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Abstract: A convenient, fast and environmentally benign procedure for the synthesis of a new series
of highly functionalized N-alkylated pyridines as privileged medicinal scaffolds was developed
via a unique three-component reaction of easily available aromatic as well as heteroaromatic
aldehydes, N-alkyl-2-cyanoacetamides and malononitrile in EtOH in the presence of K2CO3 as
a base promoter under microwave irradiation. The presented tandem process is presumed to
proceed via Knoevenagel condensation, Michael addition, intramolecular cyclization, autoxidation
and subsequent aromatization. Particularly valuable features of this protocol, including high product
yields, mild conditions, atom-efficiency, simple execution, short reaction times and easy purification
make it a highly efficient and promising synthetic strategy to prepare substituted pyridine nuclei.
The proposed mechanism of this novel one-pot reaction and structure elucidation of the products
are discussed.
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1. Introduction

One-pot multi-component reactions (MCRs) in which three or more reactants are combined
together in a single synthetic operation to create a highly complex molecule incorporating most atoms
present in the starting materials have proven to be a very rapid, powerful and elegant synthetic
procedure. The MCRs strategy provides important advantages over conventional multistep synthesis
because of its ease of execution, efficiency, simple procedures and equipment, flexibility, atom economic
nature, high yields, productivity, convergence, and highly selectivity [1–4]. In addition, by reducing
waste production, the number of operational steps, avoiding the complicated isolation and purification
of intermediates, minimization of time, energy consumption, cost, solvents, reagents and expenditure
of human labor, MCRs represent eco-friendly processes [5]. These advantages make MCRs well-suited
for the easy construction of libraries of ‘drug-like’ molecules [6,7]. In view of the growing interest in
the preparation of interesting heterocyclic scaffolds, tremendous scientific efforts are currently being
devoted to develop new multi-component procedures for the synthesis of numerous polyfunctionalized
heterocyclic scaffolds and discovery of new drugs [6].

Microwave-assisted organic chemistry (MAOC) is one of the high-speed techniques which has
attracted a great attention in recent years. The intrinsic advantages of performing various organic
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transformations under microwave (MW) irradiation conditions are the high yields of relatively pure
products and significant acceleration of the rate of the chemical reactions [8,9]. Thus, these are not only
environmental friendly but also financially attractive processes [10].

Highly substituted pyridines, known as privileged medicinal scaffolds, are of significant
interest as they widely occur as the key constituents in numerous of biologically active natural
products and pharmaceuticals [11–17]. On account of their vast range of eminent pharmacological,
physiological, and biological activities, they are considered important structures. Therefore, they
have attracted great interest among the all heterocyclic compounds and the interest in their
synthesis and chemistry continues undiminished [2,18,19]. Among these pyridine derivatives,
2-aminopyridine-3,5-dicarbonitriles constitute a very important type of heterocyclic compounds
in modern medicinal chemistry due to their potential therapeutic applications in the treatment of
several diseases and broad spectrum biological activities [20–28]. On the other hand, the N-alkylated
pyridones are among the most important classes of azaheterocyclic compounds as they widely occur as
prevalent core structures in many biologically active natural products, synthetic bioactive substances
and active pharmaceuticals [29] that show interesting pharmacological and biological activities such as
multiple sclerosis immunomodulators [30], a putative memory-enhancing drug [31,32], and anticancer
agents [33]. Accordingly, methods for the efficient synthesis of new derivatives of these compounds
have thus attracted the great interest of synthetic and medicinal chemists. However, a literature
survey showed that efficient, direct approaches to the selective synthesis of N-alkylated 2-pyridone
derivatives are much less well explored, as known methods generally suffer from certain drawbacks
such as the lack of generality or selectivity, poor yields, the use of expensive transition-metal catalysts
and/or a competitive process between N- and O-alkylation (poor chemoselectivity) [34,35]. Therefore,
the development of novel straightforward approaches to densely substituted N-alkylated 2-pyridones
still remains as a hot research topic.

In the continuation of our efforts towards performing new synthetic methods for a wide variety
of heterocycles under green conditions [36–45]. We report a general and efficient microwave-assisted
one-pot three-component synthesis of a series of dense substituted N-alkylated 2-pyridones, utilizing
malononitrile, a wide range of aromatic as well as heteroaromatic aldehydes and variety of
N-alkyl-2-cyanoacetamides as building blocks. To the best of our knowledge, there are no reports in
the literature on the synthesis of these compounds. Herein, we also report our experimental results
using both thermal heating and microwave irradiation methods and we have compared our results,
which shows the advantage of the microwave irradiation method. The proposed reaction mechanism
is also discussed.

2. Results and Discussion

Initially, N-butyl-2-cyanoacetamide (1a), benzaldehyde (2a) and malononitrile (3) were adopted
as simple model substrates for studying the multi-component synthesis of 1-alkyl-6-amino-4-aryl(or
het)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles. Indeed, after experimentation with different
solvents, reaction temperatures and base catalysts, we found that the best result was obtained
by stirring the solution of N-butyl-2-cyanoacetamide (1a, 4 mmol), benzaldehyde (2a, 4 mmol),
and malononitrile (3, 4 mmol) in ethanol (7 mL) in the presence of K2CO3 (4 mmol) under reflux
for one hour, whereupon after cooling and neutralization with HCl, a pale yellow solid was
crystallized out. The precipitate was filtered, recrystallized from methanol and identified as the
6-amino-1-butyl-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile (4a) (70% yield) (Scheme 1)
(Table 1). The structure of the product 4a was elucidated with the help of IR, 1H-NMR, 13C-NMR,
mass spectral data, and elemental analyses. Its mass spectrum disclosed a molecular ion peak at
m/z = 292 (M+) corresponding to the molecular formula C17H16N4O. The 1H-NMR spectrum of 4a
contained a triplet for CH3 (δ = 0.92), a multiplet for CH2 (δ = 1.34), a multiplet for CH2 (δ = 1.51),
a triplet for N-CH2 (δ = 4.0), a multiplet for 2 × CHAr (δ = 7.48–7.49), a multiplet for 3 CHAr
(δ = 7.54–7.55), and a singlet for NH2 (δ = 8.40). The assignment is supported by the IR absorptions
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at 3435, 3322, 3286, 3176 cm−1 (NH2), 2965, 2929 cm−1 (aliph. CH), 2212 cm−1 (CN), 1647 cm−1

