanistically it was found that 

HULC could act as a molecular sponge of miR-372, 107 

and 186 thus promoting tumorigenesis [65] (Fig. 2). This 

lncRNA increases expression of becline-1, an autophagy 

related gene, and also the interplay between LC3 and 

ATG3 during hepatocarcinogenesis [66].   

LncRNA MEG3. The lncRNA MEG3 gene was 

shown to be involved in colorectal cancer, controlling 

certain cellular and molecular processes such as 

autophagy and growth arrest by suppressing MDM2,  

upregulating p53 and blocking apoptosis [20, 67, 68]. This 

lncRNA could be a novel biomarker for predicting clinical 

outcome in cancer [69].  

LncRNA 7SL. 7SL-depleted cells are lead to cellular 

senescence and autophagy due to the competitive binding 

between HuR and 7SL, which can be removed, increasing 

the p53 gene expression. It also blocks the cell cycle and 

enhances senescence and autophagy [70].  

Other examples of lncRNAs involved in controlling 

all autophagic stages are HOTAIR, MALAT1, NBR2,  

PTENP1, and recently NEAT1 activating autophagy in 

Parkinson’s disease via PINK1 protein [71, 61]. 

Equivalently, lncRNAs GAS5 and CAIF modulate ATG3 

in certain pathological conditions such as osteosarcoma,  

myocardial infarction and cancer [72, 61]. 

  

LncRNAs: scaffold function 

 

LncRNAs could serve as protein scaffolds, participating 

in the assembly of ribonucleoproteins that link the factors 

together to produce new functions. The association 

between lncRNAs and disease may involve their 

scaffolding capacity. Certain lncRNAs present specific 

protein-binding domains that incorporate each molecule 

together. This action may have an impact on transcription 

or repression processes [73, 74].  

https://www.thesaurus.com/browse/equivalently
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Figure 2. Mechanism by which lncRNA HULC activates tumorigenesis. Abbreviations: CLOCK- circadian locomotor 

output cycles kaput; E2F1-transcription factor involved in cell cycle regulation and apoptosis; HCC- hepatocellular 

carcinoma; HIF-1α- hypoxia-inducible factor 1-alpha; HMGA2- high mobility group A protein 2; HULC- highly up‐

regulated in liver cancer; PRKACB- protein kinase cAMP-activated catalytic subunit beta; PTTG1- pituitary tumor 

transforming gene; siRNA- small interfering ribonucleic acid; TWIST- the basic helix-loop-helix transcription factor ; 

YAP- yes-associated protein 1. lncRNA HULC, highly expressed in liver cancer, modulates the oncogene HMGA2  to 

activate tumorigenesis and interacts with the CLOCKmRNA, leading to the enhancement of its transcription. HMGA2 

plays an essential role in the genesis of lung cancer, gastric cancer and colorectal carcinoma.  HULC could be considered 

a molecular sponge which sequester certain miRNAs such as miR-186, miR-107 as well as miR-372, therefore reducing 

the translational repression of HMGA2, E2F1 and PRKACB. The expression level of HULC is positively correlated with 

HMGA2 and opposite to miR-186. In human HCC tissues, HULC upregulated HMGA2 expression via sequestering miR-

186 promotes tumorigenesis. Moreover, HULC induces the expression of cyclin A and IL-15 in a dose-dependent manner. 

In HCC, HMGA2 is inhibited by miR-107 and let-7 miR-107 in breast cancer as well as siRNA as a consequence of HULC 

inhibition.  

LincRNA H19 controls a collection of genes 

consisting of H19 and insulin-like growth factor-2 (IGF2) 

through the interaction with methyl-CpG-binding domain 

protein 1 (MBD1). Therefore, a ribonucleoprotein 

complex H19-MBD1 is formed. It represses gene 

expression by recruitment of histone lysine 

methyltransferases. Both H19 and IGF2 are involved in 

aging. Moreover, their increased level promotes ARDs 

[75].    

LncRNAs PRNCR1 and PCGEM1. Two lncRNAs,  

namely prostate cancer non-coding RNA 1 (PRNCR1) 

and prostate cancer gene expression marker 1 (PCGEM1), 

generally overexpressed in the most aggressive forms of 

prostate cancers, precisely bind to the androgen receptor 

(AR) and strongly amplify androgen receptor-mediated 

gene expression in both ligand-independent and 

dependent pathways [75].  
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Table 2. Senescence- associated lncRNAs and neurodegenerative disorders. 

