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Towards routine 3D 
characterization of intact 
mesoscale samples by multi‑scale 
and multimodal scanning X‑ray 
tomography
Ruiqiao Guo1,2, Andrea Somogyi1*, Dominique Bazin3, Elise Bouderlique4,5, 
Emmanuel Letavernier4,5,6, Catherine Curie7, Marie‑Pierre Isaure8 & Kadda Medjoubi1*

Non‑invasive multi‑scale and multimodal 3D characterization of heterogeneous or hierarchically 
structured intact mesoscale samples is of paramount importance in tackling challenging scientific 
problems. Scanning hard X‑ray tomography techniques providing simultaneous complementary 
3D information are ideally suited to such studies. However, the implementation of a robust on‑site 
workflow remains the bottleneck for the widespread application of these powerful multimodal 
tomography methods. In this paper, we describe the development and implementation of such a 
robust, holistic workflow, including semi‑automatic data reconstruction. Due to its flexibility, our 
approach is especially well suited for on‑the‑fly tuning of the experiments to study features of interest 
progressively at different length scales. To demonstrate the performance of the method, we studied, 
across multiple length scales, the elemental abundances and morphology of two complex biological 
systems, Arabidopsis plant seeds and mouse renal papilla samples. The proposed approach opens 
the way towards routine multimodal 3D characterization of intact samples by providing relevant 
information from pertinent sample regions in a wide range of scientific fields such as biology, geology, 
and material sciences.

Complex scientific problems in biology, earth-, environmental, and material sciences are inherently multi-scale. 
This requires the investigation of nanoscale features and functionalities within system-representative mesoscale 
samples to link those to emergent properties and functionalities at larger scales. This triggers an ever-increasing 
demand for new analytical tools capable of providing spatially resolved multi-scale information on intact, highly 
heterogeneous, or hierarchically structured samples in situ or in operando. Scanning hard X-ray imaging and 
tomography techniques are ideally suited to tackle this challenge due to their large penetration depth and inher-
ently multimodal nature, where complementary information on the elemental distribution, morphology, crystal-
line structure, and chemical speciation can be obtained simultaneously. Moreover, these non-invasive scanning 
techniques provide straightforward access to multiple-length scale experiments. Recent developments in fast 
continuous scanning, data  acquisition1–4, and the high flux obtained at modern synchrotron-based hard X-ray 
nanoprobes have opened routine access to scanning 2D multimodal imaging. Amongst the scanning techniques, 
the high analytical sensitivity of X-ray Fluorescence (XRF) imaging provides unique possibilities in several 
scientific fields to study the role and fate of trace  elements5–13. However, the unambiguous interpretation of 2D 
elemental distribution maps is not always straightforward or feasible and is especially problematic in the case of 
thick, complex samples. As such, the scientific community is highly demanding the extension of XRF imaging 
and other complementary scanning techniques to 3D tomography. Scanning XRF and multimodal tomography, 
where measuring projection images at different projection angles permits the reconstruction of the internal 
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features by adapted reconstruction methods, provides unambiguous information about the internal elemental 
distributions in the context of sample morphology, crystalline structure, chemical speciation, etc.2,14–21. Up to 
now, the lengthy acquisition time necessary for these  experiments2 at 3rd generation synchrotrons has been one of 
the practical difficulties to its comprehensive utilization. Indeed, even if emerging sparse tomography techniques 
permit boosting the measurement  throughput15,22,23 by compromising spatial resolution, overcoming the time 
constraint remains a challenge at 3rd generation synchrotrons.

