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Abstract

Structural brain imaging provides a critical framework for performing stereotactic and in-
traoperative MRI-guided surgical procedures, with procedural efficacy often dependent
upon visualization of the target with which to operate. Here, we describe tools for in vivo,
subject-specific visualization and demarcation of regions within the brainstem. High-field 7T
susceptibility-weighted imaging and diffusion-weighted imaging of the brain were collected
using a customized head coil from eight rhesus macaques. Fiber tracts including the superi-
or cerebellar peduncle, medial lemniscus, and lateral lemniscus were identified using high-
resolution probabilistic diffusion tractography, which resulted in three-dimensional fiber tract
reconstructions that were comparable to those extracted from sequential application of a
two-dimensional nonlinear brain atlas warping algorithm. In the susceptibility-weighted im-
aging, white matter tracts within the brainstem were also identified as hypointense regions,
and the degree of hypointensity was age-dependent. This combination of imaging modali-
ties also enabled identifying the location and extent of several brainstem nuclei, including
the periaqueductal gray, pedunculopontine nucleus, and inferior colliculus. These clinically-
relevant high-field imaging approaches have potential to enable more accurate and com-
prehensive subject-specific visualization of the brainstem and to ultimately improve
patient-specific neurosurgical targeting procedures, including deep brain stimulation lead
implantation.

Introduction

Structural brain imaging has become an important tool for guiding neurosurgical procedures,
including microelectrode mapping, catheter insertion, ablation, and deep brain stimulation
(DBS) lead implantation [1, 2]. Image-based targeting approaches can be especially useful
when the dimensions and locations of the neuroanatomical targets vary amongst patients [3]
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and when the targets are small and embedded within complex networks of nuclei and fiber
tracts, which may influence clinical outcomes when affected by the neurosurgical treatment
[4]. Recent investigational applications of electrical stimulation within the brainstem to treat
parkinsonian freezing of gait [5, 6], relieve central pain [7], and restore hearing [8] underscores
the need for more refined image-based targeting techniques of DBS lead implants in the con-
text of the brainstem. This is especially relevant given that millimeter-scale implantation inac-
curacies often result in lower stimulation thresholds for evoking side effects than for delivering
therapy [9-12].

In practice, however, imaging detailed neuroanatomy of the brainstem with conventional
MR scanners (1.5-3T) has been difficult [13] due to overall lack of contrast, small region of in-
terest, and ambiguous borders between nuclei and fiber tracts [4, 14]. Higher field strength
scanners have yielded higher-resolution images at 7T [15, 16] and 8T [17], while alternative se-
quences have provided higher contrast images in parts of the brainstem [18-26]. Diffusion-
weighted imaging (DWI) at 3T [27-29] and 7T [30-32] and diffusion tractography at 1.5T
[33-35] and 3T [14, 36] have been useful to identify fiber tracts within the brainstem non-inva-
sively; however, these techniques do not include probabilistic tractography and have not been
previously validated. Other studies utilizing very high resolution ex vivo imaging and histology
have been able to identify regions within the human brainstem [37] and validate tractography
[38]. However, ex vivo imaging is not practical for direct targeting applications so there is need
to further integrate in vivo high field imaging and high-resolution probabilistic tractography
approaches for visualization of structures within the brainstem.

While the development of in vivo high field imaging [39, 40] with advanced diffusion
weighted imaging sequences [32, 41, 42] has potential to increase the spatial resolution of imag-
ing the brainstem [43], there is also a necessity to validate the contrast maps [44] and quantify
how they vary amongst subjects [35]. For example, current in vivo MRI-based techniques to lo-
calize the pedunculopontine nucleus (PPN) in the human brainstem have utilized an atlas to
predict the coordinates of the PPN in relation to the 4™ ventricle and the contrast of proton-
density MRI to estimate the general area of the PPN. The atlas-based methods have produced
reasonable localization in the lateral and anteroposterior coordinates (within 0.5 mm) but large
inaccuracies in the rostrocaudal coordinates (3.3 mm) [4].

