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Abstract

This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and
imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets:
BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing
for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of
random classification during the first three days of the experiment with EPOC headset, a control experiment was performed
on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can
enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG
artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier
based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class
Common Spatial Patterns (MCSP) classifier.
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Introduction

A brain-computer interface (BCI) establishes a direct functional

interaction between a human or animal brain and an external

device. There are numerous recent advances in BCI development

and implementation driven by scientific and technological

achievements, as well as social and commercial demands.

Basic research has revealed correlations between brain signals

and mental states [1,2,3,4,5]). This provides a variety of brain

signals which might be used for BCI design [1]. Recent

technological advances allow real-time on-line processing of

multi-channel EEG data using low-cost commercial EEG devices

(e.g. Emotiv EPOC EEG headset [6]). The proliferation of these

devices into the consumer market has been accelerated by the

ability to utilize BCI to partially restore function in various

disabilities (see [2,7]) and by a growing interest in using BCI for

gaming and other consumer applications [8,9,10].

Figure 1 depicts a general scheme of an EEG-based BCI. The

interface consists of an EEG acquisition system, data processing

software for feature extraction and pattern classification, and a

system to transfer commands to an external device and, thus,

providing feedback to an operator.

One approach for BCI design is based on the discrimination of

EEG patterns related to different mental states [4,11,12]. In this

approach the subject is requested to perform different mental

tasks. The classifier is trained to distinguish between EEG patterns

related to these tasks. Execution of each task causes a certain

command being sent to an external device, allowing the operator

to control it by voluntarily switching between different mental

tasks.

If commands sent to the external device trigger different

movements, then psychologically compatible mental states are

imaginary movements of different extremities. For example, when

a subject controls a vehicle or a wheelchair, he can easily associate

right hand movement with a right turn of the device. Moreover,

mental states related to imaginary movements of extremities are

clearly identified by corresponding EEG patterns (synchronization

and desynchronization reactions of the mu rhythm, [13,14]), as

demonstrated in successful BCI projects such as Graz [2,5,15] and

Berlin [16] BCI.

Potential applications of BCI extend beyond motion control,

including controlling home appliances, selecting contacts in a

phone address book or web search engine manipulation. Such

tasks are more naturally accomplished by controlling the BCI with

voluntary generation of corresponding visual images. Recent work

by Cerf et al. [17] demonstrates human ability to voluntarily

regulate the activity of neurons responsible for generation of visual

images, however, their experiments were based on invasive

recordings. As with motion imagination [18,19], functional MRI

data suggest that various spatial brain activation patterns correlate

with specific types of imagined and perceived visual images

[11,20]. According to this data, generation of visual images
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activates nearly the same brain centers as does the perception of

the actual image [21]. It has also been demonstrated that brain

activity patterns vary not only by the type of the visual images, but

also among images of the same type, and that analysis of such

patterns allows to identify the image viewed by the subject, not

only its type [22,23]. These findings provide the rationale to

hypothesize that brain activity patterns corresponding to specific

generated visual images can be identified using EEG. Main goal of

this study is to evaluate this hypothesis. In particular, it evaluates

the opportunity to classify EEG patterns related to imagination of

faces and houses. These types of generated visual images were

shown to have different brain activity patterns in functional MRI

studies [21,24,25].

One crucial part of a BCI system is the EEG pattern classifier,

which identifies patterns corresponding to the subject’s various

mental states. There are many approaches for design of such

classifiers [26]. The Common Spatial Patterns (CSP) method [27],

allowing classification of states of two classes, and its multi-class

generalization, the Multiple-class Common Spatial Patterns

(MCSP) method [28,29,30] are widely used and considered to

be quite efficient. This study compares the Bayesian and MCSP

classifiers both based on EEG covariance matrix analysis.

However, the Bayesian classifier has lower computational

complexity than MCSP which makes it real-time adaptable.

An additional objective of this study is to evaluate the

significance of EEG artifacts caused by blinking and eye

movements, which generate patterns that can differ significantly

in various mental states. Recognition of these artifacts can

substantially improve EEG-based classification of these mental

states. Patterns of involuntary eye movement may differ

significantly, especially when different images are being imagined.

Therefore, identification and removal of these artifacts is essential

to ensure that BCI performance is based on classification of

patterns of brain activity itself, and not based on eye-movement

patterns.

This study was performed using two types of encephalographic

caps: an easy to use readily available 16-channel EPOC (Emotiv

Systems Inc., San Francisco, USA) and a 32-channel ActiCap

(Brain Products, Munich, Germany). Emotiv EPOC is one of the

most accurate consumer EEG headsets with the largest user

community. This device can be potentially used to build a larger

brain activity profile database by building a system for conducting

remote experiments via web and opening it to the large user

community. The experimental results were validated using

ActiCap research EEG device since the research community is

not yet actively using EPOC with few publications referencing the

use of the device [10].