(amide C=O). The proton-decoupled 13C-NMR spectrum of 4a displayed 15 discreet resonances.
Characteristic 13C-NMR signals due to C-5 and C-3 appeared at δ = 75.43 and 87.48 ppm, respectively,
those of cyano carbons at δ = 115.90, 116.56 ppm and those of the C-6, C-2 and C-4 atoms at
δ = 156.22, 159.35 and 160.36 ppm, respectively. All other aldehydes 2b–f reacted analogously with
N-alkyl-2-cyanoacetamides 1a–c and malononitrile (3) under the same reaction conditions, leading to
the formation of products 4b–q in 65–77% yields as shown in Table 1 (Scheme 1).
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Table 1. Formation of compounds 4a–q under thermal and microwave irradiation.

No.
Heat Time µω Time

(min) Yield (%) (min) Yield (%)

4a 60 70 10 91
4b 90 77 10 94
4c 90 71 10 87
4d 90 73 10 91
4e 90 76 10 92
4f 90 70 10 88
4g 90 65 10 81
4h 180 69 12 90
4i 90 67 10 83
4j 180 71 12 87
4k 120 73 11 92
4l 180 69 15 85

4m 180 72 13 93
4n 240 70 15 83
4o 120 72 11 88
4p 120 75 11 92
4q 120 71 11 85

For the formation of 4, we propose two plausible mechanisms which are shown in Scheme 2.
The process expresses a typical cascade reaction in which a Knoevenagel condensation between an



Molecules 2018, 23, 619 4 of 11

aldehyde 2 and malononitrile (3) or N-alkyl-2-cyano-3-phenyl-acrylamide 1 and aldehyde 2 in the
presence of K2CO3 as a base catalyst leads to the formation of 2-arylidenemalononitrile (Knoevenagel
reagents) 5 and N-alkyl-3-aryl-2-cyano-acrylamide 7, respectively. Then, Michael addition of the active
methylene group of 1 to the activated double bond in 5 (or 3 to 7) gives the non-isolable adduct
6, which underwent an in situ cyclization via intramolecular addition of the amide nitrogen atom,
as a nucleophile, to the nitrile function to give the intermediate 8. The tautomerisation of the imino
(=NH) function to the amino (-NH2) group followed by autoxidation and aromatization afforded the
target product 4. Thus, the reaction could proceed via a domino Knoevenagel condensation/Michael
addition/intramolecular cyclization/autoxidation reaction sequence.

For the investigation of the reaction mechanism, both Knoevenagel reagents 5 and 7 were prepared
from the reaction of aldehydes 2 with 3 or 1, respectively, and then these were reacted with active
methylene compounds 1 or 3. The products 4 were again formed, but obtained in lower yields
compared to our one-pot method, and longer reaction times were also required.
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dihydropyridine-3,5-dicarbonitriles 4a–q.

In order to improve the yield and reduce the reaction times, we repeated the reaction of
N-butyl-2-cyanoacetamide (1a), benzaldehyde (2a) and malononitrile (3) under microwave irradiation
in EtOH in the presence of K2CO3 for 10 min at 90 ◦C (500 W, 200 rpm), whereupon 4a was isolated
in 91% yield. In order to demonstrate the scope of this reaction, a series of substituted aromatic
as well as heteroaromatic aldehydes underwent this three-component condensation with different
N-alkyl-2-cyanoacetamides and malononitrile by this procedure to give 1-alkyl-6-amino-4-aryl(or
het)-2-oxo-1,2-dihydro-pyridine-3,5-dicarbo-nitriles. The results are summarized in Table 1. As is
evident from the results shown in Table 1, this method is highly compatible with different aldehydes.
Moreover, very good to high yields were also obtained for a heteroaromatic aldehydes when they were
employed in this reaction. The microwave method was used in an effort to shorten reaction times
and generate high yields. In addition, the analysis of the data in Table 1 indicates that the substituent
on the aromatic aldehyde showed slightly different effects on the yields. Reactions of electron rich
aromatic aldehydes afforded slightly better yields than electron deficient ones.

3. Experimental

3.1. General Information

All purchased solvents and chemicals were of analytical grade. Melting points were determined
on a B-540 melting point apparatus (Büchi, Flawil, Switzerland) and are uncorrected. IR spectra were
recorded on a Magna 520 FT-IR spectrophotometer (Nicolet, CA, USA) using potassium bromide disks
and signals are reported in cm−1. 1H-NMR and 13C-NMR spectra were recorded on a DPX (850 MHz
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for 1H-NMR and 213 MHz for 13C-NMR) spectrometer (Bruker, Germany) using DMSO-d6 as a solvent,
and TMS as an internal standard; the chemical shifts are given in δ units (ppm). Abbreviations used
for NMR signals: s = singlet, d = doublet, t = triplet, and m = multiplet. Mass spectra were recorded on
a Shimadzu (Kanagawa, Japan) mass spectrometer at 70 eV. All microwave irradiation experiments
were carried out using a Monowave 300 Microwave Synthesis Reactor (MAS) equipped with a MAS
24 autosampler unit (Anton Paar GmbH, Graz, Austria). All experiments were carried out in 10 mL
septum-capped microwave vials at 90 ◦C (500 W maximum power, 200 rpm). Microanalytical data
were obtained from the Microanalytical Data Unit at Cairo University (Cairo, Egypt).

