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Abstract

Background: The clinical signs of active trachoma are often present in the absence of ocular Chlamydia trachomatis
infection in low prevalence and mass treated settings. Treatment decisions are currently based on the prevalence of clinical
signs, and this may result in the unnecessary distribution of mass antibiotic treatment. We aimed to evaluate the diagnostic
accuracy of a prototype point-of-care (POC) test, developed for field diagnosis of ocular C. trachomatis, in low prevalence
settings of The Gambia and Senegal.

Methodology/Principal Findings: Three studies were conducted, two in The Gambia and one in Senegal. Children under
the age of 10 years were screened for the clinical signs of trachoma. Two ocular swabs were taken from the right eye. The
first swab was tested by the POC test in the field and the result independently graded by two readers. The second swab was
tested for the presence of C. trachomatis by Amplicor Polymerase Chain Reaction. In Senegal, measurements of humidity
and temperature in the field were taken. A total of 3734 children were screened, 950 in the first and 1171 in the second
Gambian study, and 1613 in Senegal. The sensitivity of the prototype POC test ranged between 33.3–67.9%, the specificity
between 92.4–99.0%, the positive predictive value between 4.3–21.0%, and the negative predictive value between 98.0–
99.8%. The rate of false-positives increased markedly at temperatures above 31.4uC and relative humidities below 11.4%.

Conclusions/Significance: In its present format, this prototype POC test is not suitable for field diagnosis of ocular C.
trachomatis as its specificity decreases in hot and dry conditions: the environment in which trachoma is predominantly
found. In the absence of a suitable test for infection, trachoma diagnosis remains dependent on clinical signs. Under current
WHO recommendations, this is likely resulting in the continued mass treatment of non-infected communities.
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Introduction

Trachoma is caused by ocular infection with the bacterium

Chlamydia trachomatis and is the leading infectious cause of blindness

worldwide [1]. The World Health Organization (WHO) simplified

grading system, designed for the simple and reliable grading of

trachoma clinical signs by non-specialist staff, is predominantly

used for trachoma diagnosis in the field [2]. This system classifies

the clinical signs into five categories: trachomatous inflammation-

follicular (TF), trachomatous inflammation-intense (TI), tracho-

matous scarring (TS), trachomatous trichiasis (TT), and corneal

opacity (CO).

Clinical signs are however poorly correlated with detection of

ocular C. trachomatis infection, since they may persist for months or

years after infection has cleared [3,4,5,6,7]. The WHO recommends

that any district or community where the prevalence of TF in

children aged 1–9 years is at least 10% should receive mass antibiotic

treatment annually for three years, before the prevalence is re-

assessed [8]. Since antibiotics are given to treat C. trachomatis

infection, and the prevalence of clinical signs is a poor predictor of

infection especially in low prevalence and mass treated settings,

treatment may be unnecessarily commenced and continued, thus

wasting scarce resources. A point-of-care (POC) test capable of

detecting infection in the field would enable treatment to be directed

to those communities in need. Since a POC test would be used to

make treatment decisions at the community, rather than the

individual, level, it is important that it has high specificity (.98%),

otherwise it has no advantage over the use of clinical signs.

A prototype POC test for trachoma, developed by the

Diagnostics Development Unit (University of Cambridge, UK),
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and currently not commercially available, has previously been

evaluated on a small scale in a medium prevalence Tanzanian

setting (12.5–37.9% TF in children aged 1–9 years), with

encouraging results [9]. This assay is a modified version of a test

for genital C. trachomatis infection [10,11], optimised for use with

conjunctival swabs. The assay detects the chlamydial lipopolysac-

charide (LPS), using lateral flow technology. The dipstick is made up

of a nitrocellulose membrane affixed to a backing sheet, and

connected to an absorbent pad, with two immobilised monoclonal

antibodies (mAbs) lined on the dipstick membrane. The mAb at the

capture line is against chlamydial LPS, and that at the procedural

control line is an antibiotin antibody. This assay was designed

specifically for use in resource-limited settings, and therefore has no

electricity, water or laboratory equipment requirements [9].

We aimed to conduct a larger scale evaluation of this prototype

POC test’s diagnostic accuracy in children aged under 10 years in

the low prevalence settings of The Gambia and Senegal. The

functional temperature and humidity range of the prototype test

was unknown before this study’s field testing.

Methods

The study has been reported in accordance with the STARD

(STAndards for the Reporting of Diagnostic accuracy studies)

checklist (provided as Supporting Information S1) [12].

Ethics statement
Research was done in accordance with the declaration of

Helsinki. Ethical approval was obtained from the London School

of Hygiene & Tropical Medicine (LSHTM) ethics committee

(No.2067), the Gambia Government/Medical Research Council

Joint Ethics Committee (SCC 979), and the Comité d’éthique du

CNRS, Dakar, Senegal. Written (thumbprint or signature)

informed consent was obtained from the guardians of all children.