Method

Subjects
Seven male subjects aged from 23 to 30 participated in the

study. All subjects were right-handed and had normal vision. The

experimental procedure was approved by the Board of Ethics at

the Institute for Higher Nervous Activity and Neurophysiology of

the Russian Academy of Sciences. All participants signed the

informed consent forms before participating in the experiments.

All experiments involved non-invasive safe procedures and

resembled a computer survey while using the non-invasive

commercially-available EEG devices. The procedures were also

described in the recruitment phase, where students and staff of

several academic institutions were offered to participate in

experiments involving EEG BCI.

Experimental Design
The experimental protocol is schematically illustrated in

Figure 2. The experiment was conducted on 4 consecutive days,

the one series per day. Each series of the first three days consisted

of two sessions (Figure 2A). The first, training, session was designed

to train BCI classifier. The second, test, session was designed to

provide subjects with the output of the BCI classifier in real time to

enhance their efforts to imagine pictures. At the fourth

experimental day the training and test sessions were preceded by

auxiliary session, which was designed to obtain supplementary data

Figure 1. General scheme of an EEG-based BCI. EEG is recorded by electrodes placed on the scalp and digitized by an ADC. Computer
processing extracts features most suitable for identifying the subject’s intensions. When intension is classified, a certain command is sent to an
external device (e.g., a display). Feedback provides the subject with results of his actions thus allowing him to adapt to the system behavior.
doi:10.1371/journal.pone.0020674.g001
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for estimating the influence of EOG artifacts on the BCI

performance. After the experiment was completed, the efficiencies

of Bayesian and MCSP classifiers were compared offline. The

influence of EOG artifacts on BCI performance was evaluated by

comparing classification accuracy before and after the artifacts

removal from the data of the fourth day.

At the beginning of the study each subject was presented with two

types of pictures: faces (10 pictures from the Yale Face Database B

[31]) and houses (10 pictures from the Microsoft Research

Cambridge Object Recognition Data Base, version 1 [32], adjusted

to black-and-white). Subject selected one face and one house as their

preferred samples to imagine during the experiment.

Subject was sitting in a comfortable chair, one meter from a 170

monitor. Subject was instructed to fix his gaze on a motionless

circle (1 cm in diameter) in the middle of the screen, located at eye

level. Three grey markers were placed around the circle as

displayed in Figure 1. Green color of a particular marker indicated

which mental task has to be performed. Left or right marker

indicated that the subject should imagine a house or face. The top

marker indicated relaxation. Each command to imagine a picture

was displayed for 15 seconds and was preceded by a relaxation

period of 7 seconds. Each clue was preceded by a 3-second

warning (corresponding marker turned blue).

Each day experimental series had fixed correspondence of the

marker and the picture. In the first series the left marker indicated

face and the right marker indicated house. This relation was

reversed in each sequential series to prevent classification based on

steady marker position. Each series contained two sessions of three

blocks (Figure 2(A)). The sessions were separated by a 5-minute

interval. Within each block commands to imagine face or house

were placed in random order, and each command was presented

twice in a block (Figure 2(B)). Thus, each block displayed

command to imagine a picture during 30 seconds and relaxation

command during 28 seconds. In total, each picture has been

imagined during 90 sec and subject has been relaxing for 84 sec in

each of training and test sessions. The entire session took

approximately 4.5 minutes. Before each session the subject had

a chance to view and remember selected pictures.

Each day during the training session, the BCI classifier was

trained to recognize three states: imagining the face, imagining the

house, and relaxation. During the test session, the classifier was

both trained and tested. The subject was provided with visual

feedback: central circle turned green, if the classifier recognized

the target state, otherwise it turned red. Each day the classifier was

trained from scratch.

During the auxiliary session, the subject was asked to blink

(approximately once per second) and to move gaze from the center

of the screen in the indicated direction, and back, fixing gaze for

0.5 sec in each position. The directions were up, right, down, and

left. Each eye movement condition took 40 seconds, and the

blinking condition took 30 seconds (Figure 2(C)).

Data recording
During the first three days of the study, EEG was recorded using

the Emotiv Systems Inc. (San Francisco, USA) EPOC 16-electrode

cap (Figure 3(A)). The electrodes were located at the positions

AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4

according to the International 10–20 system. Two electrodes

located just above the subject’s ears (P3, P4) were used as

reference. The data were digitized using the embedded 16-bit

ADC with 128 Hz sampling frequency per channel and sent to the

computer via Bluetooth. The data were band-pass filtered in 5–

30 Hz range. The impedance of the electrode contact to the scalp

was visually monitored using Emotiv Control Panel software.