3.2. General Procedure for the Synthesis of 1-Alkyl-6-amino-4-aryl(or het)-2-oxo-1,2-dihydro-pyridine-3,5-
dicarbonitriles 4a–q

Method I (∆). A mixture of N-alkyl-2-cyanoacetamides 1a–c (4 mmol), aldehydes 2a–f (4 mmol),
malononitrile (3) (4 mmol), and K2CO3 (4 mmol) in refluxing EtOH (7 mL) was stirred for 1–4 h.
Upon completion as monitored by TLC, the reaction mixture was cooled and poured into H2O. After
neutralization with HCl, the resulting solid was filtered off, washed with H2O, dried and recrystallized
from MeOH to give pure products 4a–q.

Method II (µω). A mixture of N-alkyl-2-cyano-acetamides 1a–c (2 mmol), aldehydes 2a–f (2 mmol),
malononitrile (3) (2 mmol), K2CO3 (2 mmol), and EtOH (2 mL) in a 10 mL septum-capped microwave
vials was irradiated under microwave conditions at 90 ◦C, 500 W, 200 rpm, for 10–15 min. After
completion of the reaction, as indicated by TLC, each vial was de-capped and the contents were left to
cool to room temperature. Then, the reaction mixture was worked up as described in method I to give
compounds 4a–q. Analytical samples were obtained by recrystallization from MeOH.

6-Amino-1-butyl-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile (4a). Pale yellow crystals. M.p.
304–305 ◦C. IR (KBr) 3435, 3322, 3286, 3176 (NH2), 2965, 2929 (aliph. CH), 2212 (CN), 1647 (amide
CO) cm−1. 1H-NMR (DMSO-d6) δ 0.92 (t, 3H, J = 6.8 Hz, CH3), 1.34 (m, 2H, CH2), 1.51 (m, 2H, CH2),
4.0 (t, 2H, J = 7.65 Hz, N-CH2), 7.48–7.49 (m, 2Ar-H), 7.54–7.55 (m, 3Ar-H), 8.40 (s, 2H, NH2). 13C-NMR
(DMSO-d6) δ 13.74 (CH2), 19.31 (CH2), 28.38 (CH2), 41.87 (N-CH2), 75.43 (C-5), 87.48 (C-3), 115.90 (CN),
116.56 (CN), 127.98 (2Ar-C), 128.63 (2Ar-C), 130.25 (1Ar-C), 134.63 (1Ar-C), 156.22 (C-6), 159.35 (C-2),
160.36 (C-4). MS: m/z (%) = 293 (M+ + 1, 7), 292 (M+, 27), 276 (27), 275 (81), 250 (26), 237 (18), 236 (100),
235 (12), 209 (18), 208 (18), 180 (9), 165 (9), 77 (10); Anal. Calcd. for C17H16N4O (292.34): C, 69.85;
H, 5.52; N, 19.17. Found: C, 69.73; H, 5.43; N, 18.99.

6-Amino-1-benzyl-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile (4b). Pale yellow crystals. M.p.
251–252 ◦C. IR (KBr) 3439, 3318, 3182 (NH2), 3036 (arom. CH), 2961, 2877 (aliph. CH), 2225, 2215 (CN),
1656 (amide CO) cm−1. 1H-NMR (DMSO-d6) δ 5.35 (s, 2H, CH2), 7.25 (d, 2H, J = 7.65 Hz, Ar-H),
7.31 (t, 1H, J = 7.65 Hz, Ar-H), 7.38 (t, 2H, J = 7.65 Hz, Ar-H), 7.55–7.58 (m, 5Ar-H), 8.45 (s, 2H,
NH2). 13C-NMR (DMSO-d6) δ 44.77 (N-CH2), 75.72 (C-5), 87.56 (C-3), 115.79 (CN), 116.48 (CN),
126.54 (2Ar-C), 127.45 (1Ar-C), 128.06 (2Ar-C), 128.58 (2Ar-C), 128.65 (2Ar-C), 130.34 (1Ar-C),
134.45 (1Ar-C), 134.61 (1Ar-C), 156.60 (C-6), 159.51 (C-2), 160.89 (C-4). MS: m/z (%) = 327 (M+ +
1, 6), 326 (M+, 25), 325 (8), 92 (8), 91 (100), 77 (3), 65 (15); Anal. Calcd. for C20H14N4O (326.36): C, 73.61;
H, 4.32; N, 17.17. Found: C, 73.76; H, 4.40; N, 17.30.

