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Mechanical stimulation of human dermal 
fibroblasts regulates pro‑inflammatory 
cytokines: potential insight into soft tissue 
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Abstract 

Objective:  Soft tissue manual therapies are commonly utilized by osteopathic physicians, chiropractors, physical 
therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechani-
cal stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. Previ-
ous studies established an in vitro model system for examining mechanical stimulation of dermal fibroblasts and 
established that cyclical strain, intended to mimic overuse injury, induces secretion of numerous pro-inflammatory 
cytokines. Moreover, mechanical strain intended to mimic soft tissue manual therapy reduces strain-induced secre-
tion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide inde-
pendent corroboration of prior results.

Results:  Using cultures of primary human dermal fibroblasts, we confirm cyclical mechanical strain increases levels 
of IL-6 and adding long-duration stretch, intended to mimic therapeutic soft tissue stimulation, after cyclical strain 
results in lower IL-6 levels. We also extend the prior work, reporting that long-duration stretch results in lower levels of 
IL-8. Although there are important limitations to this experimental model, these findings provide supportive evidence 
that therapeutic soft tissue stimulation may reduce levels of pro-inflammatory cytokines. Future work is required to 
address these open questions and advance the mechanistic understanding of therapeutic soft tissue stimulation.
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Introduction
Soft tissue manual therapies such as massage and myo-
fascial release are commonly utilized by osteopathic 
physicians, chiropractors, physical therapists and mas-
sage therapists [1–4]. These techniques are predi-
cated on subjecting tissues to biophysical mechanical 

stimulation [5, 6]. While the precise cellular and molec-
ular mechanism(s) mediating these effects are poorly 
understood, the limited available evidence suggests 
that soft tissue manual therapy may reduce inflamma-
tion [6]. For instance, a series of studies established an 
in  vitro model system for examining therapy-informed 
mechanical stimulation of human dermal fibroblasts, 
which are a cell type that resides in close approximation 
to vasculature and lymphatics and are recipient of strain 
from soft tissue manual therapy (reviewed in [7]). This 
in vitro work demonstrated that strain intended to mimic 
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repetitive, overuse injury of fibroblasts induces the secre-
tion of numerous cytokines; reduces fibroblast prolifera-
tion rate; and increases fibroblast apoptosis. Moreover, 
mechanical strain intended to mimic soft tissue manual 
therapy reverses numerous aspects of this phenotype 
[8–11], including reduced secretion of pro-inflammatory 
interleukin (IL)-6, increased fibroblast proliferation, and 
reduced fibroblast apoptosis. These findings are generally 
consistent with prior work showing that soft tissue mas-
sage reduces levels of IL-6 in human soft tissue biopsies 
[12].

We sought to provide further insight and replicate 
a portion of the previous in  vitro findings examining 
mechanical stimulation of dermal fibroblasts. Here, we 
provide independent corroboration that cyclical mechan-
ical strain intended to mimic repetitive motion injury 
increases levels of IL-6 in conditioned media from der-
mal fibroblasts. Moreover, we confirm that adding long-
duration stretch, intended to mimic therapeutic soft 
tissue stimulation, after cyclical strain reduces IL-6 lev-
els and extend the prior work by reporting that it also 
reduces levels of the pro-inflammatory cytokine IL-8.

Main text
Materials and methods
Fibroblast culture and strain
Primary human dermal fibroblasts (#PCS-201-012) 
were purchased from American Type Culture Collection 