Meanwhile, at the dawn of 4th generation synchrotron sources, routine 3D scanning X-ray tomography 
is becoming within reach. Indeed, the two orders of magnitude larger flux available at 4th generation hard 
X-ray nanoprobes boosts the speed of scanning tomography measurements proportionally, paving the way 
towards high-throughput scanning X-ray tomography of mesoscale  samples24. Hence, the implementation of 
robust, user-friendly scanning tomography workflow is crucial for the routine application of these techniques, 
similarly as has been published recently for high-throughput electron  tomography25. Such workflow imposes 
flexible and fast on-site data processing and tomographic reconstruction adapted to the different number of 
projections (sparse and high-resolution tomography), diverse data quality (e.g., high and low-level elemen-
tal abundances, missing wedge), different imaging modalities (e.g., XRF, X-ray absorption, X-ray diffraction), 
and the possibility of adapting the field of view and spatial resolution to the examined phenomenon by using 
multi-scale or local tomography. Some recent developments tackle part of these requirements by sample-type 
specific processing of multimodal tomography data  sets15,18, also in a semi-automatic way in the case of similar 
processing  requirements17,26. A sparse sampling approach followed by sophisticated data processing has also been 
 reported15,27. However, according to our knowledge, a robust, holistic approach addressing all requirements of 
flexible multi-scale and multimodal scanning 2D/3D X-ray tomography does not exist yet.

In the present paper, we introduce such a robust workflow for scanning multi-length scale XRF-tomography 
and complementary modalities. The presented workflow has been developed and implemented at the Nanosco-
pium  beamline21 of SOLEIL Synchrotron and includes semi-automatic data reconstruction. The proposed recon-
struction algorithm yields good reconstruction data quality for diverse scientific fields with no need for parameter 
readjustment depending on the sample type. As the first step of this approach, sparse tomography provides a 3D 
overview of the entire meso- or microscale sample. The reconstructed sparse tomograms, containing relevant 
information to the investigated scientific problem, are used to choose pertinent regions for high spatial resolution 
single slice tomography, projection imaging, and local tomography. This approach permits optimizing the scan-
ning tomography experiments and obtaining relevant information from pertinent sample regions in 2D or 3D 
during a user project. Thanks to recent  developments3,22,28,29, this method paves the way towards statistically sig-
nificant 3D studies, similar to those already available in full-field X-ray  tomography30, and electron  tomography25.

The performance of the workflow is demonstrated through the study of two highly heterogeneous mesoscale 
samples. A 700 μm thick wild-type Arabidopsis thaliana seed, widely used as a model organism for plant biology 
studies, has been measured by sparse XRF tomography followed by high-resolution 2D tomography of some 
virtual slices and 2D projection imaging. The multi-length scale study of mesoscale renal papilla samples is 
crucial to investigating pathological  calcification31. This study highly profited from high-resolution local XRF 
tomography of a micron-sized calcification sphere chosen from the reconstructed sparse tomograms.

Results
Multi‑length scale scanning X‑ray imaging/tomography workflow. The workflow implemented 
at Nanoscopium for multi-length scale and multimodal scanning X-ray imaging and tomography experiments 
is presented in Fig. 1: the sample mounting and alignment are followed by sparse tomography of the whole 
sample, and then the visualization of the volume rendering of the reconstructed tomograms. The strategy of 
high-resolution (HR) measurements is based on these medium-resolution results. This workflow permits even 
users who are new to X-ray imaging and tomography, to accomplish all measurement and data reconstruction 
steps during their experiment. At Nanoscopium all user projects apply for XRF multi-scale imaging or tomog-
raphy, which is often complemented by other modalities (absorption- or phase-contrast imaging/tomography, 
XANES, or XRD) to best tackle the actual scientific question. As such, in this paper, we have chosen scanning 
XRF tomography to demonstrate our approach.