6-Amino-1-hexyl-2-oxo-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile (4c). Colorless crystals. M.p.
252–254 ◦C. IR (KBr) 3436, 3415, 3328, 3284, 3207 (NH2), 2933, 2869 (aliph. CH), 2209 (CN), 1653 (amide
CO) cm−1. 1H-NMR (DMSO-d6) δ 0.88 (t, 3H, J = 6.8 Hz, CH3), 1.28–1.35 (m, 6H, 3CH2), 1.51–1.54 (m,
2H, CH2), 3.99 (t, 2H, J = 6.8 Hz, N-CH2), 7.48–7.49 (m, 2H, Ar-H), 7.54–7.55 (m, 3H, Ar-H), 8.41 (s,
2H, NH2). 13C-NMR (DMSO-d6) δ 13.94 (CH3), 22.03 (CH2), 25.59 (CH2), 26.20 (CH2), 31.0 (CH2),
42.13 (N-CH2), 75.40 (C-5), 87.47 (C-3), 115.89 (CN), 116.54 (CN), 127.99 (2Ar-C), 128.63 (2Ar-C), 130.24
(1Ar-C), 134.62 (1Ar-C), 156.20 (C-6), 159.33 (C-2), 160.35 (C-4). MS: m/z (%) = 321 (M+ + 1, 6), 320 (M+,
25), 305 (6), 304 (33), 303 (100), 263 (6), 261 (5), 250 (18), 237 (14), 236 (66), 235 (5), 220 (5), 209 (8), 208 (8),
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165 (7), 77 (6), 69 (8), 57 (6), 56 (10), 55 (34); Anal. Calcd. for C19H20N4O (320.40): C, 71.23; H, 6.29;
N, 17.49. Found: C, 71.16; H, 6.44; N, 17.38.

6-Amino-1-butyl-2-oxo-4-(p-tolyl)-1,2-dihydropyridine-3,5-dicarbonitrile (4d). Colorless crystals. M.p.
286–288 ◦C. IR (KBr) 3416, 3338, 3219 (NH2), 2953, 2932, 2873 (aliph. CH), 2205 (CN), 1653 (amide
CO) cm−1. 1H-NMR (DMSO-d6) δ 0.91 (t, 3H, J = 6.8 Hz, CH3), 1.32–1.36 (m, 2H, CH2), 1.49–1.53 (m,
2H, CH2), 2.39 (s, 3H, CH3), 4.0 (t, 2H, J = 7.65 Hz, N-CH2), 7.34 (d, 2H, J = 7.65 Hz, Ar-H), 7.38 (d,
2H, J = 8.5 Hz, Ar-H), 8.38 (s, 2H, NH2). 13C-NMR (DMSO-d6) δ 13.72 (CH3), 20.98 (CH2), 21.50 (CH3),
28.38 (CH2), 41.84 (N-CH2), 75.35 (C-5), 87.37 (C-3), 115.99 (CN), 116.64 (CN), 127.97 (1Ar-C),
129.14 (1Ar-C), 130.20 (1Ar-C), 130.72 (1Ar-C), 131.68 (1Ar-C), 140.08 (1Ar-C), 156.20 (C-6), 159.36 (C-2),
160.37 (C-4). MS: m/z (%) = 307 (M+ + 1, 8), 306 (M+, 33), 290 (31), 289 (88), 264 (27), 251 (19), 250 (100),
249 (15), 236 (7), 235 (6), 234 (12), 233 (24), 223 (7), 222 (11), 221 (7), 207 (7), 206 (6), 205 (6), 194 (8),
180 (7), 179 (11), 140 (7), 91 (9), 77 (4), 65 (7), 57 (6), 56 (8), 55 (16); Anal. Calcd. for C18H18N4O (306.37):
C, 70.57; H, 5.92; N, 18.29. Found: C, 70.47; H, 6.06; N, 18.22.

6-Amino-1-benzyl-2-oxo-4-(p-tolyl)-1,2-dihydropyridine-3,5-dicarbonitrile (4e). Colorless crystals. M.p.
303.9–305.9 ◦C. IR (KBr) 3322, 3143 (NH2), 2930, 2875 (aliph. CH), 2224, 2213 (CN), 1657 (amide
CO) cm−1. 1H-NMR (DMSO-d6) δ 2.41 (s, 3H, CH3), 5.34 (s, 2H, N-CH2), 7.24 (d, 2H, J = 6.8 Hz,
Ar-H), 7.31 (t, 1H, J = 6.8 Hz, Ar-H), 7.38 (t, 4H, J = 7.65 Hz, Ar-H), 7.44 (d, 2H, J = 8.5 Hz,
Ar-H), 8.42 (s, 2H, NH2). 13C-NMR (DMSO-d6) δ 21.0 (CH3), 44.73 (CH2), 75.66 (C-5), 87.48 (C-3),
115.89 (CN), 116.58 (CN), 126.53 (2Ar-C), 127.43 (1Ar-C), 128.05 (2Ar-C), 128.58 (2Ar-C), 129.17 (2Ar-C),
131.67 (1Ar-C), 134.48 (1Ar-C), 140.22 (1Ar-C), 156.59 (C-6), 159.53 (C-2), 160.91 (C-4). MS: m/z (%)
= 341 (M+ + 1, 7), 340 (M+, 28), 339 (7), 92 (8), 91 (100), 65 (14); Anal. Calcd. for C21H16N4O (340.39):
C, 74.10; H, 4.74; N, 16.46. Found: C, 74.16; H, 4.65; N, 16.59.