(ATCC, Manassas, Virginia, USA) and cultured as 
directed by the vendor. Cells were free of mycoplasma 
contamination as confirmed by the MycoProbe Myco-
plasma Detection Kit (R&D Systems, Minneapolis, Min-
nesota, USA) used as directed by the manufacturer. Using 
a parallel study design as detailed in Fig. 1a and Fig. 2a, 
cells were combined from separate flasks then seeded at 
120,000 cells per well on 6-well flexible collagen I-coated 
membranes (Flexcell International, Burlington, North 
Carolina, USA). The next day, cells were left unstrained 
(control) or mechanical stimulation was performed on a 
Flexcell FX-6000 according to two previously reported 
strain profiles [6]. Briefly, for the first cyclic short-dura-
tion strain (CSDS) profile, fibroblasts were subjected to 
an 8-h cycle with 1.6  s bouts of deformation increasing 
at 33.3%/second starting from rest to a maximum of 10% 
beyond resting length, followed by decreasing strain to 
baseline at 33.3%/second (Fig. 1a). For the second CSDS 
profile, fibroblasts were subjected to an 8-h cycle with 
1.6  s bouts of deformation increasing at 22%/second 
starting at a baseline strain of 10% and a maximum of 
16.6%, followed by decreasing strain to baseline at 22%/
second (Fig. 3a). For acyclic long-duration strain (ALDS), 
after a 3-h rest period following CSDS, cells were sub-
jected to a single 60 s bout of stretch at 6% beyond rest-
ing length at a loading rate of 3%/second followed by 
release at 1.5%/second until return to resting length. 
Conditioned media was collected simultaneously from all 

Fig. 1  a Schematic representation of cell culturing method designed to allow matched comparison between unstrained primary human dermal 
fibroblasts (Control) and primary human dermal fibroblasts subjected to cyclic short-duration strain (CSDS). All conditioned media was collected 
simultaneously 24 or 96 h after the onset of the CSDS strain profile. b Schematic representation of CSDS profile used for studies in Fig. 1 and 2. c 
ELISA for interleukin (IL)-6 collected from primary dermal fibroblasts 96 h following CSDS compared to time-matched unstrained controls. Data are 
mean ± SEM normalized to Control; n = 3 per condition. * indicates p < 0.05 against Control by paired t-test
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samples either 24 h or 96 h after initiation of the CSDS 
strain protocol and stored at − 80 °C.

IL‑6 and IL‑8 enzyme‑linked immunoassays
The collected conditioned media was analyzed using 
ELISA kits for human IL-6 and IL-8 (ThermoFisher Sci-
entific, Waltham, Massachusetts, USA) to determine 

the concentration of these respective proteins. The 
ELISA methods were performed following instructions 
provided by the manufacturer and quantified on a Flu-
oStar OPTIMA (BMG, Cary, North Carolina, USA). 
Since concentrations for IL-6 and IL-8 varied between 
runs, data were normalized to either unstrained con-
trol (Fig. 1c) or CSDS strain profile (Fig. 2h–i) for each 
paired flex run.

Fig. 2  a Schematic representation of cell culturing method designed to allow matched comparison between primary human dermal fibroblasts 
subjected to cyclic short-duration strain (CSDS) or CSDS combined with acyclic long-duration strain (ALDS). All conditioned media was collected 
simultaneously 24 or 96 h after the onset of the CSDS strain profile. b, c Multi-analyte cytokine membrane array analyses on conditioned media 
collected 24 h (b) or 96 h (c) after the onset of CSDS strain profile. Red boxes indicate the membrane region corresponding to macrophage 
migration inhibitory factor (MIF), Serpin E1/Plasminogen activator inhibitor (PAI-1), interleukin (IL)-6, IL-8, and chemokine (C-X-C motif ) ligand 1 
(CXCL1)/Growth-regulated oncogene (GRO)-α. d–g Quantification of cytokine membrane array analyses for MIF (D), Serpin E1 (E), CXCL1 (F), and 
IL-8 (G). Data are mean ± SEM normalized to CSDS; n = 4 per condition. * indicates p < 0.05 against CSDS by paired t-test. h, i Quantification of 
cytometric bead array analyses for IL-8 (H) and IL-6 (I). Data are mean ± SEM normalized to CSDS; n = 3 per condition. * indicates p < 0.05 against 
CSDS by paired t-test
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Human cytokine membrane array
Conditioned media was analyzed using the Proteome 
Profiler Human Cytokine Array (R&D Systems) as 
directed by the manufacturer. The arrays were developed 
using WesternBright Sirius reagent (Advansta, San Jose, 
California, USA) on a C-Digit scanner (LI-COR, Lincoln, 
Nebraska, USA) and signal densities were determined 
using Image Studio software package (LI-COR). Data 
were normalized to CSDS strain profile for each paired 
flex run.