On the 4th day of the experiment, EEG and EOG (electrooc-

ulogram) were recorded using the Brain Products, (Munich,

Germany) ActiCap (Figure 3(B)): 24 electrodes (Fz, F3, F4, Fcz,

Fc3, Fc4, FT7, FT8, Cz, C3, C4, Cpz, Cp3, Cp4, P3, P4, Poz,

Figure 2. Schematic illustration of experiment protocol and each session timing. Sequence of sessions (A), structure of each training (test)
session block (B), and structure of auxiliary session (C) are presented. Warnings are marked by blue and instructions to execute each task are marked
by green. Instruction durations are given in seconds. Within each block, the instructions to imagine the face or the house are placed in random order,
and each instruction is presented twice in a block.
doi:10.1371/journal.pone.0020674.g002
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Po3, Po4, Po7, Po8, Oz, O1, O2) were used to record EEG and 6

(SO1, IO1, LO1, SO2, IO2, LO2) electrodes, placed around the

eyes, were used to record EOG. Central frontal electrode (Afz) was

used as reference. The level of electrode impedances was evaluated

by means provided by cap producers. The signals were displayed

in real time on the computer screen that allowed for controlling

their quality visually. The signal provided by EPOC seemed to be

noisier than by ActiCap. This observation was confirmed

quantitatively during the deleting of EEG artifacts.

The data were acquired with 200 Hz sampling frequency and

band-pass filtered in 1–30 Hz range by a computer encephalo-

graph (NBL640, NeuroBioLab, Russia) and additionally filtered in

5–30 Hz range by a software FIR filter using MATLAB Filter

Design toolbox. All other data processing was also carried out with

MATLAB (the Mathworks Inc., Natick, MA, USA).

EEG pattern classification
The algorithms used for mental state classification are described

in the following sections.

Bayesian approach. Suppose that there are L different

classes of mental states and for each mental state the EEG data

distribution is approximately Gaussian with zero mean. Assume

that Ci, a covariance matrix of the data corresponding to the i-th
mental state, is nonsingular. Then, the probability to obtain signal

X under the condition that it corresponds to the i-th mental state

is P(X ji)* exp ({Vi=2), where Vi~X T :C{1
i
:Xzln(det(Ci)).

Following the Bayesian approach, the maximum value of

P(X ji), i~1,:::,L, determines the class to which X belongs.

Hence, the signal X is considered to correspond to the k-th mental

state as soon as k~ arg min (Vi). The equality

X T C{1
i X~trace(XX T C{1

i ) implies that

Vi~trace(XX T C{1
i )zln(det(Ci)) ð1Þ

Because all Vi are rather variable, it is more beneficial to compute

the mean values SViT for sequential EEG epochs using (1)

SViT~trace(CC{1
i )z ln (det(Ci)) ð2Þ

where C denotes an epoch data covariance matrix computed as

SXX TT.

Therefore, to perform the classifier learning it was sufficient to

compute the covariance matrices corresponding to each mental

state. The classifier was tested by approximating the covariance

matrix for each 1-second EEG epoch and computing SViT
according to (2). In addition, during the test session the classifier

was adjusted after the end of each block. For each mental state the

covariance matrix Cb
i was computed based on the block data and

the covariance matrix Ci was replaced with ((1{c)CizcCb
i ),

where the parameter c is 0.01.

MCSP method. This approach is based on covariance tensor

analysis [30]. In case where tensors are second order (i.e., they are

covariance matrices), the MCSP method can be described as follows.

The covariance matrices Ci, i~1,:::,L are obtained based on multi-

dimensional EEG data recorded during the classifier learning. Then

matrices Mi are sought to meet the following requirements

MiCiM
T
i ~Di ð3Þ

MiCSMT
i ~I ð4Þ

where CS~C1zC2z:::zCL, I is the identity matrix, and Di is a

diagonal matrix. The problem of obtaining the matrices Mi has an

explicit solution. Indeed, if CS~UDUT is the singular value

decomposition (SVD) of the CS matrix, with U a unitary matrix

and D a diagonal matrix, then it is easy to prove that

Mi~UT
i D{1=2UT , where Ui is the unitary matrix obtained from

the SVD decomposition D{1=2UT CiUD{1=2~UT
i DiU

T
i . The

matrices Mi are used to project both the training and the test data

onto feature space and, therefore, to obtain a set of training and test

feature vectors for each state. The signal corresponding to a certain

state is segmented into epochs and for each epoch vectors

vi~diag MiSXXTTMT
i

� �
, i~1,:::,L, are computed by estimating

variances of all components of vectors ji~MiX based on the epoch

data X . Then X is mapped onto a feature vector j~ log (v), where v

is concatenation of all vectors vi, and log ( ) is a component-wise log-

transform. After that, classification of the test feature vectors is

performed. We used the SVM algorithm described in [33] for feature

vector classification.

When two mental states are classified, results obtained by

MCSP and CSP [27] are identical. In this case M1~M2~M and

Figure 3. Electrode locations for EEG headsets used in this study. EPOC (A), ActiCap (B).
doi:10.1371/journal.pone.0020674.g003
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SjjTT is a diagonal matrix. If a particular component of j1 has

low variance for a certain state, then this component of j2 has

high variance in this state and vice versa, since D1zD2~I .