Here, we show that a multi-modal imaging approach using 7T MRI in vivo enables accurate
identification of the PPN, inferior colliculus (IC), and periaqueductal gray (PAG) as confirmed
with histology in two subjects. The acquired dataset enabled: 1) investigating what contrast ex-
ists in the non-human primate brainstem using high-field 7T susceptibility-weighted imaging,
2) developing methods to identify structures not directly visible even with high-field MRI, 3)
generating probabilistic fiber tractography of the brainstem, 4) assessing the anatomical vari-
ability of brainstem structures across eight rhesus macaques, and 5) comparing the nuclei and
fiber tract reconstructions to post-mortem histology. Improvements in the visualization of ana-
tomical targets using these tools hold promise for more accurate subject-specific surgical tar-
geting of interventions in the brainstem [9] ultimately influencing the clinical outcomes of
neurosurgical interventions in this region of the brain.

Materials and Methods
Data Acquisition

Eight rhesus macaque monkeys (macaca mulatta, 7 females, 1 male, Table 1) were scanned at
the Center for Magnetic Resonance at the University of Minnesota, using a passively shielded
7T magnet (Magnex Scientific) operating with a Siemens console and head gradient insert ca-
pable of 80 mT/m and a slew rate of 333 mT/m/s. A radio frequency head coil, consisting of 16
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Table 1. Subject characteristics and imaging protocols (iso: isometric).

Subject Gender

M1
M2
M3t
M4+
M5+t
M6t
M7
M8t

< M M m M m T M

1 tractography performed
* histological confirmation

doi:10.1371/journal.pone.0127049.t001

Age Resolution (mm)
T1-W T2-W Swi

22 0.667 iso 0.4x0.4x0.7 0.4 iso
22 0.667x0.667x0.33 0.4x0.4x0.8 0.4 iso
18 0.5iso 0.33iso 0.33 iso
14 0.5iso 0.33iso 0.33 iso
13 0.5 iso 0.5iso 0.4 iso
10 0.667x0.667x0.7 0.4x0.4x0.8 0.4 iso
9 0.5 iso 0.5 iso 0.4 iso
4 0.5x0.5x0.249 0.4x0.4x0.8 0.33 iso

transmit and 16+6 receive channels, with 4 smaller element coils positioned on top of the head
for higher sensitivity and 2 ear-loop coils to enhance signal detection from brainstem struc-
tures, was designed specifically for primate studies [45]. All procedures were approved by the
Institutional Animal Care and Use Committee of the University of Minnesota and complied
with United States Public Health Service policy on the humane care and use of laboratory ani-
mals. Animals were housed individually in a Primate Products Enhanced Environment Hous-
ing System (12/12 hour light dark cycle) in the Research Animal Resources facility of the
University of Minnesota. The animals were given a range of environmental enrichment (e.g.
toys, mirrors, TV), provided with water ad libitum, and given a range of food options including
fresh fruit and vegetables. All efforts were made to provide good care and alleviate unnecessary
discomfort, and no adverse events occurred. Animals were anesthetized with isoflurane (2.5%)
during the imaging sessions and monitored for depth of anesthesia. At the conclusion of the
study and in order to validate the imaging data, two animals were randomly chosen to be deep-
ly anesthetized with sodium pentobarbital and perfused with a fixative solution containing 4%
paraformaldehyde, consistent with the recommendations of the Panel on Euthanasia of the
American Veterinary Medical Association.