Study site and participant selection
Three studies were conducted, two in The Gambia and one in

Senegal. An overview of the study methods is depicted in Figure 1.

Study 1 was part of a survey of the Lower River (LRR) and North

Bank (NBR) Regions of The Gambia. The sample selection has

been described in detail elsewhere [13]. Briefly, 19 census

Enumeration Areas (EAs), which are designed to be of

approximately the same population size, were randomly selected

in LRR. A random selection of households was made so that 50

children aged under 10 years would be included. In Studies 2 and

3, all children aged under 10 years were included. Study 2 took

place in 6 Gambian communities and Study 3 in 12 Senegalese

communities. The Gambian communities were selected on the

basis of having a TF prevalence of at least 10% in the Gambian

survey [13], increasing the likelihood of finding infection. Study 3

was based in the health post of Keur Samba Kane in Bambey

District, which had been identified by the National Eye Care

Programme as fulfilling the WHO criteria for mass treatment.

Study 1 was conducted in January–March 2006, Study 2 in

March–May 2006, and Study 3 in January–February 2007.

Census enumeration
The village head (alkalo) and villagers were sensitised to the

study’s aims and methods. Household head lists were made and

the de facto population was enumerated, recording their name, alias

names, age and sex. Date-of-birth was noted when possible using

ID cards and infant vaccination cards. The census team identified

eligible children and informed household heads of the day and

place of examination to ensure optimum participation.

Clinical examination
Experienced Gambian and Senegalese graders were used. Their

grading was verified and standardised using WHO grading slides,

and a chance corrected agreement (Cohen’s kappa [14]) score of at

least 0.8 was required for the scoring of each sign (TF, TI, TS,

TT). NBR villages with the highest active trachoma prevalence in

the Gambian survey were re-visited and children diagnosed with

active disease were re-screened by a senior grader to verify clinical

diagnoses.

The examination team located itself in a central point in the

village. Eligible children were called and written informed consent

(signature or thumbprint) from the participants’ guardians was

obtained. The validated grader examined each consenting

participant’s eyes using a 2.56 magnifying loupe and torchlight.

In order to avoid cross-contamination, the examiner wore and

changed gloves between each participant. The clinical diagnosis

was made according to the WHO simplified grading system [2].

Ocular sample collection
Two swabs were taken from the tarsal conjunctiva of each

participant’s right eye using a standardised technique [15],

whereby the swab was held horizontally and drawn lengthways

across the everted upper tarsal conjunctiva four times, rotating the

head of the swab a quarter turn with each pass. Cross-

contamination of samples was limited by using a field worker to

pass the swab to the examiner. The field worker then held the tube

into which the swab would be stored dry, so that the examiner

never touched the tube, and the swab’s head only ever contacted

the participant’s conjunctiva.

In The Gambia, both samples were collected with the POC

test’s sterile polyurethane swab (Becton, Dickinson and Company,

Franklin Lakes, USA). In Senegal, the first sample was collected

with the POC test’s swab, and the second sample was with a dry

Dacron polyester-tipped swab (Quelab Laboratories, Montreal,

Canada). This swab change was because inhibition in Studies 1

and 2 was believed to be due to the polyurethane swab, as a cloudy

lysate was observed in the Amplicor extract.

Author Summary

Trachoma, caused by infection of the eye with the
bacterium Chlamydia trachomatis, is the leading infectious
cause of blindness and is associated with poverty.
Antibiotic treatment of all community members is one of
the recommended control strategies for trachoma. How-
ever, in places where the prevalence of clinical signs is low,
C. trachomatis eye infection is often absent. Laboratory
testing for C. trachomatis infection by polymerase chain
reaction (PCR) is highly sensitive but expensive and
requires well-trained staff. A simple point-of-care (POC)
test that can be used in trachoma-affected communities
could help trachoma control efforts. We evaluated a POC
test for C. trachomatis eye infection. Children under 10
years of age were screened for clinical signs of trachoma
and C. trachomatis eye infection. The POC test result was
compared with laboratory PCR test results. The POC test
detected just over half of PCR test positives correctly.
However, the POC test tended to give false-positive results
in hot and dry conditions, which is the typical environment
of trachoma. The POC test requires high specificity since it
would be used to make treatment decisions at the
community level. Therefore, its present format requires
improvement before it can be utilized in trachoma control.