Then feature vectors corresponding to different states can be

easily separated. Similarly, when MCSP is applied to classify

more than two states, then for each state i there exist

components of ji with variance significantly lower than

variances of the respective components of jj , j=i. This can

explain the efficacy of MCSP.

Evaluation of classifier quality
To compare Bayesian and MCSP classifiers, offline analysis of

both training and test session data was performed. The

comparison was offline for several reasons. At first, the training

session data could not be analyzed online, because the classifier

had not been trained yet. Secondly, it was reasonable to use only

one classifier (Bayesian in our experiments) for online feedback

control of the mental states during the test session.

To evaluate classifier efficiency, EEG records corresponding to

different mental states were split into epochs of 1 second length.

Then the artifact data were identified according to the 3s rule. All

epochs with more than 7% of samples marked as artifact were

excluded from the analysis. After the exclusion of the artifact

epochs, repeated random sub-sampling validation was performed.

The epochs were split into training and test sets with 90% of

epochs being used for classifier training and 10% epochs being

used for testing. Each learning set contained about 70 epochs and

about 7 epochs were used for classifier testing in each of two

sessions for EPOC and, respectively, about 75 and 8 for ActiCap.

As a result of averaging over 100 splits, a confusion matrix

P~(pij) was obtained. Here pij is an estimate of probability to

recognize the i-th mental state in case the j-th mental state is to be

produced. Note that in case of the good state recognition diagonal

elements of matrixP are significantly greater than non-diagonal

ones; and if there is no classification error, then P is identity

matrix.

Mean of the confusion matrix diagonal elements

p~
X

i

pij=L ð5Þ

was chosen as an index of the classification quality. It is easy to see,

that p~1 when the states are recognized perfectly, and p~1=L if

classification is independent of the mental states produced.

The classifier performance was also measured by computing the

mutual information between the commands to produce mental

states and the states classified:

g~{
X

ij

pijp0j log2(pij=pi0) ð6Þ

In equation (6) pi0~
P

j pijp0j is probability of the i-th state to

be recognized and p0j is probability of the j-th command to be

presented. Notice that if probabilities to display each command

are assumed to be equal, then p0j~1=L. In this case g~log2L as

soon as there is no classification error. Also notice that g~0 when

the state recognition is independent of the commands.

Consider a special case when probabilities of correct recognition

of different mental states equal to each other, i.e. pii~p for all i,
and probabilities of incorrect recognition also equal each other, i.e.

pij~(1{p)=(L{1) for all j=i. Then the mutual information

between the displayed commands and the states classified can be

obtained as follows:

g~log2Lzplog2pz(1{p)log2((1{p)=(L{1)) ð7Þ

Based on [34], equation (7) is often used to estimate BCI efficacy

([35,36,37]). But if the corresponding assumptions are not true, the

value of g, calculated according to (7), is lower than the actual

mutual information. In this study we used the general formula (6).

EOG artifact removal
To evaluate the influence of EOG artifacts on BCI performance

we compared BCI efficiencies before and after artifact removal from

recordings of the fourth day. To remove the artifacts from recordings

of the training and test sessions we concatenated the recordings with

those of the auxiliary session. These data were not filtered in 5–30 Hz

range in order to avoid artifact attenuation that could impair their

detection. To identify the artifacts we used implementation of the

Infomax Independent Component Analysis (ICA) algorithm (EE-

GLAB RUNICA, [38]). As a result of ICA, multidimensional signal

X containing both EEG and EOG data, is represented as

X (t)~Wj(t)

where W is a matrix of weights where columns specify contribution

of the corresponding independent component into each EEG or

EOG channel and vector j(t) specifies intensities of the independent

components. Since NEEG~24 electrodes were used to record EEG

and NEOG~6 electrodes were used to record EOG, W is a

(NEEGzNEOG)|(NEEGzNEOG) matrix. The obtained indepen-

dent components were sorted according to their contribution to the

total variance of the EOG signals. The first NA components

constituting 97% of the variance were treated as artifact

components. Artifact removal was performed by setting intensities

of artifact components to zero. This is equivalent to removing the

first NA columns of W. Thus, refined EEG signal is represented as

XEEG(t)~WEEGjEEG(t)

where WEEG was a NEEG|(NEEGzNEOG{NA) matrix of weights

and jEEG was (NEEGzNEOG{NA)-dimensional vector of non-

artifact source intensities. The WEEG matrix was obtained from the

W matrix by removing NA columns corresponding to the artifact

components and NEOG rows corresponding to the EOG channels.

Results

The first part of this section demonstrates the results of the

offline classifier comparison. We also show that the EOG input

into EEG is sufficient for BCI control. This emphasizes

importance of EOG artifact removal to obtain BCI based on

brain activity only, and not based on eye movement and blinking.

Afterwards, results of classification of the data with EOG artifacts

removed are presented.