As a first step, a sparse XRF/multimodal tomography measurement with 20 projection angles (see details in 
“Data acquisition” section) is followed by semi-automatic on-site tomography reconstruction. Direct visualization 
of a specimen’s reconstructed medium-resolution 3D elemental distribution and morphology enables immedi-
ate identification of information pertinent to the research project. This permits users to choose the strategy for 
succeeding in high-resolution (HR) measurements for studying the smallest sample features crucial to tackling 
the scientific  problem32. This HR measurement can be 2D projection imaging, 2D single slice tomography, local 
scanning 3D tomography, or any combination of these. Notably, a reasonable trade-off must be made during a 
tomography experiment regarding acquisition time, spatial resolution, and the number of samples wished to be 
investigated. After the high-resolution experiment, an estimate of the spatial resolution achievable by different 
projection numbers can be obtained by the Fourier ring correlation (FRC) calculation (detailed in the “Methods” 
section). If the resolution of the first sparse tomography results does not meet the user’s requirements, then a 
second sparse tomography measurement can be performed. This will start with an angular offset equal to the 
half angular step of the first sparse tomography experiment. The second optional sparse tomography, having the 
same projection numbers as the first, results in doubling the total number of projections and hence improving 
the spatial resolution. As demonstrated in Fig. 1, all these modalities can be reconstructed semi-automatically 
on-site during the experiment using predefined and pre-parameterized reconstruction algorithms with no need 
for interaction from the users. Hence, users can guide their experiments and redefine the scientific objectives 
on-the-fly depending on the results obtained on-site.
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Moreover, the HDF5 data format of the reconstructed tomograms is fully compatible with widely used cross-
platform freewares and open-source data analysis tools, such as PyMCA (XRF data processing), ImageJ, Chimera 
(imaging/tomography data processing), etc. As such, further on-site or post-experiment processing, such as 
extraction of mean XRF spectra, quantification, combined treatment of different imaging modalities, and mul-
tivariate statistical analysis (Principal Component Analysis, Cluster Analysis, etc.)33, can be obtained straight-
forwardly in any 2D/3D feature identified from the projection images or the reconstructed 2D/3D tomograms.

Proof of principle test measurements: Wild‑type Arabidopsis thaliana seeds. Arabidopsis thali-
ana is a weed native to Eurasia and Africa with a short life cycle (≥ 6 weeks). This annual plant is a popular model 
organism in plant biology due to the knowledge of its genome and the availability of numerous mutants. The 
wild type (Col-0) is commonly used in plant biological laboratory experiments and even in Space experiments 
to study genetics, evolution, and development of flowering plants. As a model plant, Arabidopsis thaliana is also 
a powerful tool to investigate metal homeostasis and nutrient distribution, relevant questions about the world’s 
food production and the agriculture industry. In this context, essential elements Fe and Mn in the plant seed 
are crucial for plant germination. Mn, involved in the photosystem II in chloroplasts, is needed for the vigour 
of germinating plants, and Fe is involved in various metabolic processes (respiration, photosynthesis…). These 
two elements have different physiological functions and different transporter pathways. Thus, differences are 
expected in their distribution and concentration within the seed. 2D XRF imaging is a powerful tool for locating 
trace elements in plants. However, assigning the measured metal distribution unambiguously to the grain’s ultra-
structure can be challenging due to the several hundreds of microns information depth of Mn and Fe. Moreover, 
sample sectioning, required to study the internal elemental distribution by 2D scanning XRF imaging, can be 
intricate for small and hard samples such as A. thaliana seeds and can induce tissue alteration and artifacts.

XRF and multimodal tomography are useful complementary tools for determining metal concentrations and 
distribution in intact seeds with minimal sample  preparation16,34,35.

Sparse scanning X‑ray tomography of a whole seed. We tested the performance of our tomography 
approach on wild-type Arabidopsis thaliana seeds. One advantage of using seeds, in general, is their low water 
content, resulting in lower amounts of radiation damage than more hydrated tissues. In order to obtain an over-
view of the elemental distribution of a whole mesoscale seed of 700 µm dimensions, we performed simultaneous 
sparse XRF (see Fig. 2) and absorption (Fig. S1) micro-tomography. The figure of merit of measuring a limited 
number of projections is to identify, within acceptable measurement times, the features of interest, in our case 
the distribution of Mn and Fe within different seed compartments. Since the total measurement time of a tomog-
raphy experiment scales proportionally with the number of projections, it can be drastically reduced by measur-
ing only a few angular projections. This also reduces the eventual radiation damage of the sample, which might 
be important in the case of scanning imaging of larger samples. However, the reduced number of projections 
should be chosen without significantly compromising the quality of the obtained 3D mesoscale tomograms. 
The reconstructed sparse 3D tomograms of Mn and Fe can be seen in Fig. 2A, B. It comprises 223 virtual slices 