6-Amino-1-hexyl-2-oxo-4-(p-tolyl)-1,2-dihydropyridine-3,5-dicarbonitrile (4f). Colorless crystals. M.p.
260.4–261.7 ◦C. IR (KBr) 3416, 3284, 3204 (NH2), 2965, 2927, 2857 (aliph. CH), 2210 (CN), 1652 (amide
CO) cm−1. 1H-NMR (DMSO-d6) δ 0.88 (t, 3H, J = 6.8 Hz, CH3), 1.29–1.34 (m, 6H, 3CH2), 1.50–1.53 (m,
2H, CH2), 2.39 (s, 3H, CH3), 3.98 (t, 2H, J = 7.65 Hz, CH2), 7.34 (d, 2H, J = 8.5 Hz, Ar-H), 7.38 (d, 2H,
J = 7.65 Hz, Ar-H), 8.37 (br s, 2H, NH2). 13C-NMR (DMSO-d6) δ 13.94 (CH3), 20.98 (CH3), 22.01 (CH2),
25.57 (CH2), 26.19 (CH2), 30.97 (CH2), 42.06 (N-CH2), 75.36 (C-5), 87.32 (C-3), 116.00 (CN), 116.66 (CN),
127.97 (2Ar-C), 129.14 (2Ar-C), 131.69 (1Ar-C), 140.08 (1Ar-C), 156.19 (C-6), 159.36 (C-2), 160.36 (C-4).
MS: m/z (%) = 335 (M+ + 1, 8), 334 (M+, 25), 319 (5), 318 (27), 317 (78), 277 (6), 275 (5), 264 (26), 251 (22),
250 (100), 246 (10), 234 (9), 233 (15), 222 (7), 179 (6), 69 (7), 56 (9), 55 (33); Anal. Calcd. for C20H22N4O
(334.42): C, 71.83; H, 6.63; N, 16.75. Found: C, 71.90; H, 6.57; N, 16.91.

6-Amino-1-butyl-4-(3-chlorophenyl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile (4g). Colorless crystals.
M.p. 249.6–251.6 ◦C. IR (KBr) 3415, 3340, 3201 (NH2), 2959, 2872 (aliph. CH), 2213 (CN), 1655 (amide
CO) cm−1. 1H-NMR (DMSO-d6) δ 0.92 (t, 3H, J = 6.8 Hz, CH3), 1.32–1.37 (m, 2H, CH2), 1.49–1.53
(m, 2H, CH2), 4.01 (t, 2H, J = 7.65 Hz, N-CH2), 7.46 (d, 1H, J = 6.8 Hz, Ar-H), 7.59 (t, 1H, J = 8.5 Hz,
Ar-H), 7.60 (s, 1Ar-H), 7.63 (d, 1H, J = 8.5 Hz, Ar-H), 8.47 (s, 2H, NH2). 13C-NMR (DMSO-d6) δ

13.72 (CH3), 19.29 (CH2), 28.35 (CH2), 41.91 (N-CH2), 75.45 (C-5), 87.54 (C-3), 115.68 (CN), 116.32 (CN),
126.81 (1Ar-C), 127.78 (1Ar-C), 130.14 (1Ar-C), 130.71 (1Ar-C), 133.21 (1Ar-C), 136.61 (1Ar-C),
156.15 (C-6), 158.76 (C-2), 159.18 (C-4). MS: m/z (%) = 328 (M+ + 2, 11), 326 (M+, 33), 312 (11),
311 (37), 310 (34), 309 (100), 286 (8), 284 (23), 272 (29), 271 (18), 270 (87), 269 (8), 243 (16), 242 (10),
207 (13), 199 (6), 180 (15), 165 (7), 68 (5), 57 (10), 56 (15), 55 (24); Anal. Calcd. for C17H15ClN4O (326.78):
C, 62.48; H, 4.63; Cl, 10.85; N, 17.15. Found: C, 62.40; H, 4.59; Cl, 10.96; N, 17.21.

6-Amino-1-benzyl-4-(3-chlorophenyl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile (4h). Pale yellow crystals.
M.p. 231.8–233.3 ◦C. IR (KBr) 3643, 3471, 3331, 3193 (NH2), 3062 (arom. CH), 2987 (aliph. CH),
2225, 2212 (CN), 1661 (amide CO) cm−1. 1H-NMR (DMSO-d6) δ 5.34 (s, 2H, CH2), 7.23 (d, 2H,
J = 7.65 Hz, Ar-H), 7.31 (t, 1H, J = 7.65 Hz, Ar-H), 7.38 (t, 2H, J = 7.65 Hz, Ar-H), 7.53 (d, 1H, J = 7.65 Hz,
Ar-H), 7.61 (t, 1H, J = 7.65 Hz, Ar-H), 7.64–7.65 (m, 1Ar-H), 7.68 (s, 1Ar-H), 8.50 (br s, 2H, NH2).
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13C-NMR (DMSO-d6) δ 44.75 (CH2), 75.77 (C-5), 87.65 (C-3), 115.59 (CN), 116.27 (CN), 126.53 (2Ar-C),
126.84 (1Ar-C), 127.46 (1Ar-C), 127.86 (1Ar-C), 128.56 (2Ar-C), 130.20 (1Ar-C), 130.72 (1Ar-C),
133.21 (1Ar-C), 134.33 (1Ar-C), 136.62 (1Ar-C), 156.52 (C-6), 159.29 (C-2), 159.33 (C-4). MS: m/z
(%) = 362 (M+ + 2, 4), 360 (M+ + 12), 92 (8), 91 (100), 65 (13); Anal. Calcd. for C20H13ClN4O (360.80):
C, 66.58; H, 3.63; Cl, 9.83; N, 15.53. Found: C, 66.67; H, 3.76; Cl, 9.67; N, 15.46.