BCI efficiency
Table 1 shows the confusion matrix obtained for one subject by

offline Bayesian classification of the data recorded during the 4th

day training session. It can be seen that matrix is diagonally

dominant, which means that correct recognition is prevalent. In

this case p, mean of the matrix diagonal elements, equals to 0.54

and g, mutual information, equals to 0.14. In contrast, p~0:33
and g~0 if three states were classified randomly.

Figures 4 and 5 show p and g values for all 4 experimental days

for all subjects. Left panes (A and C) of each figure represents

BCI Based on Generation of Visual Images
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classification quality for Bayesian approach and right panes (B and

D) represent quality for MCSP. Respectively, upper panes (A and

B) represent quality for training session and lower panes (C and D)

represent quality for test session. For every subject and every

session of each day values of p exceed the value of 0.33 which

corresponds to random classification.

Two-way ANOVA test for EPOC data did not reveal

dependence of p and g indices on the day of experiment

(Pw0:15 for both sessions, both classifiers, and both indices).

However this test revealed significant increase of p and g when

comparing MCSP classification of training and test sessions

(P~0:013 for p and P~0:023 for g). At the same time, the

increase was not significant for Bayesian classification (P~0:20 for

p and P~0:08 for g). Two-sample t-test for ActiCap data revealed

that p index was significantly higher for MSCP classification of the

test session than for training session (P~0:03). Observed trend of

quality improvement in the test session might be explained by

subjects’ additional training during the preceding training session

as well as the increase in subjects’ focusing on the task when they

were provided with visual feedback.

Table 1. Confusion matrix obtained with the Bayesian classifier for one subject based on the data of the 4th day learning session.

Commands presented

Relax Imagine the house Imagine the face

Recognized states Relaxation 0.53 0.15 0.18

Imagining the house 0.20 0.52 0.24

Imagining the face 0.27 0.33 0.58

doi:10.1371/journal.pone.0020674.t001

Figure 4. Classification quality for all subjects during training and test sessions, as measured by value p. Classification quality during
training is displayed on left panes A and C, quality during test is presented on panes B and D. The first row of columns corresponding to the 4th day
(4a) represents p values computed from data for 16 EEG electrodes, and the second one (4b) represents the values computed from data for all 24 EEG
electrodes. Notice that each column exceeds the level p = 0.33 related to random classifying.
doi:10.1371/journal.pone.0020674.g004

BCI Based on Generation of Visual Images
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Also ActiCap data were classified significantly better than

EPOC data (two-sample t-test, Pv0:015 for both training and test

sessions and both classifiers). For the ActiCap data the maximum

value of p over all subjects equals to 0.66 (0.68) for the Bayesian

(MCSP) classifier and the maximum value of g over all subjects

equals to 0.39 (0.48) for the Bayesian (MCSP) classifier. Average

values of p and g over all subjects and sessions equal 0.52 (0.56)

and 0.15 (0.20) for Bayesian (MCSP) classifier. For the EPOC data

maximum values over all subjects and experiment days equals to

0.52 (0.63) for p and 0.18 (0.40) for g. Average values of p and g

over all subjects, sessions, and days equals to 0.45 (0.48) and 0.07

(0.11) correspondingly. It can be seen that on average MCSP

classifier based on covariance matrix analysis performed slightly

better than the Bayesian one. The difference in classification

Figure 5. Quality of classification measured by index g. Data representation is the same as in Figure 4.
doi:10.1371/journal.pone.0020674.g005

Table 2. Confusion matrix obtained as a result of Bayesian classification of EEG patterns, corresponding to various eye movements
and blinking, prior to EOG artifact removal.

Commands presented

Blink Move gaze upwards Move gaze right
Move gaze
downwards Move gaze left

Recognized states Blinking 0.73 0.06 0.00 0.05 0.00

Upward eye movements 0.04 0.66 0.02 0.10 0.01

Rightward eye movements 0.00 0.04 0.81 0.05 0.27

Downward eye movements 0.22 0.21 0.01 0.78 0.02

Leftward eye movements 0.01 0.03 0.16 0.02 0.70

doi:10.1371/journal.pone.0020674.t002

BCI Based on Generation of Visual Images
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quality was small but significant for EPOC data (two-sample t-test,

Pv0:01 for p and g over all subjects, experimental days, and

sessions) although not significant for ActiCap data (two-sample t-

test, Pw0:05 for p and g over all subjects and sessions).

Influence of EOG artifacts
It could be possible that the relatively high BCI quality observed

is related to eye movement. During imagining selected pictures

subjects might be making involuntary eye movements in specific

patterns, detailing the imagined pictures. Below we show that

classification between states is actually based on differences in

brain activity measured by EEG, and not on patterns of eye

blinking and movements.

To investigate this we demonstrated that patterns resulting from

eye movements and blinking on EEG could be easily discriminated

by means of the proposed classifiers. On the fourth experimental

day auxiliary session data were processed as described in Evaluation

of classifier quality section above. Recall that the EEG patterns

recognized were induced by blinking and eye movements of four

types (up-center, right-center, down-center and left-center).