Figure 1.  Semi-automatic multi-scale XRF and multimodal scanning imaging and tomography workflow 
implemented at Nanoscopium. After sample mounting and alignment, sparse scanning tomography is 
performed on the whole sample. Some minutes after the experiment, medium resolution volume rendering 
is available for data interpretation by the proposed semi-automatic on-site data reconstruction. This permits 
optimizing the strategy of successive high-resolution (HR) measurements. The on-site reconstruction algorithm 
provides HR tomograms for data interpretation and further data processing some minutes after the HR 
experiments. The measurement and data reconstruction steps are included in orange and grey rectangles, 
respectively.
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and is calculated from 20 measured angular projections by the maximum-likelihood expectation–maximiza-
tion (MLEM) algorithm (described in “Methods” section). It is clear from the reconstructed sparse tomograms 
that Fe is preferentially located in the provascular systems of the seed, and that Mn is mainly distributed in the 
abaxial area of both cotyledons, at the subepidermal level, as well as in the cortex area of the hypocotyl. These 
observations are in agreement with the results published in the  literature34,35.

To optimize the measurement conditions and the corresponding reconstruction parameters of sparse tomog-
raphy, we compared two different reconstruction algorithms, Filtered back- projection (FBP) and MLEM, in 
the function of the number of measured angular projections (5, 10, and 20). The comparison is demonstrated in 
Fig. 2C, D using the virtual slice marked by a white dashed line in Fig. 2A.

FBP algorithm is the standard solution for 3D tomography reconstruction due to its fast reconstruction time 
and easy implementation. However, because of the intrinsic nature of the algorithm, FBP has severe limitations 

Figure 2.  Reconstructed sparse 3D Fe and Mn tomograms and a virtual slice showing the internal Fe and Mn 
distributions. (A,B) volume rendering of the Fe and Mn tomograms reconstructed by MLEM from 20 (A) and 
5 angular projections (B). The white dashed line indicates the altitude of the virtual slice shown in (C). The 
red line marks the altitude of the high-resolution single slice tomography shown in Fig. 3. (C) Comparison of 
the reconstructed results obtained by the FBP and MLEM algorithms in the function of the measured number 
of angular projections. The columns correspond to two different algorithms: filtered back-projection (FBP) 
and maximum likelihood expectation maximization (MLEM). The lines correspond to 20, 10, and 5 angular 
projections, respectively. (D) Comparison of the intensity profiles of Fe obtained by FBP and MLEM. The Fe 
intensity profiles were extracted along the white straight line indicated in (C).
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in the case of noisy datasets and highly under-determined measurement conditions with a small number of 
 projections36. This can be clearly seen in the first column in Fig. 2C, where the signal-to-noise ratio of all sparse 
tomograms obtained from 5, 10, and 20 projections is very low. Indeed, the strong streak artifacts of FBP, caused 
by the small number of projections, shadow the elemental distributions: the Mn and Fe distributions are hardly 
visible even in the case of 20 angular projections. In effect, as shown by the Fe intensity profiles (shown in Fig. 2D 
by the blue curves), these strong artifacts, resulting also in negative intensity values, are hiding the information on 
the Fe variation within the sample. As such, since FBP cannot significantly reduce streak artifacts at low number 
of projections, it is not adapted to sparse tomography reconstruction.

MLEM algorithm (second column of Fig. 2C) is superior to FBP in handling noisy datasets. Moreover, it 
includes the non-negativity constraint assumption. In our workflow, we included a simple automatic stopping 
criterion for the MLEM algorithm with the smallest possible noise as a figure of merit (as detailed in “Meth-
ods” section). This choice results in terminating the reconstruction process at small number of iterations (thus 
with short reconstruction time) introducing only a few, weak artifacts in the reconstructed tomograms. The 
reconstructed tomograms in Fig. 2C illustrate the robustness of this algorithm in treating limited number of 
projections. Moreover, with increasing number of projections the reconstruction artifacts of MLEM are becom-
ing weaker. This is illustrated by the purple Fe profiles in Fig. 2D, where the strongest reconstruction artifacts 
marked by the black circles in the 5-projection tomogram (last line in D) diminished in the 20-projection 
tomogram (first line of D).