Imaging sequences included T1-weighted imaging (T1-W), T2-weighted imaging (T2-W),
susceptibility-weighted imaging (SWI), and diffusion-weighted imaging (DWT). T1-W images
and T2-W images were acquired with a 3D-MPRAGE sequence and a 2D turbo spin echo se-
quence, respectively, with the resolutions shown in Table 1. SWI was acquired with a 3D flow-
compensated gradient echo sequence using a FOV of 128 x 96 x 48 mm?, matrix size of 384 x
288 x 144 (0.33-0.4 mm isotropic resolution), TR/TE of 35/29 ms, flip angle of 15°, BW of 120
Hz/pixel, and acceleration factor of 2 (GRAPPA) along the phase-encoding direction. DWI
was acquired with a single refocused 2D single-shot spin echo EPI sequence [46] using a FOV
of 128 x 84 x 99 mm?>, matrix size of 128 x 84 x 50 (1 mm isotropic resolution), TR/TE of 3500/
53 ms, BW of 1860 Hz/pixel, and an acceleration factor of 3 (GRAPPA). Diffusion-weighted
images (b-value = 1500 s/mm”®) were acquired with diffusion gradients applied along 142 uni-
formly distributed directions. Fifteen additional non-diffusion-weighted images (b = 0 s/mm?)
were also acquired. To correct for geometric distortions in the EPI images due to magnetic
field inhomogeneity we utilized TOPUP [47] in FSL. This technique exploits multiple non-dif-
tusion-weighted (b0) scans with opposite (anterior-posterior and posterior-anterior) phase-en-
coding directions to calculate and compensate for the deformation field.
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Fig 1. Process for reconstructing brainstem nuclei and fiber tracts in 3D from 7T MRI. The brainstem region outlined in blue (A) was cropped (B) from
each coronal 7T SWI MR image. (C) An affine deformation algorithm based on user-defined seed points was used to warp contours from a rhesus macaque
brain atlas to the MRI of each subject. The PPN is outlined in white. (D) Algorithm-defined contours from nuclei and fiber tracts within brainstem were outlined
on each slice and then (E, F) lofted to create surface renderings.

doi:10.1371/journal.pone.0127049.g001

Nonlinear Atlas Registration

To identify nuclei and fiber tracts that were not visible on the MRI, a rhesus macaque brain
atlas [48] was registered and nonlinearly warped to each subject’s MRI volume, which was
aligned in AC-PC space (Analyze) and resliced in the coronal plane. The algorithm (MATLAB)
used a nonlinear affine transformation [49, 50] to individually warp 2D atlas slices to corre-
sponding MRI slices. The first and last atlas plates of the desired warped region were matched
identically to coronal MRI slices, and the remaining slices were generated from the existing
MRI to match the atlas plates exactly. The slices were cropped to include only the brainstem to
reduce computational time of the warping algorithm (Fig 1A and 1B), which solved for the
transformation that minimized the distance between manually-defined seed points on an atlas
image with those placed on an MR image (Fig 1C). A fold-back control feature was added in
cases when the Jacobian of the transformation function was negative, in which case the warping
procedure was compartmentalized into a series of smaller partial deformations to avoid the
sign change. The resultant deformed atlas images were imported sequentially into a non-uni-
form rational B-spline modeling program (Rhinoceros) to generate 3D surface reconstructions
of the individual nuclei and fiber tracts [51, 52] (Fig 1D-1F).
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Probabilistic Diffusion Tractography

In order to obtain accurate 3D visualization of the fiber pathways within the brainstem, we lev-
eraged the warped slices described above to guide the seed points for probabilistic diffusion
tractography in FSL in four subjects (M3, M5, M6, and M8) [53-55]. SWI DICOM image sets
were converted to NIfTT files (dem2nii DICOM to NIFTT converter) and imported into FSL.
The cranium was removed from the images using the brain extraction tool (BET) in FSL [56].
For all subjects, flirt linear registration tool in FSL with 7 degrees of freedom (DOF) was able to
obtain a sufficient alignment between the SWI data and diffusion data [57-59], with the latter
undergoing a pre-processing routine using the bedpostx command to estimate diffusion param-
eters. An inter-modal cost function (correlation ratio and mutual information-based options)
was used because the two images were of different modalities. The output transformation ma-
trix was used to transform the coordinates of objects between SWI and DWI spaces.