Table 2 shows the confusion matrix coefficients (pij ) for one

subject, obtained as a result of Bayesian classification. The

diagonal coefficients of the matrix presented are observably

dominant indicating high classification quality. Mean values of p

among the subjects were 0.6360.04 and 0.6460.04 for the

Bayesian and the MCSP classifiers respectively, and corresponding

Figure 6. Decrease of total variance of signals after sequential removal of the independent components for all subjects. Left pane (A)
represents signals recorded by EOG electrodes, and right pane (B) corresponds to EEG electrodes. Removed artifact components are marked by red
points.
doi:10.1371/journal.pone.0020674.g006

Figure 7. Signals from EOG electrodes for one of the subjects and corresponding independent components, identified as EOG-
related for this subject. EOG signals are presented in blue (6 lower curves), corresponding independent components are displayed in red (5 upper
curves). From left to right, signals correspond to: blinking (B), moving eyes upwards (U), to the right (R), downwards (D) and to the left (L). Each curve
is normalized by the standard deviation.
doi:10.1371/journal.pone.0020674.g007
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mean values of g were 0.8660.14 and 0.8560.13. Note that

p~0:2 when five states are classified randomly. The mutual

information g for the EEG patterns mentioned above is an order

of magnitude greater than the quality achieved in recognition of

patterns that correspond to imagining the pictures.

Next, EOG artifacts were removed from the auxiliary session

data using the method described in section EOG artifact removal.

Briefly, the ICA decomposition of the signal was obtained and the

components comprising the 97% of total variance of signal from

EOG channels were eliminated. Figure 6(A) shows residual values

of EOG signal variance during the sequential removal of

components rated according to their contribution. Results are

shown for all 7 subjects. Margin of 3% is also shown in Figure 6(A).

Note that the number of the artifact components never exceeded

the number of EOG channels so the covariance matrices

computed based on the refined data were never singular.

Figure 6(B) shows decrease of the total variance of signals from

EEG channels during the sequential removal of the EOG-related

components. Contribution of the components into EEG signal is

quite substantial, but their removal suppresses EEG signal less

significantly than it does for EOG signal. Total EEG variance,

averaged over all subjects, remains at 30% after artifacts are

removed.

Figure 7 shows the signals from 6 EOG electrodes for one

subject and 5 independent components, identified as EOG-related

for this subject. There is an evident correspondence between the

components and types of EOG artifacts. Figure 8 demonstrates the

result of EOG artifact removal. The data previously contaminated

with artifacts became indistinguishable from the data initially

containing no artifacts.

Figure 9 presents distributions of individual ICA components

related to EOG artifacts over the head. They agree with

distributions for modeled blinking and eye movement artifacts,

described in [39].

The confusion matrix for data obtained in auxiliary session of the

fourth day after EOG artifact removal is presented in Table 3 for

the same subject as in Table 2. As shown, recognition quality is

substantially reduced due to artifact removal. Mean values of p

among the subjects dropped to 0.5060.03 and 0.4260.03 for the

Bayesian and MCSP classifiers respectively, and corresponding

mean values of g dropped to 0.4760.10 and 0.2960.06. The

difference of quality measures computed before and after artifact

removal is significant (two-sample t-test, Pv0:01 for both classifiers

and both measures). It is remarkable that even with nearly complete

exclusion of EOG artifacts the quality of EEG pattern classification

remained quite high and significantly exceeded random level (one-

sample t-test performed for p index, Pv10{4).

The second step to investigate possible EOG artifact effect on

classification of EEG patterns corresponding to imagining the

pictures was to evaluate the quality after EOG artifact removal.

Data obtained on the fourth experimental day were used since

EOG was recorded only during this day. During processing

training and test sessions, each session data was filtered in 1–30 Hz

range and concatenated with the auxiliary session data. The

concatenated records were decomposed using ICA to identify

EOG-related components and eliminate them. The artifact

Figure 8. Result of blinking artifact suppression for one of the EOG channels and one of EEG channels. Blue and red curves represent
signals before and after artifact components removal respectively.
doi:10.1371/journal.pone.0020674.g008

Figure 9. Spatial distributions of individual ICA components related to EOG artifacts. Graphs correspond to blinking (B), moving eyes
upwards (U), to the right (R), downwards (D) and to the left (L).
doi:10.1371/journal.pone.0020674.g009
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components were quite similar to those obtained during processing

the auxiliary session data alone. Their number was the same for

each subject and they could be easily attributed to eye movements

of a particular type or blinking. After EOG artifacts were removed

the data auxiliary session records were discarded, the remaining

EEG data were filtered in the 5–30 Hz range and used for off-line

classification quality estimation.

The result of the classification is represented by Table 4. All

changes in classification quality measured by p or g are insignificant

for both classifiers and both training and test sessions (two-sample t-

test, Pw0:5 in all cases). This indicates that state classification is

actually based on differences in brain activity measured by EEG,

but not on patterns generated by eye blinking and movement.