High‑resolution single slice tomography. The above-described 3D sparse tomography permits choos-
ing the best angular position for high-resolution 2D projection imaging, as shown in Fig. 3A for Mn distribution. 
It also allows choosing the altitude(s) for high-resolution single slice tomography (Fig. 3B, C). This provides 
insight into the internal Mn and Fe distributions of subcellular features within intact seeds. We performed HR 
single slice XRF tomography at the altitude shown by the red line in Fig. 2A. The FBP and MLEM reconstruc-
tions of the internal 2D Mn distribution can be seen in Fig.  3B, C. We included for comparison the sparse 
tomogram of Mn obtained by MLEM in the very same virtual slice (Fig. 3D). The reconstructed features are in 

Figure 3.  High-resolution 2D scanning XRF imaging and tomography of the Arabidopsis seed. (A) High-
resolution 2D projection image of the Mn distribution at an appropriate angle chosen from the 3D sparse 
tomograms. (B,C) Reconstructed HR single slice of the Mn tomogram obtained by the FBP algorithm (B) 
and by the MLEM algorithm (C) measured at the altitude marked by the red line in Fig. 2A. (D) Mn sparse 
tomography reconstruction at the same slice obtained by MLEM.
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good agreement between the sparse (Fig. 3D) and high-resolution tomography (Fig. 3B, C) results. However, 
as expected, high-resolution tomography reveals fine details with improved spatial resolution, which are non-
detectable or hardly identifiable by sparse tomography. For such HR tomography, the use of FBP (Fig. 3B) is 
straightforward and is the fastest reconstruction algorithm, where the computation time is proportional to the 
registered number of projections. However, even with 360 angular positions, there are non-negligible streak arti-
facts due to insufficient angular projections compared to the number of scanned pixels in this mesoscale sample 
(see Nyquist sampling condition in Eq. 3). The reconstruction result of the MLEM algorithm (Fig. 3C) provides 
better contrast. Moreover, the computation time of < 2 s/sinogram is significantly faster than the measurement 
time of some hours (and will be comparable with the measurement time of some minutes/sparse tomography 
at a 4th generation synchrotron). As such, the MLEM algorithm proved to be the best compromise for semi-
automatic image reconstruction for both 3D sparse tomography and 2D high-resolution single slice tomography 
experiments.

Spatial resolution of the tomograms reconstructed by MLEM. To estimate the spatial resolution of 
the tomograms reconstructed by the MLEM algorithm, we extracted two subsets with uniform angular sampling 
from the 2D high-resolution dataset. Taking the 2D high-resolution sinogram of 360 projections as an example, 
the full projection dataset was divided into two subsets, both having the same projection numbers. These two 
subsets were reconstructed independently by MLEM with the automatically determined iteration numbers. The 
two independent tomograms were then used for FRC analysis.

Figure 4 shows the FRC curves between the two tomograms reconstructed using a different number of projec-
tions from the same 2D high-resolution sinogram. The spatial resolution was determined at the intersection of 
the FRC curve and the fixed 0.5  threshold37. Table 1 shows the spatial resolution determined by the 0.5 threshold 
criterion in the function of the number of projections. The spatial resolution improves with the number of pro-
jections as expected (see Figs. S1, C and E). A resolution estimate of 8.4 μm was obtained for the 20-projection 
tomogram. The MLEM iterative method has resulted in a significant resolution improvement compared to the 
spatial resolution given by the Nyquist sampling condition.

Figure 4.  Spatial resolution estimation by Fourier ring correlation (FRC) method. Estimation of spatial 
resolution for tomograms reconstructed by MLEM from different numbers of projections chosen from the 
measured 360 angular projection dataset. The fixed 0.5 threshold was used for FRC analysis. The Nyquist 
frequency is 0.25 μm−1.