 

lncRNA/expression Implication in neurodegenerative disorders Abnormalities in 

neuronal process/ 

Clinical features 

Reference 

MEG3 

-expressed in the 

nucleus and 

cytoplasm 

-upregulated in the hippocampus of old mice;  

-downregulated in old induced 

striatal medium‐sized spiny neurons (MSSNs); 

- PTEN/PI3K/AKT signaling cascade  

-cognitive decline 

-downregulated in HD brain tissue 

- synaptic plasticity in neurons 

[30], [92] 

SORL1-AS - upregulated in AD disease brain affecting Aβ 

formation 

-AD; 

-Protein aggregation; 

-cognitive impairment 

[30], [93] 

Six3OS 

-spatiotemporal 
expression 

- Regulation of Six3 targets through 

interactions with Eya proteins and the 
chromatin-modifying protein Ezh2;  

- adult mouse neurogenesis [94]  

17A -upregulated in frontal and temporal cortices  

-increases Aβ secretion  

-AD; 

-Abolish GABA B2 intracellular signaling  

[95] 

MALAT-1 - upregulated in human aged SVZ; 

 -upregulated in the hippocampus of old mice; 
- scaffold for proteins and RNAs 

-cognitive decline;  

-neurodegeneration; 
-PD 

[30], [96], 

[97]  

UCHL1-AS -downregulated in murine dopaminergic cells; 

- regulated by a transcription factor Nurr1 

required for dopamine cells differentiation 

- Neurodegeneration; 

-PD 

[50] 

ANRIL -altered expression in all tissues -AD; 
- Neurodegeneration; 

[98] 

HOTAIR - high expression of HOTAIR promotes PD -PD [99] 

BACE1-AS  - Increases BACE1 mRNA stability 

and Aβ42 formation 

- up-regulated in AD brains [100], 

[101]   

Abbreviations: Aβ – amyloid β; AD- Alzheimer’s disease; ANRIL- antisense non-coding RNA from the inhibitor of kinase 4  (INK4); GABA - gamma-

aminobutyric acid; HD- Huntington’s disease; HOTAIR - Hox transcript antisense intergenic RNA; MALAT-1- Metastasis Associated Lung 
Adenocarcinoma Transcript 1; MEG3-  maternally expressed gene 3; MSSNs- medium‐sized spiny neurons; NURR1- Nuclear receptor related 1 protein; 
PD- Parkinson disease; PI3K - phosphatidylinoside-3-kinase; PTEN- phosphatase and tensin homolog; Six3OS - Six3 opposite strand ; SORL1-AS- 
sortilin related receptor antisense transcript; SVZ –subventricular zone;  UCHL1- ubiquitin carboxyterminal hydrolase 1; Vax2OS- ventral anterior 

homeobox 2 opposite strand. 

After the interaction between PRNCR1 and AR, the 

association of disruptor of telomeric silencing 1 like 

histone H3 methyltransferase (DOT1L) to the PRNCR1-

AR complex is accelerated through acetylation at the C-

terminal of AR protein. DOT1L mediates N-terminal 

acetylation of AR protein, which increases the enrollment 

of lncRNA PCGEM1. In prostate cancer cells, translation 

of short hairpin RNA targeting these two lncRNAs was 

shown to actively suppress proliferation of cancer cells 

and tumor growth in murine models [76].  

LncRNA MALAT1. The downregulation of 

MALAT1 decreased platelet-derived growth factor-BB 

(PDGF-BB)-induced proliferation and migration by 

inhibiting autophagy. MALAT1 functions as a competing 

endogenous RNA (ceRNA) controlling autophagy-related 

7 (ATG7) gene transcription via sponging miR142-3p. It 

switches the phenotype of vascular smooth muscle cells 

(VSMCs) with consecutive proliferation, contributing to 

different vascular conditions such as atherosclerosis,  

transplant vasculopathy, in-stent restenosis, or vein 

bypass graft failure [77].  

 

LincRNA HOTAIR  

 

LncRNAs - Telomerase RNA Component (TERC) and 

telomeric repeat containing RNA (TERRA) are telomerase 

limiting factors maintaining telomere length and 

controlling the survival of neural stem cells (NSCs) in 

neural aging [2,30] (Table 2). LncRNA TERC provides a 

template for the biosynthesis of telomeric units and forms 

a complex with other proteins. In addition, this lnc has a 

catalytic function through adding telomere repeats [78]. 

Dysregulation of TERRA leads to premature aging; 

elevated levels in particular result in a specific syndrome 

consisting of immunodeficiency, facial dysmorphism and 

centromeric instability [79, 80] (Fig. 2).  

  

Conclusions 

 

Aging is governed by important adjustments in protein 

expression patterns modulated by lncRNAs, which 

critically modify both the pathological and physiological 

decline associated with senescence. Their potential 

usefulness in cancer or neurodegenerative diseases is not 

fully clarified at present. However, we can see the refined 

mechanisms involving the regulatory interaction between 

lncRNAs, miRNAs and RBPs as key actors which could 

http://www.jneurosci.org/content/19/12/4907.short
http://www.jneurosci.org/content/19/12/4907.short
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represent novel targets for future therapeutic 

interventions.  

In summary, this analysis on lncRNAs has revealed, 

through a deeper molecular undestanding, that they are 

truly age-related functional biomolecules with a vital 

contribution in normal physiology or aging-associated 

dysfunction.  
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