Performance of Trachoma Point-of-Care Test
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The first swab was processed immediately in the field by the

POC test. The second-collected swabs, to later be tested for the

detection of ocular C. trachomatis with the qualitative PCR

Amplicor Chlamydia trachomatis/Neisseria gonorrhoeae (CT/NG) Test

(Roche Molecular Systems, Indianapolis, IN, USA), were stored in

a cool box in the field and archived frozen at 220uC within ten

hours of collection.

POC testing
POC testing was carried out according to the POC test’s

protocol [9]. Briefly, the eye swab was placed in a sample

preparation tube to which three reagents were added for the

release of Chlamydia LPS. Five drops of the sample extract were

transferred to a detection tube, rehydrating two lyophilised signal

amplification reagents. A dipstick was then placed inside the tube

and the mixture was left to wick up for 25 minutes before the

results were read.

The same person performed all POC testing and was masked to

the clinical diagnosis. Results were read at 25 minutes by two

different readers each masked to the other’s grading. The first

reader was trained by the Diagnostics Development Unit, and the

second reader was trained by the first reader. Grading was

practised on non-clinical samples prior to participant sample

collection. The signal strength was graded from 0 (negative) to 5

(strongly positive) using a signal grading card with increments of

0.5. A positive sample is defined as any signal with a signal

strength of 0.5 or more noted by the reader. In Senegal, a pocket

size temperature/humidity handheld datalogger (RH32 Series,

Omega, Manchester, UK) was used with values measured every

30 minutes.

Amplicor PCR processing
Amplicor, which detects the multi-copy cryptic plasmid, was

performed on the second-collected swab. Amplicor was chosen as

the reference test due to its good diagnostic performance on ocular

samples [16,17,18], its history of use for detection of ocular C.

trachomatis detection [15,19,20,21], and its use as the reference test

in the previous evaluation of this prototype POC test [9].

Study 1 samples were tested within 42 days of collection at the

Medical Research Council (MRC) Laboratories, Fajara, The

Gambia. About half of Study 2 samples were processed within 1

month at the MRC, and the remainder within 4 months at the

London School of Hygiene & Tropical Medicine (LSHTM). All

Senegalese samples were processed at the LSHTM between 2

and 6 months of collection. A previously published [15] sample

preparation protocol was used instead of that in the Amplicor

package insert. Positive and negative controls provided with the

assay were included to validate the runs. When clusters of

positives were observed on the detection plate, the positive

samples were retested on-site. Those confirmed positive on the

retest were considered Amplicor positives, and the others were

considered negatives. Amplification of both the plasmid DNA

and the master-mix internal control sequence was tested, allowing

for inhibition to be detected. Inhibited samples were diluted from

1/5 up to 1/100 with a 50:50 lysis:diluent mix, until inhibition

was resolved.

Figure 1. Flowchart outlining study methods and results.
doi:10.1371/journal.pntd.0001234.g001

Performance of Trachoma Point-of-Care Test
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Quantitative PCR processing
The bacterial load of Amplicor positive samples was estimated

by processing the samples with a real-time quantitative PCR assay

targeting the single-copy ompA gene [15]. The reverse primer,

common to all ocular serovars, was 59-TTT AGG TTT AGA

TTG AGC ATA TTG GA-39. The serovar A and B forward

primers were 59-GCT GTG GTT GAG CTT TAT ACA GAC

AC-39 and 59-TCT GTT GTT GAG TTG TAT ACA GAT AC-

39 (Sigma-Genosys, Gillingham, UK), respectively. Quantitation

was done on two 4 mL replicate samples for both serovar A and

serovar B. The Gambian samples were processed in a LightCycler

(Roche Diagnostics, Indianapolis, USA). The Senegalese samples

were processed on a Rotor-Gene RG3000 (Qiagen, Crawley, UK).

Quality control
Protocol changes were introduced as the study progressed to

help ensure data quality. These changes involved the introduction

of a POC test panel to be performed in the field, mock swabs

inserted between patient samples in the field, environmental

controls (air, loupe and glove swabs), and testing for laboratory

contamination.

Panel. For Studies 2 and 3, a panel of positive (low, medium

and high concentrations of C. trachomatis LGV-L1) and negative

controls was processed at the beginning of each working morning

and afternoon to check that the POC test was working correctly. A

swab was dipped into the control vial (for the negative control:

10 mM PBS, 0.1% sodium azide and 1% treated casein;

concentrations for the positive controls which should all be POC

test positive: High: 1.1436107 C. trachomatis elementary bodies

(EB)/ml; Medium: 96105 EB/ml; Low: 2.256105 EB/ml) and

processed normally. Before the addition of the third reagent,

50 mL of these controls was aliquoted into 200 mL of pre-dispensed

Amplicor diluent to be later processed by Amplicor, to serve as

negative and positive controls from the field to the laboratory.