Table 1.  Estimation of the spatial resolution of sparse tomograms (reconstructed by the MLEM algorithm) 
by FRC analysis in the function of the measured number of projections. The spatial resolution defined by the 
Nyquist sampling condition is included in the 3rd column for comparison.

Number of projections FRC analysis: Resolution (μm) Nyquist sampling condition: resolution (μm)

5 20.5 184.7

10 12.9 92.4

20 8.4 46.2

40 5.6 23.1
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Renal papilla sample. In order to test the performance of our workflow in missing wedge measurement 
conditions and for HR 3D local tomography, we investigated mouse renal papilla samples. Nowadays, the for-
mation of renal stones affects 10% of the global  population38. Most of the stones develop on Randall’s Plaque, a 
mineral deposit at the tip of renal  papillae39. The major components of Randall’s Plaque are calcium phosphate 
apatite and amorphous carbonated calcium  phosphate40. Therefore, the distribution of Ca indicates the position 
of calcification in the renal papilla sample. Studying the correlation and colocalization between Ca and other 
major and trace components permits to reveal those trace elements, that are involved in early-stage calcification 
processes. Understanding their role in the pathological process opens the way toward efficient prevention and 
treatment of the renal stone formation. The sample we used in the present study is a mouse papilla affected by 
calcium phosphate deposits similar to the human Randall’s plaque  (see41 for more details on the sample prepara-
tion).

Sparse and high‑resolution XRF tomography of renal papilla. The semi-automatic workflow has 
been used to study the elemental abundancies within 50 µm thick slices of renal papilla samples (Fig. 5A, B). In 
this case, the fixation of the thin biological sample of ~ 500 µm lateral dimensions on a  Si3N4 membrane caused 
a missing wedge of 2 × 28° in the tomography measurement. This poses a specific challenge to tomographic 
 reconstruction42. This was successfully tackled by the MLEM algorithm, which proved to be the best compro-
mise also for missing wedge tomography. 3D sparse tomography performed on the top of the sample showed 
substantial colocalizations between Zn and Ca (Fig. 5C) within dense sample regions revealed by simultaneous 
transmission imaging (Fig. 5B). However, the ~ 8.5 µm medium spatial resolution of sparse tomography does not 
permit to reveal the details of micrometer-sized Ca- and Zn-rich features, that are related to early-stage calcifica-
tion process. Gaining insight, with high spatial resolution, into the elemental distribution of these micrometer-
sized Ca and Zn containing spherical structures is crucial. We performed 3D local tomography around a chosen 
micro-sphere (red rectangles in Fig. 5B, C). The angular projection images were measured with 500 nm pixel 
size. Figure 5D, E show the volume rendering of Zn and Ca within the measured micrometer-scale calcifica-
tion sphere. In the cut-off view of the 3D volume rendering in Fig. 5E the internal distribution of Zn and Ca is 
shown within the ~ 10 µm dimension calcification sphere. These results reveal that Zn is enriched within a few 
micrometers thick rim on the surface of the calcification micro-sphere. Since Zn is considered to be a marker of 
 inflammation43, this result also indicates that the calcium phosphate deposition in the medullary interstitial is a 
pathological process.

Mean XRF voxel‑spectrum. Next to the elemental distribution maps, complete local XRF spectral infor-
mation is necessary to obtain detailed information on the chemical composition of local features. This might 
reveal rare characteristics appearing only in particular sample locations/voxels ("needle in the haystack prob-