Masks were created in the SWI data in FSLView by manually highlighting pixels where a
particular tract began in the caudal brainstem or cerebellum. For the superior cerebellar pedun-
cle (SCP) and medial lemniscus (ML) tracts, a mask of the entire thalamus was segmented
manually in FSL and used as a waypoint for the tractography analysis. This ensured that the
tracts were not overly guided and that the tractography results could be evaluated for how se-
lectively they projected to their functionally-specific region of thalamus. This process is shown
for the placement of the seed mask in the caudal pons to run the tractography algorithm for
the ML and its projection into the ventral posterolateral pars caudalis nucleus of thalamus
(ventralis caudalis in humans) (Fig 2). In order to reconstruct the portion of the lateral lemnis-
cus (LL), a seed mask was placed just dorsal to the medial lemniscus seed mask with a waypoint
mask segmented in the medial geniculate body (MGB) by way of the inferior colliculus (IC).
Tractography of the SCP was more complicated due to its decussation in the midbrain. From
the decussation, the majority of the crossed fibers are known to ascend to the red nucleus and
either terminate there or continue rostrally to the motor nucleus of thalamus [60]. In order to
identify this pathway, the seed masks were placed in the posterior pons with way point masks
placed at the decussation of the SCP and the entire contralateral thalamus. In two animals (M6
and M8), an additional waypoint in the red nucleus (RN) was used to better identify the
SCP tract.

The masks were then transformed into DWI space using the inverse of the transformation
matrix calculated using flirt. To compute the tractography, each mask was specified as a seed
point mask or a waypoint mask in the probtrackx command. The resultant NIfT1II file, the out-
put of probtrackx, was then transformed back into SWI space for visualization purposes. A
threshold was applied to the tracts (Amira, Hillsboro, OR), and AC-PC alignment was used
to align the warped nuclei with the tracts as a validation of both the tracts and the warping
algorithm.

Immunohistochemistry

Following completion of all imaging studies, monkey M3 and M4 were deeply anesthetized
and given a lethal dose of sodium pentobarbital (100 mg/kg, i.v.). Transcardial perfusion con-
sisted of 0.9% NaCl at room temperature (r.t.) delivered at a rate of approximately 50 ml/min
for 40 min followed by 4% paraformaldehyde at 4°C delivered at the same rate for 60 min. The
brain was removed and post-fixed with 4% paraformaldehyde in 25mM phosphate buffered sa-
line, pH 7.4 (PBS) at 4°C for 7 days. After fixation, the brain was blocked and cryoprotected in
15% sucrose in PBS at 4°C. Coronal sections, 50 um thick were cut using a freezing microtome
and stained using immunohistochemistry.
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Fig 2. Process to compute subject-specific diffusion tractography. The method combines the warping algorithm and diffusion tractography methods in
FSL to identify fiber tracts. Colored regions are the segmented ROlIs used in FSL to identify both ML and SCP tracts.

doi:10.1371/journal.pone.0127049.g002

The immunohistochemical method used for M3 and M4 was carried out on free-floating
sections using avidin-biotin-peroxidase complex method. Brain sections were washed in 0.1%
bovine serum albumen (Jackson ImmunoResearch Laboratories, West Grove, PA; cat# 001-
000-162) in PBS (PBS+BSA) for 3 x 10 min at room temperature (r.t.). Sections were then in-
cubated in 0.3% Triton X-100 in PBS+BSA containing the primary antibody, a monoclonal
anti-acetylcholinesterase (anti-AChE [HR2]; AbCam, Cambridge, MA, USA; cat# ab2803; di-
luted 1:5000) for 24 h at 4°C. Sections were then washed in PBS+BSA for 3 x 10 min at r.t. be-
fore being incubated in PBS+BSA containing the secondary antibody, a biotinylated goat anti-
mouse IgG (Vector laboratories, Burlingame, CA; cat# BA-9200; diluted 1:200) for 45 min. at r.
t. Sections were processed using the ABC Elite kit (Vector laboratories, Burlingame, CA; cat#
PK-6100; diluted 1:50), washed again in PBS+BSA for 3 x 10 min at r.t,, and finally reacted
with a solution of 3% H,0,, 73pug/ml 3,3'-diamino benzidine tetrahydrochloride in 0.05 M
Tris, pH 7.6. Sections were then mounted on charged glass slides and allowed to dry overnight.
Slides were dehydrated through 100% ethanol, cleared in Histoclear II (Electron Microscopy
Sciences, Hatfield, PA; cat# 64111), and coverslipped using DPX Mountant (Sigma-Aldrich,
St. Louis, MO; 06522). Images were captured under 10x magnification and automatically
stitched together using Adobe Photoshop (CS5; San Jose, CA).
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Fig 3. Brainstem tractography displayed with warped nuclei in four rhesus macaques. Tractography is
shown for SCP (red), LL (purple), and ML (green). SCP is shown to course through PPN (grey) and around
RN (gold).