These aliquoted panels were stored in the same way as the ocular

swabs.

In Senegal, two types of field sample control were introduced:

Environmental controls. At approximately every

hundredth sample, a swab was waved in the air (air control),

another swab wiped the top of the glove box (glove control), and a

third swab wiped the front of the loupe (loupe control).

Mock swabs. Pre-prepared mock swabs were introduced

between patient samples in the field before POC testing. Positive

swabs were prepared with a non-ocular C. trachomatis strain (LGV-

L1). The low load positive was below the POC test detection limit

(2500 chlamydial EBs per test [9]) and the high load positive was

above the detection limit. Negative mock swabs were also

included. Mock swabs were introduced at a frequency which

meant that one of each type of specimen would be processed per

89 patient samples. The samples were labelled in the same way as

normal swabs to mask the POC and Amplicor test processors.

Amplicor quality control. At both LSHTM and MRC,

Amplicor was conducted by experienced laboratory staff who had

successfully completed a masked panel of samples. The Amplicor

processors were masked to the clinical diagnoses and POC test

results. As a measure of Amplicor reproducibility, the Amplicor-

positive samples from Study 2 (20 tested at MRC, 15 tested at

LSHTM) were re-tested by Amplicor at the University of

Cambridge, and 21 Amplicor-negative samples were re-tested at

LSHTM by a scientific officer who did not know the samples’

origin. As part of the ongoing improvement to quality assurance

throughout the study, it was decided to check for laboratory

contamination at the time of processing the Senegalese samples.

Swabs were taken of the laboratory cabinet surfaces and gloves,

and processed by Amplicor.

To verify the quality of sample collection, Study 1 samples were

tested for the presence of human-specific hypervariable 1 (HV1)

D-loop region mitochondrial DNA (mtDNA) [13]. mtDNA-

positive results indicate that human DNA is present in the sample.

Statistical analyses
Results were double-entered by different entry clerks and

verified in Microsoft Access (MS Access v2000/2003XP). Any

discrepancies after verification were checked against the original

paper forms. Data cleaning was performed in Stata (v9.2, STATA

Corp., College Station, TX, USA).

Data analysis was performed in Stata, except for the humidity

and temperature analyses which were performed in R (v 2.9.0, R

Foundation for Statistical Computing, Vienna, Austria). As a result

of the change in Amplicor swab type between Studies 2 and 3, and

that the graders in The Gambia and Senegal were different, results

from the 3 studies have not been combined.

The kappa statistic was used to assess between-grader

agreement for the POC test and to assess Amplicor reproducibil-

ity. The performance (sensitivity, specificity, Positive Predictive

Value (PPV) and Negative Predictive Value (NPV)) of the POC

test was compared against Amplicor as the gold standard.

Binomial exact 95% confidence intervals (CI) were calculated to

quantify uncertainty. Proportions were compared using Pearson’s

chi-squared statistic. Cuzick’s trend test was used to look at the

relationship between quantitative load, clinical sign status and

POC test result.

The effect of temperature and humidity on the POC test’s

performance was measured using logistic regression. A scatter plot

of false-positives (FPs) and true-negatives (TNs) by temperature

and humidity was made, with contours of the relative risk of FPs

relative to TNs. For each TN, a bivariate Normal density function

was centred on the corresponding point. At any point on the

graph, a density for TNs was calculated by summing these

individual densities. A similar procedure was applied to the FP

results. At any point, the relative risk is the ratio of these two

densities. Contours of this relative risk were then added to the

scatter plot (Figure 2).

Figure 2. Relative risk of false-positives relative to true-
negatives by temperature and relative humidity for Study 3.
doi:10.1371/journal.pntd.0001234.g002
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Results

A total of 3734 children were screened and tested. Study 1

(LRR, The Gambia) included 950 children under 10 years, Study

2 (6 villages, The Gambia) 1171, and Study 3 (Senegal) 1613. This

represents participation of 88.3% (950/1076), 90.8% (1171/1289),

and 96.6% (1613/1669) based on the censused population in

Studies 1, 2, and 3, respectively.

Laboratory controls
During Amplicor processing of the Senegalese samples, 12 lab

controls were taken to check for lab contamination (3 for the hood,

2 of the glove box, 2 of the cabinet, and 5 of the gloves). All were

Amplicor-negative.