Figure 5.  Sparse and local scanning X-ray tomography of a renal papilla sample. (A) Optical microscope image 
of the mouse papilla sample, mimicking human kidney calcifications. The scanned region is marked in red. (B) 
Transmission image of the tip of the sample. The small red rectangle in the middle marks the sample region 
chosen for local tomography. The zoom-in image of this region is inserted into the upper-right corner. (C) 
Sparse tomography reconstruction of Zn and Ca. The small red rectangle in the middle marks the sample region 
chosen for local tomography. The zoom-in image of this region is inserted into the upper-right corner. (D) 
Reconstructed 3D local tomogram of Ca and Zn of the calcification micro-sphere marked by the red rectangles 
in (B,C). (E) Cut-off view at the middle of the calcification micro-sphere presented in (D).
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lem”). Since we collect the full XRF spectrum in each measured pixel during data collection, next to the tomo-
grams of the predefined elements, it is also possible to reconstruct the full XRF spectrum in each voxel of the 
tomogram. In other words, we can include a spectral dimension to the reconstructed dataset, which can be used 
to extract the mean XRF spectrum of any chosen sample area or volume. Such complete hyperspectral tomog-
raphy reconstruction was realized for each energy channel of the measured XRF spectra. At 10 keV excitation 
energy, this results in 1000 sinograms for each virtual slice, and the reconstruction process, even with the MLEM 
iterative method and multi-core, is becoming quite time-consuming. For example, the reconstruction of the 
high-resolution 3D hyperspectral XRF tomogram (with the energy as the 3rd dimension) took ~ 1 h by MLEM 
for the Arabidopsis seed.

Figure 6A shows the virtual slice of the Arabidopsis seed reconstructed from the sum-XRF spectra of the 
dataset containing 360 projections. The mean XRF spectra extracted from the area marked by a red circle in 
Fig. 6A by FBP and MLEM can be seen in Fig. 6B, C. The mean XRF spectra of the chosen region obtained by 
FBP and MLEM do not show a significant difference; the total intensities of the XRF spectra agree within 5%. As 
such, in the case of high-resolution tomography, FBP is a good compromise to obtain local spectral information 
within a limited reconstruction time.

As the next step, we selected equiangularly 20 projections out of the 360 ones to simulate a sparse tomogra-
phy in identical experimental conditions. This allows comparing the mean XRF spectra obtained by sparse and 
high-resolution tomographies. In the case of sparse tomography, FBP cannot be used for data reconstruction 
due to the low number of projections. As such, we reconstructed the sparse tomogram for each energy channel 
by MLEM. The mean XRF spectrum of the same region as before (red circle in Fig. 6A) was calculated from 
this sparse tomography dataset. Figure 6C shows that the two mean XRF spectra agree well, which illustrates 
that the MLEM algorithm provides reliable hyperspectral tomograms and mean XRF spectra even for a severely 
limited number of projections.

The mean XRF spectrum within a selected volume of interest of the calcification sphere (shown in Fig. 5D) 
of the renal papilla is demonstrated in Fig. 7. The reconstruction process for the 4D hyperspectral tomography 
dataset (with the energy as the 4th dimension) took around 1 h by the MLEM algorithm. To obtain the mean 
XRF spectra within a volume of interest, we selected the 3D volumes of interest by ImageJ, a freeware frequently 
used by our users. We applied this mask to each energy channel in the reconstructed 4D dataset. The extracted 
mean XRF spectra shown in Fig. 7B reveal that Ca is the dominant element in the core of the calcification micro-
sphere (red XRF spectrum), which also contains Zn. Within the surface rim (indicated by green in Fig. 7A and 
green XRF spectrum in Fig. 7B), the increased Zn to Ca ratio, due to the threefold larger Zn and ~ 20% smaller 
Ca content, provides evidence of the association of Zn to the pathological process.

Figure 6.  Extraction of the mean XRF spectra of a chosen area in a virtual slice of the Arabidopsis seed. (A) 
Reconstructed high-resolution virtual slice of the sum XRF spectra of the Arabidopsis seed. (B) Comparison of 
the mean XRF spectra of the selected area, marked by a red dashed circle in (A), obtained by FBP (red curve) 
and MLEM (blue curve) algorithm. (C) The mean XRF spectra of the selected area obtained by MLEM from 360 
projections (blue curve) and from 20 projections (fuchsine curve).
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Discussion
The proposed holistic multi-scale and multimodal scanning X-ray tomography workflow, implemented at 
Nanoscopium, was tested on mesoscale samples. To tackle the scientific problems presented in the recent paper, 
multi-scale XRF- and scanning absorption contrast tomography were the best-adapted imaging modalities.