doi:10.1371/journal.pone.0127049.g003

Results
Probabilistic Tractography Across Subjects

Tractography in the brainstem can be difficult to calculate accurately in cases of small feature
sizes and high density of divergent fiber tracts that can include decussations. In four subjects (8
hemispheres), structural SWI scans and warped slices were used as a guide to define seed points
and waypoints for probabilistic tractography analysis of the SCP, ML, and LL (Fig 3). Whereas
a single region of interest for seed and way points was sufficient to identify ML and LL fiber
tracts, additional waypoints were needed to delineate SCP at its decussation. Additionally, in 4
of 8 hemispheres, inclusion of an RN waypoint was necessary to obtain a fiber tract that tar-
geted the cerebellar-receiving area of thalamus. While fiber tract consistency was evident across
hemispheres, subject-specific variability was also present (Fig 3). The fiber tractography results
were compared to atlas-warped reconstructions of fiber tracts transformed into diffusion trac-
tography space. The reconstruction overlap within the brainstem between tractography and
nonlinear atlas warping, was 45+4% (mean + std.dev.) for SCP, 45+24% for ML, and 39+13%
for LL, which reflected consistent albeit slight misalignments in which tract borders identified
through the nonlinear warping approach were rendered slightly caudal to the diffusion tracto-
graphy volume reconstructions.
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Visualization in Brainstem with 7T Imaging

While nuclei such as the red nucleus were visible on T2-W images, little contrast was present
within other brainstem regions with either T1-W or T2-W imaging. Conversely, high field 7T
SWI using the sequences described above provided improved contrast to visualize borders of
several brainstem nuclei and white matter tracts that are relevant to neurosurgical targeting
procedures (Fig 4).

Regional variation in brainstem pixel intensity was quantified for three DBS target nuclei
(IC, PAG, and PPN) and compared to the pixel intensity within a white matter tract adjacent
to each target (LL, medial longitudinal fasciculus (MLF), and SCP, respectively) (Fig 5A). Ana-
tomical borders for each nucleus and fiber tract were defined from the warped atlas reconstruc-
tions in each primate. Normalized mean pixel intensity was then calculated by dividing the
average pixel intensity for each region by the average pixel intensity of the anterior commissure
about the midline for each subject. The anterior commissure was chosen for normalization
since its intensity was not found to correlate with age, based on a linear regression analysis
(r* = 0.0735, slope = 0.6057, p = 0.4839). In almost all cases, white matter tracts displayed a
lower mean intensity ratio than nuclei adjacent to them within the brainstem, where a lower
ratio represents a more hypointense region on the susceptibility-weighted image.