Mock swabs
In Senegal, 14 negative, 15 low load, and 11 high load mock

swabs were introduced in between patient samples. Amplicor

correctly detected all results. For the POC test, the number of

correctly identified negative, low and high load positive cases

differed significantly for reader 1 (p = 0.007) and reader 2

(p = 0.004). For both readers, the POC test correctly detected

the high load positives in 100% of cases. These had a signal

strength ranging from 1.0 to 2.0 for reader 1, and from 1.0 to 2.5

for reader 2. For low load positives (that tested POC negative

under standard laboratory conditions), 5 samples were graded as

positive by both the first and second readers. An additional sample

was graded positive by reader 1, and 3 other samples as positive by

reader 2. Thus, a total of 9/15 low load positives were detected by

the POC test in the field. The signal strength of these false-

positives ranged from 0.5 to 1.5 for both readers. For the negative

controls, the readers both graded 5 samples as positive, and reader

2 additionally graded 4 samples as positive. These false-positives

had signal strengths of 0.5 or 1.0 for both readers.

Environmental controls
In Senegal, there were 16 air controls, 16 glove controls, and 17

loupe controls. All were Amplicor negative. Less than half the

POC test results were negative for both reader 1 (42.9%) and

reader 2 (46.9%).

POC test panel
In total, there were 101 panel positive and negative controls

aliquoted in the field and tested by Amplicor (52 in Study 2 and 49

in Study 3). All 63 positive controls were correctly detected by

Amplicor. Of the 38 negative controls, one from The Gambia

tested positive repeatedly and two initially tested equivocal but

were negative when repeat tested in duplicate. There was an

additional equivocal negative control result by Amplicor, but the

sample was erroneously labelled only as ‘‘negative control’’ on the

template, without specifying which negative control this was,

meaning it could not be retested.

A total of 56 panels were tested by the POC test (14 in Study 2

and 42 in Study 3). All positive panels, regardless of concentration,

were positive by the POC test for both readers. The proportion of

all negative panels correctly recorded as negative by the POC test

was 60.7% for reader 1 (85.7% for Study 2, 52.4% for Study 3),

and 66.1% for reader 2 (92.9% for Study 2 and 57.1% for Study

3).

Sample quality
Of 942 Amplicor-negative samples for which sample was

available in Study 1, positive results for human-specific hyper-

variable D-loop region mtDNA were obtained in 937 (99.5%)

samples. The five mtDNA-negative samples and five samples that

could not be tested for mtDNA because of insufficient material

from Study 1 have been removed from analyses. Three field air

controls were randomly selected and also tested for C. trachomatis

and human mtDNA, and provided negative results.

Inhibition by swab type
Inhibition in Studies 1 and 2 which used the POC test

polyurethane swab was 23.4% (220/940) and 22.8% (2671171),

respectively. The proportion of inhibited samples in Study 3 was

18.2% (293/1613), so the change of swab did not make a

noticeable difference to the level of inhibition. Only one inhibited

sample, from Study 2, retested as Amplicor positive.

Amplicor reproducibility
Of the 35 Amplicor-positive samples from Study 2 retested at

the University of Cambridge, 27 were confirmed positive (23 as

positive and 4 as equivocal), 3 were negative but failed the Internal

Control (IC), and 5 were negative and passed the IC. All 21

Amplicor-negatives retested as negative. These retests resulted in a

kappa score between the initial and retest results of 0.73,

demonstrating substantial agreement.

All 35 samples originally tested as positive were considered true

positives for the analyses presented. Of the 5 negatives, three were

positive by quantitative PCR with estimated loads of 5, 7 and 25

ompA copies/swab. The remaining two positives were isolated

among a string of negatives in the field, and were not near positive

samples on the Amplicor detection plate.

If a true positive was considered to be one that was positive at

both LSHTM and the University of Cambridge (27 samples

retested positive or equivocal), the specificity and PPV estimates

remain the same. The NPV increases slightly to 98.7% (97.9–99.3)

for reader 1 but decreases to 98.8% (98.0–99.4) for reader 2. The

sensitivity increases for both readers, but insignificantly: 48.1%

(28.7–68.1, p = 0.384) for reader 1 and 51.9% (31.9–71.3,

p = 0.352) for reader 2.

Repeat of Amplicor positive samples clustered on the
detection plate

For Study 1, none of the 3 Amplicor positives were retested. For

Study 2, 10/39 Amplicor positives were retested, and 6 retested

negative. For Study 3, 13/51 Amplicor positives were retested and

all retested positive.

Diagnostic performance
The prevalence of active trachoma and Amplicor positives was,

respectively, 11.9% and 0.3% in Study 1, 23.9% and 3.0% in

Study 2, and 14.9% and 1.8% in Study 3. During field processing

of the POC test, mistakes were made for 4 samples in Study 1, and

3 samples in Study 3. These samples have been removed from

analyses involving the POC test. The POC test’s sensitivity,

specificity, PPV and NPV against Amplicor showed similar point

estimates and 95% CI for the two readers (Table 1). Overall,

sensitivity and PPV were low, with respective estimates ranging

from 33.3%–67.9%, and 4.3%–21.0%. The specificity met the

minimum target of 98% in Study 1, but not in Studies 2 or 3.