6-Amino-4-(3-chlorophenyl)-1-hexyl-2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile (4i). Colorless crystals.
M.p. 235.9–236.6 ◦C. IR (KBr) 3423, 3292, 3180 (NH2), 3079 (arom. CH), 2954, 2934, 2869 (aliph. CH),
2214 (CN), 1645 (amide CO) cm−1. 1H-NMR (DMSO-d6) δ 0.88 (t, 3H, J = 6.8 Hz, CH3), 1.28–1.35 (m,
6H, 3CH2), 1.50–1.53 (m, 2H, CH2), 3.99 (t, 2H, J = 7.65 Hz, N-CH2), 7.46 (d, 1H, J = 7.6 Hz, Ar-H),
7.58 (d, 1H, J = 7.65 Hz, Ar-H), 7.60 (s, 1Ar-H), 7.62–7.63 (m, 1Ar-H), 8.46 (br s, 2H, NH2). 13C-NMR
(DMSO-d6) δ 13.95 (CH3), 22.02 (CH2), 25.55 (CH2), 26.16 (CH2), 30.98 (CH2), 42.13 (N-CH2), 75.44 (C-5),
87.53 (C-3), 115.67 (CN), 116.32 (CN), 126.8 (1Ar-C), 127.76 (1Ar-C), 130.14 (1Ar-C), 130.71 (1Ar-C),
133.20 (1Ar-C), 136.61 (1Ar-C), 156.13 (C-6), 158.75 (C-2), 159.17 (C-4). MS: m/z (%) = 356 (M+ + 2, 9),
354 (M+, 26), 340 (11), 339 (35), 338 (32), 337 (94), 297 (8), 286 (8), 284 (24), 273 (7), 272 (34), 271 (23),
270 (100), 269 (7), 243 (11), 242 (7), 180 (8), 69 (12), 56 (19), 55 (51); Anal. Calcd. for C19H19ClN4O
(354.84): C, 64.31; H, 5.40; Cl, 9.99; N, 15.79. Found: C, 64.42; H, 5.47; Cl, 10.14; N, 15.71.

6-Amino-1-butyl-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3,5-dicarbonitrile (4j). Yellow crystals. M.p.
264.4–265.9 ◦C. IR (KBr) 3408, 3327, 3285, 3223 (NH2), 2959, 2940, 2874 (aliph. CH), 2207 (CN), 1634
(amide CO) cm−1. 1H-NMR (DMSO-d6) δ 0.91 (t, 3H, J = 6.8 Hz, CH3), 1.33 (m, 2H, CH2), 1.51 (m, 2H,
CH2), 3.99 (t, 2H, J = 7.65, N-CH2), 7.26 (dd, 1H, J = 3.4, 3.4 Hz, thiophene-H), 7.51 (dd, J = 1.7, 0.85 Hz,
thiophene-H), 7.91 (dd, J = 1.7, 1.7 Hz, thiophene-H), 8.41 (br s, 2H, NH2). 13C-NMR (DMSO-d6) δ

13.73 (CH3), 19.3 (CH2), 28.31 (CH2), 41.95 (N-CH2), 75.37 (C-5), 87.42 (C-3), 116.04 (CN), 116.64 (CN),
127.72 (thiophene-C), 130.32 (thiophene-C), 130.79 (thiophene-C), 133.37 (thiophene-C), 152.45 (C-6),
156.31 (C-2), 159.30 (C-4). MS: m/z (%) = 299 (M+ + 1, 8), 298 (M+, 34), 283 (7), 282 (27), 281 (81),
269 (7), 256 (24), 244 (6), 243 (18), 242 (100), 241 (7), 228 (7), 215 (13), 214 (19), 213 (6), 208 (12), 198 (5),
185 (7), 182 (9), 176 (9), 171 (8), 160 (7), 159 (6), 69 (11), 58 (8), 57 (11), 56 (10), 55 (21); Anal. Calcd. for
C15H14N4OS (298.36): C, 60.38; H, 4.73; N, 18.78; S, 10.75. Found: C, 60.30; H, 4.68; N, 18.89; S, 10.89.

6-Amino-1-benzyl-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3,5-dicarbonitrile (4k). Pale yellow crystals.
M.p. 236.8–238.8 ◦C. IR (KBr) 3444, 3303, 3215 (NH2), 3102 (arom. CH), 2209 (CN), 1660 (amide CO)
cm−1. 1H-NMR (DMSO-d6) δ 5.32 (s, 2H, CH2), 7.22 (d, 2H, J = 6.8 Hz, Ar-H), 7.28 (dd, J = 3.4, 3.4 Hz,
thiophene-H), 7.31 (t, 1H, J = 7.65 Hz, Ar-H), 7.37 (t, 2H, J = 7.65 Hz, Ar-H), 7.56 (dd, 1H, J = 1.7, 0.85 Hz,
thiophene-H), 7.94 (dd, 1H, J = 1.7, 1.7 Hz, thiophene-H), 8.45 (br s, 2H, NH2). 13C-NMR (DMSO-d6) δ

44.85 (CH2), 75.63 (C-5), 87.52 (C-3), 115.94 (CN), 116.57 (CN), 126.48 (2Ar-C), 127.44 (1Ar-C), 127.75
(thiophene-C), 128.59 (2Ar-C), 130.51 (thiophene-C), 131.0 (thiophene-C), 133.32 (thiophene-C), 134.37
(1Ar-C), 153.0 (C-6), 156.68 (C-2), 159.44 (C-4). MS: m/z (%) = 333 (M+ + 1, 7), 332 (M+, 31), 92 (8),
91 (100), 65 (17); Anal. Calcd. for C18H12N4OS (332.38): C, 65.05; H, 3.64; N, 16.86; S, 9.65. Found:
C, 65.15; H, 3.70; N, 16.98; S, 9.4.