Cytometric bead array
Conditioned media was analyzed with the Human Pro-
Inflammatory Cytokine Cytometric Bead Array kit 
(BD Biosciences, Franklin Lakes, New Jersey, USA) as 
directed by the manufacturer using a Accuri C6 Flow 
Cytometer (Becton, Dickinson and Company, Franklin 
Lakes, New Jersey, USA). Since concentrations for IL-6 
and IL-8 varied between runs, data were normalized to 
CSDS strain profile for each paired flex run.

Statistical analyses
Statistical analyses were performed using GraphPad 
Prism 5 as described in each respective figure legend or 
in the text. A p-value of < 0.05 was considered significant.

Results
We employed a parallel study design to examine the 
effects of different mechanical strain profiles on cytokine 
levels in conditioned media from primary human der-
mal fibroblasts (Fig. 1a and 2a); cells for each condition 
were seeded on collagen I-coated flexible membranes in 
separate 6-well dishes from a single stock and, regard-
less of experimental condition, were maintained in the 

incubator simultaneously. Cells were placed on the Flex-
Cell device (which resides in the same incubator) for 
mechanical stimulation then returned to the shelf. At 
the conclusion of the experiment, conditioned media 
was collected from each plate simultaneously to allow 
matched observations of cytokine levels between experi-
mental conditions.

First, to replicate conditions of prior reports [8, 13, 14], 
fibroblasts were subjected to a mechanical force profile 
intended to mimic repetitive motion injury (i.e., cyclic 
short-duration strain, CSDS) used in multiple studies [11, 
13, 14] wherein cells were repeatedly stretched between 
baseline and 10% beyond resting length every 1.6 s for 8 h 
(Fig. 1b). We first collected conditioned media from the 
control and strained cells at 24 h and performed ELISA 
for IL-6 levels; this limited, single observation pilot run 
(n = 1 plate per condition) was consistent a prior report 
[8] in showing that CSDS results in approximately 2.5× 
higher levels of IL-6 compared to unstrained cells (con-
trol: 3.34 pg/ml; CSDS: 9.41 pg/ml). However, since this 
finding at 24  h post-CSDS is not consistent across all 
reports (see [13, 15]), we extended the culture period fol-
lowing CSDS to 96 h. This revealed threefold higher IL-6 
levels in conditioned media obtained from fibroblasts 
subjected to CSDS compared to unstrained controls 
(Fig. 1c), which is consistent with a prior report [13].

Having successfully established the model system 
in our lab, we next subjected primary human dermal 
fibroblasts to CSDS or CSDS followed by mechanical 
strain intended to mimic therapeutic soft tissue stimu-
lation (i.e., acyclic long-duration strain, ALDS), such as 
massage or myofascial release (Fig.  2a). We then took 
a limited, single observation pilot run (n = 1 plate per 
condition) at 24  h post-initiation of CSDS strain and 
performed a multi-analyte cytokine membrane array 

Fig. 3  a Schematic representation of the second cyclic short-duration strain (CSDS) profile utilized for studies in Fig. 3. b, c Determination of 
IL-8 (b) and IL-6 (c) levels in conditioned media collected from primary human dermal fibroblasts 96 h following onset of CSDS profile. Data are 
mean ± SEM normalized to CSDS; n ≥ 8 per condition. * indicates p < 0.05 against CSDS by unpaired t-test
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that evaluates levels of thirty-six different cytokines 
simultaneously. This assay detected macrophage migra-
tion inhibitory factor (MIF), Serpin E1/Plasmino-
gen activator inhibitor (PAI)-1, IL-8, and chemokine 
(C–X–C motif ) ligand 1 (CXCL1)/Growth-regulated 
oncogene (GRO)-α in conditioned media from fibro-
blasts under both experimental conditions but the lev-
els did not differ between conditions at this time point 
(Fig.  2b). Notably, IL-6 was not detected in this assay 
(Fig. 2b) but was detectable by ELISA; consistent with 
the other cytokines, IL-6 levels did not differ in condi-
tioned media from CSDS and CSDS + ALDS samples 
at this time point (data not shown). The same targets 
were detectable on cytokine membrane arrays from 
samples obtained 96-h following the initiation of CSDS 
(Fig. 2c). Consistent with the 24-h pilot run, there were 
no differences in levels of MIF, Serpin E1 or CXCL1 
between CSDS and CSDS + ALDS samples (Fig.  2d–
f ). In contrast, IL-8 levels were significantly lower 
in CSDS + ALDS samples compared to CSDS alone 
samples by membrane array (Fig.  2g) and by second-
ary analysis via high-sensitivity cytometric bead array 
(Fig. 2h). Similarly, IL-6 levels, though undetectable by 
membrane array (Fig. 2c), were lower in CSDS + ALDS 
samples compared to CSDS alone samples by cytomet-
ric bead array (Fig.  2i), which is consistent with prior 
reports [7].