There is no evidence of a significant difference between the

point estimates and corresponding 95% CI for NPV, PPV, or

sensitivity between the three studies. Precision for the sensitivity

estimates was low due to small numbers (Table 1). Compared with

Study 1, the specificity of the POC test was significantly lower in

both Study 2 (p,0.001) and Study 3 (p = 0.001). In Studies 2 and

3, the specificity upper confidence bounds did not exceed 96.8%.

Performance of Trachoma Point-of-Care Test
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Effect of relative humidity and temperature on diagnostic
performance

Temperature and relative humidity data were collected for all

samples from Study 3 (1584 Amplicor-negatives and 29 Amplicor-

positives). Figure 2 shows contours of the relative risk (RR) for FPs

relative to TNs, with shading from green to red as the RR

increases (see under Statistical Analyses in the Methods section). It

is apparent that the false-positive RR began to increase at

temperatures above 30uC and at relative humidities below 10%.

The RR of a FP is approximately three times that of a true-

negative at a temperature of about 36uC and at a relative humidity

of 10%, and increases more rapidly as temperature rises and

humidity falls.

Plots of FP rates against temperature and relative humidity

indicated an increase at temperatures above 31.4uC, and a relative

humidity below 11.4%. Estimates of diagnostic accuracy calculat-

ed for samples processed above and below the 31.4uC temperature

threshold showed that the specificity was significantly lower in

samples processed above the threshold than below, for both the

first and second POC test readers (p,0.001) (Table 2). For

humidity, the specificity was significantly lower in samples

processed below a threshold of 11.4% compared with those above

the threshold, for both readers (p,0.001) (Table 2).

Analytic sensitivity of the POC test
Of the 67 Amplicor-positives, positive ompA results were

obtained in 58 (86.6%) samples by quantitative PCR. The

estimated number of ompA copies/swab ranged from 5 to

3,008,063, with a median of 670. Although a few low load PCR

positives were POC test positive, the POC test consistently

detected positives from 1000 ompA copies/swab. Although the

POC test is a qualitative assay, the signal strength was scored on a

scale from 0.5 (weak) to 5.0 (strong) in the field. There was a

significant association between increased organism load and

increased POC test signal strength (p,0.001).

Inter-grader agreement
The kappa score for inter-grader variability between the two

POC test readers was lowest for Study 1 and highest for Study 3.

For exact signal strength the kappa score ranged from 0.41 to 0.59,

showing moderate agreement. When the results were categorised

as positive (signal strength $0.5) or negative (signal strength ,0.5),

the scores ranged from 0.26 to 0.68, demonstrating fair to

substantial agreement.

Discussion

In this study we conducted an evaluation of a prototype POC

test for the detection of ocular C. trachomatis in children aged under

10 years in The Gambia and Senegal. After following standardised

field and laboratory protocols, ensuring quality assurance and data

validity, the results demonstrated that in its present format, this

POC test is not suitable for use in the field. Under laboratory

conditions, the negative and low positive mock swabs resulted in

negative POC tests. In the field, the POC test gave false-positive

results for approximately half of these mock swabs. This

demonstrates that the POC test does not pass quality control

procedures when tested in the field. When tested on children’s

ocular swabs, specificity in Study 1 was excellent (99.0% and

97.6% for readers 1 and 2, respectively). This is consistent with the

specificity reported from the previous evaluation of this test

performed in Tanzania, where the overall specificity was 99.4%

(95%CI 98.8–100) [9]. However, in Studies 2 and 3, the specificity

ranged from 92.4% to 95.7%, falling short of the 98% minimum

specificity required for this test.

The temperature and relative humidity data provide the most

likely explanation for the lower POC test specificity in Studies 2

and 3. Study 1 was conducted in January and February, when The

Gambia is experiencing its cool season. Study 2 took place just

before the rainy season, when temperatures rise. In Study 3, high

temperatures and low relative humidities were recorded whilst

performing the test, and these conditions were shown to

significantly affect the false positive rate of the POC test. These

data indicate that the prototype POC test’s format is not

appropriate for these environmental conditions.

Evaluations of rapid POC tests for other infectious diseases have

observed a detrimental effect of high temperature and humidity

during test storage on performance [22,23,24]. However, we

observed an effect on the test’s performance in the field during

processing. A review of malaria rapid diagnostic tests which also

use lateral flow technology, notes that humidity and wind rapidly

degrade nitrocellulose capillary flow action. This effect on reagent

Table 1. Diagnostic accuracy of the POC test compared with the gold standard (Amplicor).