Additionally, SWI data showed age-dependent normalized mean intensities for nuclei and
white matter tracts, with older animals exhibiting greater hypointense imaging within the
brainstem (Fig 5A). For example, M8 (4 years) had a ratio of 1.07 for SCP, while M2 (22 years)
had a ratio of 0.656. Overall, correlation analysis (Spearman’s p, df = 6, N = 8, p<0.05) showed
that normalized mean intensity for two out of the three fiber tracts had a statistically significant
dependence on age (MLF: r = -0.8571, p = 0.0065, and SCP: r = -0.7143,p = 0.0465) as did
the inferior colliculus (IC: r = -0.8095, p = 0.0149) but not LL (r = -0.6190, p = 0.1017), PPN
(r=-0.5238, p = 0.1827) and PAG (r = -0.5238, p = 0.1827). These age-dependent intensity
findings were found to extend to other subcortical nuclei as well, including the RN, globus pal-
lidus (internal and external segments), and substantia nigra (Fig 5B).

Histological Confirmation of 7T Imaging in Brainstem

To confirm the location of nuclei and fiber tracts resultant from the atlas-based warping algo-
rithm and tractography, post-mortem histology was performed on M3 and M4. In the case of
PAG, little contrast was visible in either the T1-W or T2-W MRI, whereas SWI scans showed
consistent hyperintensity of the PAG in comparison to adjacent fiber tracts including the MLF
and deep white layer of the superior colliculus in all animals (Fig 6). While all primates dis-
played subject-specific variability, the hyperintensity of PAG was consistent with the AChE-la-
beled histological sections and the warped atlas results of the PAG in both M3 and M4.

Fig 7 shows 7T imaging results of the PPN region and its adjacent fiber tracts. Similar to the
PAG region, there was no meaningful contrast in either the T1-W or T2-W MRI at this level of
the brainstem. AChE labeling identified cholinergic cells within PPN in the histological sec-
tions and further demarcated adjacent fiber tracts as regions with no labeling. Cholinergic cell
labeling was especially notable within and lateral to SCP, which was consistent with a gradation
from a hypointense core of the SCP to a diffuse hyperintense region on the lateral border of
SCP. Relative hypointense distributions were also found to be consistent with the LL and ML
fiber tracts.

The warped atlas and histology results were also compared with coronal SWT of the IC (Fig
8). T1-W and T2-W images, while able to demarcate IC, had no variation in contrast within
the structure. SW1 in eight rhesus macaques (posterior SWI in M2 was not imaged) showed
consistency across subjects in visualizing the external borders of IC as well as a fairly robust
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Fig 4. Coronal slices of 7T SWI of the brainstem in subject M2. Distance of each slice from the midline crossing of the anterior commissure are noted at
the bottom of each coronal slice.

doi:10.1371/journal.pone.0127049.9004
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Fig 5. Comparisons of SWI normalized pixel intensity across brainstem regions and rhesus macaques. (A) Analysis of three paired brainstem nuclei
and adjacent fiber tracts, each corresponding to an investigational target for DBS therapy. Pixel intensity values were calculated by averaging pixel

intensities for each region (0 = black, 255 = white) from the raw SWI scans and dividing by the average pixel intensity values of the anterior commissure about
the midline. Columnar intensity values are plotted in age order with white being the youngest and black being the oldest subject. (B) Example of age-
dependent SWI pixel intensity across basal ganglia, thalamus, and brainstem structures.

doi:10.1371/journal.pone.0127049.9005

consistency for most subjects in demarcating the central nucleus of IC as a region of
relative hypointensity.

Discussion

Here, we developed a multimodal imaging approach using 7T MRI to identify nuclei and fiber
tracts in vivo within the nonhuman primate brainstem and verified the interpretation of these
imaging results with post-mortem histology. This approach to subject-specific imaging, which
consisted of SWI at 7T coupled with a nonlinear brain atlas warping algorithm and high angu-
lar diffusion weighted imaging with probabilistic tractography, has potential for greatly im-
proving imaging of the brainstem for neurosurgical targeting applications. A similar approach,
used by Lenglet et al. [32], combined high-field 7T SWI and DWTI in humans to visualize white
matter pathways within and between the basal ganglia and thalamus. In this case, manual seg-
mentation coupled with probabilistic diffusion tractography in FSL allowed for delineation of
the nigrostriatal, subthalamopallidal, pallidothalamic, and thalamostriatal pathways in hu-
mans. Our approach expands upon these techniques with the addition of a nonlinear brain
atlas warping algorithm, the application of probabilistic tractography to the brainstem region,
and importantly histological confirmation of the imaging results.