Next, in a separate set of studies, we examined a dif-
ferent CSDS profile that has also been used in the litera-
ture [8] wherein primary human dermal fibroblasts were 
cyclically stretched 10% beyond resting length to 16% 
beyond resting length every 1.6  s for 8  h (Fig.  3a). We 
focused our analyses on IL-8 and IL-6 by cytometric bead 
arrays, which revealed lower levels of both cytokines in 
CSDS + ALDS samples compared to CSDS alone samples 
(Fig. 3b, c).

Conclusions
This study was designed to replicate and extend prior 
work using an in  vitro model to examine the impact of 
mechanical stimulation of dermal fibroblasts, which are 
a cell type that is recipient of mechanical forces during 
therapeutic soft tissue manipulation (reviewed in [7]). 
Our findings corroborate the observation that ALDS, 
intended to mimic soft tissue therapy such massage, fol-
lowing CSDS reduces levels of the pro-inflammatory 
cytokine IL-6. Additionally, we provide the first evidence 
that ALDS following CSDS also reduces levels of the pro-
inflammatory cytokine IL-8. We were unable to replicate 
the prior result that ALDS reduces expression of pro-
inflammatory IL-1β as this cytokine was not detected in 
any of our assays.

Limitations
Collectively, these findings provide supportive evi-
dence that therapeutic soft tissue massage may reduce 
inflammatory cytokines and may assist in designing 
future mechanistic studies in this area. However, there 
are several important limitations to the in vitro model 
used by us and others that may temper the generaliza-
tion of these results. For instance, our uniculture model 
examines only one soft tissue cell type as opposed to 
the complex tissue-level interactions that likely occur 
in  vivo. Current work in our laboratory is examining 
the effects of mechanical stimulation on other clini-
cally-relevant soft tissue cell types including skeletal 
muscle myocytes and satellite cells, adipocytes, and 
vascular endothelial cells. Similarly, we are unable to 
speculate how our findings might compare to a three-
dimensional cell culture model as opposed to a cell in 
a monolayer. It is also unclear why reduced IL-6 and 
IL-8 levels were not observed at earlier time points in 
our pilot experiments or, importantly, if this delayed 
effect is clinically relevant or an artifact of the in vitro 
setting. That said, our results are highly consistent with 
prior work and provide independent confirmation that 
mechanical stimulation, as delivered here, alters pro-
inflammatory cytokine release from dermal fibroblasts, 
which is consistent with the finding that IL-6 levels are 
lower in heterogenous soft tissue biopsies obtained 
from humans 2.5 h post-massage [12].

Finally, it is important to point out that, with regard 
to clinical relevance, soft tissue manual therapy likely 
involves several factors beyond mechanical stimulation, 
including sensory, cognitive, thermal, neurovascular, 
lymphatic, autonomic, neuro-hormonal-endocrine, psy-
chosocial, and emotional components. Ultimately, the 
complex integration of multiple elements determines 
the biological response, functional outcomes, subjective 
pain perception, and sense of well-being associated with 
soft tissue manual therapies in clinical care. Future work 
is required to address these open questions and advance 
the mechanistic understanding of therapeutic mechani-
cal stimulation of soft tissues.
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