PCR POC test - reader 1 POC test - reader 2

Negative Positive Total Negative Positive Total

Study 1 Negative 927 6 933 911 22 933

Positive 2 1 3 2 1 3

Total 929 7 936 913 23 936

Negative Positive Total Negative Positive Total

Study 2 Negative 1087 49 1136 1076 60 1136

Positive 22 13 35 21 14 35

Total 1109 62 1171 1097 74 1171

Negative Positive Total Negative Positive Total

Study 3 Negative 1461 121 1582 1492 90 1582

Positive 9 19 28 11 17 28

Total 1470 140 1610 1503 107 1610

doi:10.1371/journal.pntd.0001234.t001
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flow could result in false-positives. In addition, temperature and

time could be detrimental to the test’s sensitivity, as they have been

reported to deconjugate the signal line antibody-indicator

complex, detach the capture antibody from the nitrocellulose

strip, and unfold the binding sites of antibodies [25]. Since the

dipstick of the ocular C. trachomatis POC test under evaluation is

made up of a nitrocellulose membrane transversely lined with

mAb against chlamydial LPS and antibiotin, these are plausible

explanations for the observed deleterious effect of high temper-

ature and low relative humidity on the test’s performance. These

results suggest that the environmental conditions during Studies 2

and 3 were harsher than those experienced in Study 1 and

Tanzania, and emphasise the importance of conducting POC test

evaluations in different settings. A change in the format of the

prototype POC test that prevents its performance from being

affected by the dry, hot, and dusty environments in which

trachoma is predominantly found [26], would no doubt improve

the usefulness of this test for trachoma control.

False-positives may also have appeared as a result of the POC

test’s target being the genus-specific chlamydial LPS. We do not

believe, however, that cross-reaction with non-C. trachomatis

bacteria was the cause of the POC test false-positives observed

in this study. As noted by Michel et al., the POC test’s specificity

has been established against a panel of microorganisms commonly

associated with the human eye and skin (such as Staphylococcus,

Pseudomonas, Streptococcus, Escherichia, Proteus, and Candida, obtained

from ATCC) [9]. In addition, if cross-reaction were taking place, it

would not explain the observed association between FPs with

temperature and humidity.

The advantage of testing the prototype POC test in low

prevalence settings was the ability to gain a good estimate of

specificity. The disadvantage is that we have been unable to

determine an accurate estimate of the test’s sensitivity. In

addition, the active disease found in this study was mild with

only 6.5% of clinically active children having TI. Infection load is

correlated with disease severity [4,15,27]. The consequence of

lower infection loads is a lower test sensitivity, especially in an

assay that detects a surface antigen as opposed to one using PCR

technology. Indeed, the Tanzanian evaluation observed a lower

(albeit non-significant) sensitivity (76.9%) of the POC test in the

lower prevalence site (TF prevalence 12.5%) compared with a

sensitivity of 85.5% where the TF prevalence was 31.5% [9].

Michel et al. (2006) noted that the assay has an analytical

sensitivity of 2500 chlamydial EBs per test [9]. Our quantification

demonstrated consistent detection from approximately 1000 ompA

copies/swab.

Table 2. Effect of temperature and humidity on performance of the POC test compared to Amplicor PCR.

Temperature threshold: 31.46C

POC test – reader 1 POC test – reader 2

Below threshold Above threshold Below threshold Above threshold

True positive 10 9 10 7

True negative 956 505 961 531

False positive 21 100 16 74

False negative 7 2 7 4

Sensitivity 58.8
(32.9–81.6)

81.8
(48.2–97.7)

58.8
(32.9–81.6)

63.6
(30.8–89.1)

Specificity 97.9
(96.7–98.7)

83.5
(80.3–86.4)

98.4
(97.4–99.1)

87.8
(84.9–90.3)

PPV 32.3
(16.7–51.4)

8.3
(3.8–15.1)

38.5
(20.2–59.4)

8.6
(3.5–17.0)

NPV 99.3
(98.5–99.7)

99.6
(98.6–100)

99.3
(98.5–99.7)

99.3
(98.1–99.8)

Relative humidity threshold: 11.4%

POC test – reader 1 POC test – reader 2

Below threshold Above threshold Below threshold Above threshold

True positive 6 13 5 12

True negative 381 1080 403 1089

False positive 90 31 68 22

False negative 2 7 3 8

Sensitivity 75
(34.9–96.8)

65
(40.8–84.6)

62.5
(24.5–91.5)

60
(36.1–80.9)

Specificity 80.9
(77.0–84.3)

97.2
(96.1–98.1)

85.6
(82.1–88.6)

98
(97.0–98.8)

PPV 6.3
(2.3–13.1)

30.2
(17.2–46.1)

6.8
(2.3–15.3)

35.3
(19.7–53.5)

NPV 99.5
(98.1–99.9)

99.4
(98.7–99.7)

99.3
(97.9–99.8)

99.3
(98.6–99.7)

Values in parentheses are 95% CI.
doi:10.1371/journal.pntd.0001234.t002
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In terms of the limitations of this study, there was a delay of up

to 6 months between sample collection and sample processing,

which could have resulted in low load positives testing negative.