DBS within the brainstem is currently under investigation for treatment of parkinsonian
freezing of gait (PPN) [5, 6, 10-12], relieving central pain (PAG) [7], and restoring hearing
(IC) [8]. While these regions of the brainstem are certainly difficult to target given their depth
and high degree of vascularization [61], the lack of contrast within the brainstem with standard
MRI sequences can further limit subject-specific targeting of DBS leads. Visualization of both
nuclei and surrounding fiber tracts is important for DBS targeting, as fiber tracts play an im-
portant role in accurately interpreting therapeutic outcomes for targets in the basal ganglia

PLOS ONE | DOI:10.1371/journal.pone.0127049 May 12,2015 10/18
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Fig 6. Imaging PAG with comparisons between MRI modalities and immunolabeled histology. Coronal SWI, T1, and T2 images were matched to
corresponding histological slices stained with AChE from the same animal (M3 and M4). The corresponding warped atlas was overlaid on both the SWI and
the histology. On the right, matched coronal SWI slices are shown for all other animals. Histograms for all coronal MRI slices were not altered, but stretched

to encompass the entire spectrum (0-255).

doi:10.1371/journal.pone.0127049.9006

[62-65] as well as targets in the brainstem [9]. In PPN DBS, for example, adjacent fiber path-
ways can be activated including SCP, ML, and LL resulting in potential motor coordination
problems, paresthesias, and auditory disturbances, respectively [60, 66-69]. Similarly, stimula-
tion in the region of the dorsal PAG for relief of pain can lead to adverse sensory side effects,
nausea, contralateral piloerection, and cold sensations in the face [70]. For auditory midbrain
stimulation targeted to the central nucleus of the IC, targeting errors can result in poor activa-
tion of the underlying tonotopy and potential induction of side effects including paresthesia,
dizziness, facial twitch, and temperature sensation [71].

Imaging in nonhuman primates, as opposed to humans, provided a means to both further
the translational potential of animal models of DBS and histologically corroborate the interpre-
tation of the high-field imaging data that would otherwise be difficult to accomplish in hu-
mans. It is important to note, however, that the methods developed in this study to better
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Fig 7. Imaging PPN with comparison between MRI modalities and immunolabeled histology. Coronal SWI, T1, and T2 MRI were matched to
corresponding histological slices stained with AChE from M3 and M4. The corresponding warped atlas was overlaid on both the SWI and the histology.
Matched coronal SWI slices are shown for all other animals for comparison. Histograms for all coronal MRI slices were not altered, but stretched to
encompass the entire spectrum (0-255).

doi:10.1371/journal.pone.0127049.9007

visualize nuclei and white matter tracts in the brainstem are directly transferable to human
MRI and DTI, as was demonstrated by Lenglet, et al. when visualizing the connectivity patterns
of the human basal ganglia [32]. Animal models have been used as investigational tools for
many studies including deep brain stimulation in the brainstem [8, 72-74] as they are useful
for dissecting mechanisms of therapy and optimizing means for delivering therapy. As part of
these studies, accurate targeting of DBS leads is critical towards generating data with

Fig 8. Imaging IC with comparison between MRI modalities and immunolabeled histology. Coronal SWI, T1, and T2 MRI were matched to
corresponding histological slices stained with AChE from M3 and M4. The corresponding warped atlas was overlaid on both the SWI and the histology.
Matched coronal SWI slices are shown for all animals for comparison (except M2 in which the 7T MRI scans did not extend to the level of the IC). Histograms
for all coronal MRl slices were not altered, but stretched to encompass the entire spectrum (0—255).

doi:10.1371/journal.pone.0127049.9008
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meaningful and translational outcomes. Using non-human primates also enabled histological
analysis to relate labeling within fixed tissue with 7T SWI contrast within the brainstem. These
results indicated that for SWI in the brainstem, white matter tracts had a relative hypointensity
compared to gray matter regions and further that the degree of image intensity depended upon
age with older animals exhibiting greater relative hypointensity in the brainstem. Interestingly,
the observed image hypointensity in brainstem fiber tracts may not necessarily apply to other
brain regions, such as the globus pallidus, red nucleus, and substantia nigra, which exhibited
strong hypointensity relative to their surrounding white matter tracts.