Features of EEG patterns relevant for BCI performance
To reveal which features of EEG patterns are important for

recognition of three considered mental tasks we found frequency

bands and EEG electrodes most contributing to BCI performance.

The data of the last fourth experimental day obtained by ActiCap

for test session were chosen for analysis because these data were

classified best.

The total frequency range was divided into 6 not overlapping

frequency bands (5–7, 8–12, 13–17, 18–22, 23–26, 27–30 Hz) and

BCI performance was evaluated by Bayesian classifier for each of

the bands. The band 8–12 Hz happened to be most relevant. It

provides the classification quality p = 0.55 that is equal to the

quality obtained for the whole frequency range of 5–30 Hz (see

Table 4). The same quality was achieved for any combination of

bands containing 8–12 Hz band.

The quality p was also calculated in dependency on the number

Nel of electrodes used for EEG classification. To find the optimal

configuration of electrodes of given number we used a ‘‘greedy’’

algorithm which discarded electrodes one by one starting from the

set of all EEG electrodes. At each step an electrode was removed

from the set of electrodes, obtained at the previous step, so that

remaining set of electrodes provided the highest classification

accuracy. The quality p in dependence on Nel averaged over all

subjects is shown in Figure 10. The quality monotonously

decreases with reducing number of electrodes but the rate of

decrease becomes larger when Nel reaches 12. Therefore we treat

that set of 12 electrodes as most relevant for EEG pattern

classification. The locations of these electrodes at the head are

shown in Figure 10. Notably, the electrodes P4, Po4, Po8, Po3,

and Po7 are among 12 optimal electrodes. EEG recorded by these

electrodes might reflect the activity of the areas in medial fusiform

gyri, lateral fusiform gyri and iferior temporal gyri which are found to be

related to imagination of faces and houses using fMRI study [21].

Although the confusion matrices for individual subjects have not

revealed the dominance of one of the considered mental tasks (e.g.

Table 1), analysis of optimal frequency band and optimal electrode

Table 3. Confusion matrix obtained as a result of Bayesian classification of EEG patterns, corresponding to various eye movements
and blinking, after EOG artifact removal.

Commands presented

Blink Move gaze upwards Move gaze right
Move gaze
downwards Move gaze left

Recognized states Blinking 0.49 0.22 0.04 0.02 0.12

Upward eye movements 0.04 0.37 0.08 0.10 0.07

Rightward eye movements 0.30 0.24 0.51 0.28 0.14

Downward eye movements 0.01 0.10 0.20 0.39 0.23

Leftward eye movements 0.16 0.07 0.17 0.21 0.44

doi:10.1371/journal.pone.0020674.t003

Table 4. Comparison of EEG pattern recognition quality for
the training and the test sessions, before and after EOG
artifact removal.

Training session Test session

Bayesian MCSP Bayesian MCSP

Artifacts
included

p 0.5260.02 0.5160.02 0.5560.02 0.5760.03

g 0.1460.02 0.1560.03 0.1960.04 0.2260.05

Artifacts
excluded

p 0.5160.01 0.5160.02 0.5460.02 0.5760.02

g 0.1360.02 0.1560.03 0.1760.04 0.2260.05

doi:10.1371/journal.pone.0020674.t004

Figure 10. Classification quality p depending on the number of
electrodes. Red graph corresponds to classification among three
mental states (imagining of two pictures and relaxation). Blue graph
represents classification of two mental states (imaging of two pictures,
relaxation is not considered). Optimal electrode configurations are
shown by green dots.
doi:10.1371/journal.pone.0020674.g010
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configuration showed that posterior alpha rhythm is most relevant

to BCI performance. Since alpha rhythm on posterior electrodes is

believed to reflect the change in attention [40] one can expect that

subjects’ increased awareness during picture imagination com-

pared to relaxation is the decisive factor underlying classification

ability. That is why we analyzed the classifier ability to distinguish

between each pair of mental tasks. The results are shown in

Table 5. Despite the fact that relaxation is actually better

distinguished from each picture imagination, the quality of two

pictures classification is comparable and significantly exceed the

level of random classification (one-sample t-test, P,0.001 for both

sessions, classifiers and measures). Remind that the level of

random classification of two classes amounts to p = 0.5.

The quality p of classification of two pictures in dependence on

number of electrodes is also shown in Figure 10. The quality does

not decrease until the number of electrodes is Nel = 8. We treated

the remaining electrodes as most relevant for classification of EEG

patterns corresponding to imagination of faces and houses. The

found optimal configuration of 8 electrodes is shown in Figure 10.

Remarkably, the configuration contains P4, Po3, and Po4

electrodes as for classification of 3 mental tasks.