6-Amino-1-butyl-2-oxo-4-(pyridin-3-yl)-1,2-dihydropyridine-3,5-dicarbonitrile (4l). Colorless powder. M.p.
236.6–238.5 ◦C. IR (KBr) 3509, 3382, 3336 (NH2), 3068 (arom. CH), 2958, 2866 (aliph. CH), 2214,
2193 (CN), 1640 (amide CO) cm−1. 1H-NMR (DMSO-d6) δ 0.92 (t, 3H, J = 7.65, CH3), 1.32–1.37 (m, 2H,
CH2), 1.50–1.53 (m, 2H, CH2), 4.01 (t, 2H, J = 7.65, CH2), 7.60 (ddd, 1H, J = 6, 6, 0.85 Hz, pyridine-H),
7.97–7.98 (m, 1H, pyridine-H), 8.50 (br s, 2H, NH2), 8.70 (dd, J = 3.40, 0.85 Hz, pyridine-H), 8.75 (dd,
J = 6, 0.85 Hz, pyridine-H). MS: m/z (%) = 294 (M+ + 1, 8), 293 (M+, 28), 277 (31), 276 (100), 251 (14),
238 (11), 237 (46), 221 (5), 210 (5), 209 (21), 182 (5), 155 (5), 79 (5), 78 (5), 57 (12), 56 (11), 55 (18); Anal.
Calcd. for C16H15N5O (293.33): C, 65.52; H, 5.15; N, 23.88. Found: C, 65.44; H, 5.20; N, 24.05.

6-Amino-1-benzyl-2-oxo-4-(pyridin-3-yl)-1,2-dihydropyridine-3,5-dicarbonitrile (4m). Colorless powder.
M.p. 164.4–166.5 ◦C. IR (KBr) 3527, 3380, 3267, 3114 (NH2), 2219 (CN), 1635 (amide CO) cm−1.
1H-NMR (DMSO-d6) δ 5.34 (s, 2H, CH2), 7.24 (d, 2H, J = 6.8 Hz, Ar-H), 7.31 (t, 1H, J = 6.8 Hz, Ar-H),
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7.38 (t, 2H, J = 7.65 Hz, Ar-H), 7.62 (dd, 1H, J = 7.65, 5.1 Hz, pyridine-H), 8.03 (d, 1H, J = 8.5 Hz,
pyridine-H), 8.54 (br s, 2H, NH2), 8.76 (m, 2H, pyridine-H). 13C-NMR (DMSO-d6) δ 44.81 (CH2),
75.92 (C-5), 87.86 (C-3), 115.65 (CN), 116.34 (CN), 123.62 (1Ar-C), 126.56 (1Ar-C), 127.50 (1Ar-C),
128.59 (2Ar-C), 130.85 (1Ar-C), 134.32 (pyridine-C), 136.09 (pyridine-C), 148.14 (pyridine-C), 151.28
(pyridine-C), 156.58 (C-6),157.68 (C-2), 159.32 (C-4). MS: m/z (%) = 328 (M+ + 1, 6), 327 (M+, 25), 92 (8),
91 (100), 65 (15); Anal. Calcd. for C19H13N5O (327.35): C, 69.71; H, 4.00; N, 21.39. Found: C, 69.82;
H, 3.94; N, 21.35.

6-Amino-1-hexyl-2-oxo-4-(pyridin-3-yl)-1,2-dihydropyridine-3,5-dicarbonitrile (4n). Colorless powder. M.p.
222.9–224.3 ◦C. IR (KBr) 3364, 3338, 3214 (NH2), 2957, 2938, 2859 (aliph. CH), 2220, 2207 (CN), 1648
(amide CO) cm−1. 1H-NMR (DMSO-d6) δ 0.88 (t, 3H, J = 6.8 Hz, CH3), 1.32 (m, 6H, 3CH2), 1.52 (m,
2H, CH2), 3.99 (t, 2H, J = 7.65 Hz, N-CH2),7.60 (dd, 1H, J = 7.65, 5.1 Hz, pyridine-H), 7.98 (m, 1H,
pyridine-H), 8.50 (br s, 2H, NH2), 8.70 (d, J = 1.7 Hz, pyridine-H), 8.75 (dd, J = 5.1, 1.7 Hz, pyridine-H).
13C-NMR (DMSO-d6) δ 13.97 (CH3), 22.03 (CH2), 25.58 (CH2), 26.16 (CH2), 30.99 (CH2), 42.18 (N-CH2),
75.62 (C-5), 87.75 (C-3), 115.75 (CN), 116.41 (CN), 123.62 (pyridine-C), 130.85 (pyridine-C), 136.03
(pyridine-C), 148.09 (pyridine-C), 151.21 (pyridine-C), 156.20 (C-6), 157.13 (C-2), 159.17 (C-4). MS: m/z
(%) = 322 (M+ + 1, 8), 321 (M+, 22), 306 (5), 305 (32), 304 (99), 264 (9), 262 (7), 251 (25), 238 (31), 237 (100),
236 (7), 223 (8), 222 (8), 221 (9), 210 (9), 209 (34), 195 (7), 194 (6), 182 (6), 181 (6), 167 (6), 166 (6), 155 (6),
78 (6), 69 (12), 67 (5), 57 (5), 56 (23), 55 (54); Anal. Calcd. for C18H19N5O (321.38): C, 67.27; H, 5.96;
N, 21.79. Found: C, 67.36; H, 5.91; N, 21.93.