While many regions within the brainstem had visible contrast differences to adjacent brain-
stem structures, other regions were more difficult to demarcate. Here we employed a nonlinear
warping algorithm to tailor a brain atlas to each subject’s imaging data to identify these struc-
tures. Current nonlinear warping methods utilize 3D warping based on the cortex, ventricles,
or 3D points [75-77] or incorporate both MRI and other imaging modalities such as PET [78,
79] or CT [80]. Deformations, which rely on matching cortical surfaces and relegating this in-
formation to the deformation of deep structures, may not provide adequate deformation be-
cause it is not clear that cortical morphology is relevant to morphology of deep structures [81].
The richness of seed point information in the 2D slices, especially at 7T, could provide more
accurate results [82]. This process also enabled cropping the cortex from the images and focus-
ing on the brainstem to perform local deformations. The warping algorithm identified nuclei
consistent with histological results, which allowed for the accurate placement of seed points for
running the tractography analysis. Probabilistic diffusion tractography using high angular dif-
fusion weighted imaging [32] also has strong value especially when fiber tracts run in close
proximity to one another and decussate as was the case for the superior cerebellar peduncle.
Care must be taken when interpreting these results, as probabilistic diffusion tractography does
not visualize the actual tracts but determines the most likely direction of the fiber tracts based
on a measure of diffusion along many directions. However, the combination of the tractogra-
phy and the precise anatomical borders of the tracts obtained from the SWI could provide a
means to more accurately define fiber tracts and their directions within the brain, which would
be especially useful for computational models of DBS [9, 52, 63, 83, 84].

Certain limitations should be considered upon interpretation of the results in this study.
First, it should be noted that the data set used seven females and one young male rhesus ma-
caque. The choice of these subjects was based on being able to place the receiver coils closer to
the brain than would otherwise be possible in older male rhesus macaques with large cranial
musculature. Additionally, the warped nuclei and fiber tracts are limited to the regions delin-
eated in the atlas, and these demarcations among nuclei and fiber tracts in the atlas are discrete,
whereas some anatomical boundaries are not well defined, as shown for the interdigitation of
PPN and SCP. Furthermore, there is a discrepancy between the voxel size of the SWI (0.33-0.4
mm) and the DTT (1 mm). These factors provide some context for the slight variations between
the atlas-based fiber tract identification methods and diffusion tractography results. Inherent
variability of tracts between animals further necessitates the use of subject-specific techniques
that are not based on atlases. Although Duchin, et al. showed that the use of 7T compared to
3T has negligible differences in distortion in the region of the midbrain, further studies are
needed to examine the issue of geometric distortion in the brainstem at high fields and develop
methods for their corrections. Other considerations include the use of a brain atlas generated
from a single rhesus macaque [85], the method used to loft 3D objects from the warped slices,
and the probabilistic nature of the fiber tractography calculation. Additionally, 3D rendering of
histology-based fiber tracts [86] may be used to validate tractography and warping methods.
While high-field in vivo MRI is poised to help demarcate regions within the brainstem pre-sur-
gically for neurosurgical targeting procedures, it cannot account for other factors that
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contribute to targeting inaccuracies during surgery including probe deflection, brain shift, and
microdrive imprecision [87].

Together, these multi-modal imaging techniques (7T SWI, 7T DWT and probabilistic tracto-
graphy, and nonlinear brain atlas warping) provide subject-specific methods to more precisely
identify regions of the brainstem and provide an enabling set of tools to assist in the neurosur-
gical procedures targeting the brainstem.

Supporting Information
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