This may have contributed to the number of POC test false-

positives observed. However, since samples were stored at 220uC,

we do not believe that the DNA would have degraded and that

waiting would have led to a decrease in the number of true

positives.

The POC test was performed on the first-collected swab

whereas the ‘‘gold standard’’ Amplicor testing was on the second-

swab. There may be differences between the two swabs, for

example, in cases where there are few EBs in the conjunctiva the

first swab may not leave any for the second swab. One of the

swabs may also collect more PCR-inhibiting material, such as

mucous, resulting in inhibition in one of the assays. Furthermore,

one swab may be passed more forcefully over the conjunctiva,

collecting more DNA or inhibiting material. Michel et al. (2006)

demonstrated that first-collected swabs had higher loads than

second-collected swabs by comparing organism load in the first-

and second-collected swabs from 13 Amplicor positive individ-

uals. The first swab’s mean EB count was 643,424 compared with

181,310 for the second swab. This should not affect the Amplicor

prevalence as its detection level is in the range of 1–10 EBs

[28,29]. Furthermore, Amplicor result concordance between first-

and second-collected swabs has been shown to be excellent

[5,30].

There was a change in swab type between Study 2 and Study

3 because it was believed that the polyurethane swab led to

inhibition. However, the swab change did not make a noticeable

difference to the level of inhibition. The disadvantage of

inhibition is the need to dilute the sample, which would reduce

the copy number in any sample tested, resulting in Amplicor

false-negatives. Since load of infection in the study sites was

often low (with 37.3% of all Amplicor positives having a load of

,10 ompA copies/swab or being negative), this is a distinct

possibility, and could have contributed to the low specificity of

the POC test.

Another possible limitation is our choice of gold standard. In

the absence of a universally accepted gold standard for C.

trachomatis, we chose Amplicor as it was used in the previous

evaluation of this POC test [9], and it has been used in multiple

studies of ocular C. trachomatis infection. Controls included to

assure the quality of our gold standard produced excellent results.

Air, loupe, glove and spiked mock swab field controls were all

correctly identified. The Amplicor results for aliquots from the

POC test control panel were correct except for one negative

panel from Study 2, which was repeatedly positive, and one

equivocal which could not be repeat tested because the sample

name was not correctly written on the Amplicor plate template.

This suggests contamination of the negative panel from the

positives when aliquoting in the field, which is possible as

stringent laboratory conditions cannot be maintained in such an

environment. Furthermore, it was a requisite for a successful run

that the Amplicor-provided positive and negative controls

processed for each plate produce the correct result, indicating

that contamination in the lab is unlikely. This is supported by the

Amplicor negative results of swabs taken of lab surfaces to check

for lab contamination. When positives clustered on the detection

plate were repeat tested, 6/10 retested samples from Study 2

retested negative. This could indicate that there was contamina-

tion between the wells on the detection plate, and for this reason

they were considered negative in analyses. Alternatively, these

samples could have been low load positives that did not repeat

test positive. Of the 35 Amplicor positives retested by Amplicor at

the University of Cambridge, five tested negative.. The failure to

retest these five samples as positive was not unexpected as

reproducibility when retesting the original sample with the same

test is known to be poor for low load samples [31,32,33,34,35,36].

However, when samples that were not repeated positive at the

University of Cambridge were removed from the analyses, there

was no significant effect on the prototype POC test’s perfor-

mance.

The development of effective diagnostic tools is considered a

priority for Neglected Tropical Diseases (NTDs) [37], and it is

therefore important to be aware of the impact the environment

can have on the operational performance of POC tests. A lateral

flow platform in an open system appears not to be suitable for

the environments in which NTDs, such as trachoma, are often

found. A rapid, accurate, simple, and affordable POC test which

can be performed in the field could be a great asset to trachoma

control, particularly in low prevalence settings. The specificity of

the test must be high (.98%) to prevent communities from

being unnecessarily mass treated. The specificity of the

prototype POC test evaluated in this study decreased as the

temperature increased and relative humidity decreased, indi-

cating the importance of field testing POC tests in the different

environments in which the target disease is found, in addition to

being evaluated in different prevalence settings. Until a suitable

test is made available, trachoma control decisions in the field

remain reliant on clinical diagnosis, potentially wasting scarce

resources.
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