6-Amino-1-butyl-2-oxo-4-(pyridin-4-yl)-1,2-dihydropyridine-3,5-dicarbonitrile (4o). Brownish powder. M.p.
313.4–315 ◦C. IR (KBr) 3358, 3282 (NH2), 3090 (arom. CH), 2973, 2958, 2939, 2864 (aliph. CH), 2230,
2209 (CN), 1663 (amide CO) cm−1. 1H-NMR (DMSO-d6) δ 0.91 (t, 3H, J = 7.65 Hz, CH3), 1.34 (m, 2H,
CH2), 1.51 (m, 2H, CH2), 4.0 (t, 2H, J = 7.65 Hz, N-CH2), 7.52 (dd, 2H, J = 6, 1.7 Hz, pyridine-H), 8.53 (br
s, 2H, NH2), 8.79 (dd, 2H, J = 6, 1.7 Hz, pyridine-H). 13C-NMR (DMSO-d6) δ 13.73 (CH3), 19.29 (CH2),
28.30 (CH2), 41.96 (N-CH2), 74.92 (C-5), 87.06 (C-3), 115.43 (CN), 116.08 (CN), 122.50 (2 pyridine-C),
142.43 (pyridine-C), 150.15 (pyridine-C), 150.18 (pyridine-C), 156.23 (C-6), 157.77 (C-2), 159.10 (C-4).
MS: m/z (%) = 294 (M+ + 1, 9), 293 (M+, 21), 277 (26), 276 (84), 264 (5), 251 (26), 238 (21), 237 (100),
236 (7), 223 (7), 221 (6), 210 (21), 209 (18), 182 (6), 181 (5), 155 (5), 57 (9), 56 (14), 55 (16); Anal. Calcd. for
C16H15N5O (293.33): C, 65.52; H, 5.15; N, 23.88. Found: C, 65.69; H, 5.08; N, 23.99.

6-Amino-1-benzyl-2-oxo-4-(pyridin-4-yl)-1,2-dihydropyridine-3,5-dicarbonitrile (4p). Brownish powder.
M.p. 276.3–278.4 ◦C. IR (KBr) 3357, 3269 (NH2), 3088 (arom. CH), 2234, 2208 (CN), 1653 (amide
CO) cm−1. 1H-NMR (DMSO-d6) δ 5.32 (s, 2H, CH2), 7.25 (d, 2H, J = 7.65 Hz, Ar-H), 7.31 (t, 1H,
J = 7.65 Hz, Ar-H), 7.38 (t, 2H, J = 7.65 Hz, Ar-H), 7.57 (d, 2H, J = 5.1 Hz, pyridine-H), 8.79 (d,
J = Hz, 2 pyridine-H). 13C-NMR (DMSO-d6) δ 44.71 (CH2), 75.56 (C-5), 86.38 (C-3), 115.65 (CN),
11629 (CN), 122.57 (2 pyridine-C), 126.64 (2 Ar-C), 127.41 (1 Ar-C), 128.54 (2 Ar-C), 134.64 (1 Ar-C),
142.61 (pyridine-C), 150.16 (2 pyridine-C), 156.71 (C-6), 158.0 (C-2), 159.50 (C-4). MS: m/z (%) = 328
(M+ + 1, 6), 327 (M+, 25), 92 (8), 91 (100), 65 (15); Anal. Calcd. for C19H13N5O (327.35): C, 69.71; H, 4.00;
N, 21.39. Found: C, 69.59; H, 4.07; N, 21.21.

6-Amino-1-hexyl-2-oxo-4-(pyridin-4-yl)-1,2-dihydropyridine-3,5-dicarbonitrile (4q). Brownish powder. M.p.
327.5–328.7 ◦C. IR (KBr) 3352, 3280 (NH2), 2956, 2930, 2854 (aliph. CH), 2227, 2208 (CN), 1656 (amide
CO) cm−1. 1H-NMR (DMSO-d6) δ 0.88 (t, 3H, J = 7.65 Hz, CH3), 1.30 (m, 6H, 3 CH2), 1.52 (m,
2H, CH2), 3.99 (t, 2H, J = 7.65 Hz, N-CH2), 7.52 (dd, 2H, J = 6, 1.7 Hz, pyridine-H), 8.53 (br s, 2H,
NH2), 8.78 (dd, 2H, J = 6, 1.7 Hz, pyridine-H). 13C-NMR (DMSO-d6) δ 13.96 (CH3), 22.02 (CH2),
25.56 (CH2), 26.12 (CH2), 30.97 (CH2), 42.2 (N-CH2), 74.91 (C-5), 87.07 (C-3), 115.43 (CN), 116.08 (CN),
122.50 (2 pyridine-C), 142.43 (pyridine-C), 150.16 (1 pyridine-C), 150.18 (1 pyridine-C), 156.22 (C-6),
157.77 (C-2), 159.09 (C-4). MS: m/z (%) = 322 (M+ + 1, 6), 321 (M+, 16), 305 (23), 304 (75), 264 (7), 262 (6),
251 (25), 238 (27), 237 (100), 210 (12), 209 (12), 69 (10), 56 (20), 55 (41); Anal. Calcd. for C18H19N5O
(321.38): C, 67.27; H, 5.96; N, 21.79. Found: C, 67.21; H, 5.92; N, 21.69.
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4. Conclusions

In summary, we have developed a novel, facile, efficient, rapid, and environmentally
friendly approach for the one-pot multicomponent synthesis of new diversely substituted
6-amino-2-oxo-pyridine-3,5-dicarbonitrile derivatives from simple and readily available diverse
aldehydes, various N-alkyl-2-cyanoacetamides and malononitrile in the presence of K2CO3 under
heating or under microwave activation. The ease of work-up, rapid access, general applicability,
greenness of procedure and high isolated yields of products make this new strategy a very useful
addition to modern synthetic methods and attractive for academic research and potential applications.
Further exploration of the reaction scope and synthetic applications of this methodology are currently
under studying in our laboratory.
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