Discussion

This study demonstrates that patterns of brain activity formed

by imagining pictures can be classified based on EEG recordings

obtained by both used headsets: Emotiv EPOC and BrainProducts

ActiCap. The percentage of correctly recognized states signifi-

cantly exceeded 33%, which is percentage of the states classified at

random. It averaged 48% for the EPOC data and 54% for the

ActiCap data, while for some subjects it was as high as 62%

(EPOC) and 68% (ActiCap). The classification quality evaluated

by information measure g averaged 0.11 bit/sec (6.6 bit/min,

EPOC) and 0.17 bit/sec (10.2 bit/min, ActiCap), approaching

0.40 bit/sec (24 bit/min, EPOC) and 0.48 bit/sec (29 bit/min,

ActiCap) for some subjects. These results are comparable to

characteristics of BCIs based on motion imagination. For example,

the BCI described by [16], had average p equal to 88% when two

states were recognized, and its information index of classification

quality averaged 23 bit/min, approaching 35 bit/min for some

subjects.

Special attention was devoted to examining the effects of

blinking and eye movement on the EEG pattern classification

quality. Imagining of different pictures may lead to different

patterns of eye movements, e.g. involuntary ‘‘scanning’’ of

imagined picture details. Thus, contribution of EOG artifacts in

EEG could facilitate EEG-based discrimination of imaginary

pictures. To demonstrate the efficacy of BCI based on eye

movement and blinking recognition, a designated session was

conducted for each subject, where the subjects created 5 various

patterns of EOG artifacts. Since EPOC headset provides no

means to record electro-oculogram BrainProducts ActiCap was

used. Recognition quality for such artifacts is significantly higher (g
averaged 0.72) than classification quality for EEG patterns related

to imagining pictures (g averaged 0.17). Furthermore, recognition

quality of EOG induced patterns is quite high even when the EOG

artifacts are suppressed on EOG electrodes by a factor more than

30. This likely caused by the remaining input from brain centers

which activity is associated with eye movements (e.g. lambda

waves which accompany saccadic eye movements, [41]). We

demonstrate that the EEG pattern classification quality for

imagining the pictures is not altered by EOG artifact removal,

indicating that this recognition is based on brain centers’ activity.

We believe that other factors such as eye muscle activity or frowns

does not impact BCI performance because frequency band

optimal for classification was found to be 8–12 Hz and the half

of the most relevant electrodes were posterior.

Our study is the first step in BCI research based on generation

of visual images. We believe that performance of the BCI can be

considerably improved. Our results are in line with this suggestion.

It was shown that subjects’ training enhanced the classification

quality. An increase in number of electrodes also enhanced it

(Figure 10). The classifiers used in this study were based only on

analysis of covariance matrices. Therefore these methods ignore

the frequency structure of the EEG signal although it is known that

taking it into account can significantly increase classification

quality (for example, [30]). The significance of frequency structure

for BCI performance is also shown in the present paper. We

expect that extraction and detailed investigation of signal features,

increasing training time and improvements in training procedure

could result in increases in both the number of recognizable

mental states and the classification quality.

This study demonstrates that a relatively simple and computa-

tionally inexpensive Bayesian classifier is competitive with the

classifier based on MCSP and SVM methods considered to be the

most effective in BCI [28,30]. This observation makes the method

worthy of further attention. In the future work we also plan to

evaluate the feasibility of the filter bank CSP method [42] for this

problem.

Quite substantial quality of EEG pattern classification achieved

for EPOC data and no influence of EOG artifacts on BCI

performance revealed that conducting large-scale experiments in

the future can be feasible. Emotiv headset usage in BCI

applications is rapidly expanding. It may allow collecting large

database of EEG profiles related to picture imagining.

In addition to a variety of consumer applications, BCI can

facilitate the solution of a fundamental problem concerning

localization of brain centers activated during imagination.

Recently, functional MRI studies have supplied significant insight

into this area of investigation ([11,20,21,22,23]), but these methods

lack reasonable temporal resolution. We can expect that use of

biological feedback which allows the subject to control how

corresponding brain centers work, will ensure the stability of their

activity. This will simplify localization of the active centers by

solving the inverse EEG problem using any of the relevant

methods [43]. At the same time, discovery of such centers will

provide a clue to classification method improvement. In addition,

approaches similar to described in [44] can potentially reduce time

required for training and, therefore, improve image-based BCI

usability.

Table 5. Results of pair wise EEG patterns recognition for the
training and test sessions of the last experimental day.

Training session Test session

Bayesian MCSP Bayesian MCSP

Relaxation
vs. face

p 0.6960.03 0.6860.03 0.7360.03 0.7360.03

g 0.1260.03 0.1260.03 0.1860.04 0.1960.06

Relaxation
vs. house

p 0.7260.02 0.7060.02 0.7060.03 0.7060.03

g 0.1560.03 0.1460.03 0.1560.04 0.1460.05

House vs. face p 0.6260.01 0.6360.02 0.6460.02 0.6460.02

g 0.0560.01 0.0560.01 0.0760.01 0.0760.02

doi:10.1371/journal.pone.0020674.t005
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