The best compromise for semi-automatic on-site tomography reconstruction for sparse-, local- and high-
resolution scanning X-ray tomography is proved to be the MLEM algorithm if it is benefited from the apt 
early stopping strategy. This algorithm also efficiently handles the missing wedge sampling conditions. The FBP 
algorithm is, in general, not adapted for the reconstruction of sparse and missing wedge tomographies since 
the measured dataset does not fulfill the optimal Nyquist sampling criterion. In the case of high-resolution 
hyperspectral tomography, which results in large 3D/4D datasets, the figure of merit is a compromise between 
the reconstructed data quality and the reconstruction time. Here, FBP is the best compromise to obtain, within 
a limited reconstruction time, reliable mean XRF-spectra from regions/volumes chosen from the reconstructed 
XRF hyper-spectral tomograms. The semi-automatic use of these two algorithms according to the above-detailed 
conditions permits obtaining a flexible semi-automatic workflow providing good quality on-site reconstruction 
for various samples in diverse experimental conditions. Due to its flexibility, our approach is especially well 
suited for on-the-fly tuning of the experiments to study features of interest progressively at different length scales.

We must note that scanning XRF imaging is generally a semi-quantitative approach. However, in the present 
paper, we presented the 2D and 3D elemental intensity distributions (number of characteristic X-ray Fluores-
cence photons per given dwell time). As the next step, we intend to fully integrate the quantification method in 
the semi-automatic user-friendly data-processing pipeline and to provide it for all scanning XRF tomography 
experiments as an option. For this, the measurement conditions will be calibrated by an adequate reference 
sample, and simultaneous scanning X-ray absorption tomography will be used for self-absorption correction in 
each voxel of the tomogram for each reconstructed element.

The robust scanning tomography method implemented at the Nanoscopium beamline opens the way for 
non-expert users towards routine non-destructive multi-length-scale characterization of complex samples dur-
ing a standard beam-time of 3–5 days. The reconstructed tomograms can be treated by widely used freewares 
such as ImageJ, Chimera, etc. This allows straightforward data handling for users during and after their experi-
ments. The workflow provides the possibility to study relevant 3D micro-features of several mesoscale samples 
during a routine user experiment, even at 3rd generation synchrotrons. Next to XRF and scanning absorption 
tomography, we have also extensively tested the workflow for scanning phase contrast- and X-ray diffraction 
tomography studying perovskite samples and bio-mineralization. These results will be presented in a separate 
paper. Moreover, the application of our approach for XANES tomography, which can be considered as a variant 
of hyperspectral  tomography44, is straightforward.

Such a robust semi-automatic flexible scanning multimodal tomography workflow will be a scientific game-
changer at emerging 4th generation synchrotron sources, where data throughput of scanning hard X-ray tech-
niques is boosted by ~ two orders of magnitude. The new possibility to explore a multitude of sample characteris-
tics simultaneously, with high analytical sensitivity, at hierarchical length-scales in 3D, in a statistically significant 
manner in meso- and micro-scale samples, will revolutionize a wide range of scientific fields in ways that we can 
currently only dream of and will provide a unique complement to already existing state-of-the-art multi-scale 
and fast full-field X-ray tomography  techniques45–47. These high through-put scanning X-ray imaging techniques 
will also complement emerging state-of-the-art laboratory scanning charged-particle microscopy and tomog-
raphy and other conventional laboratory microscopy techniques providing 2D/3D elemental and morphology 
information with nanometer resolution. For example, scanning electron  microscopy48 has limited analytical 
sensitivity (~ 0.1–1%) for the analysis of heavy elements, and its small depth of information (a few microns) limits 
its non-invasive (without sample sectioning) application to surface studies of large samples or the 3D study of 

Figure 7.  Extraction of the mean XRF spectra within the volume of interest of the reconstructed calcification 
micro-sphere shown in Fig. 5D,E. (A) Reconstructed result by MLEM algorithm from the total intensity of 
the XRF spectra, grey volume: reconstructed total sphere volume, red and green volumes: core and surface 
rim regions, respectively. (B) Comparison of the mean XRF spectra of the core (red) and surface rim (green) 
volumes.
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light, major, and minor components of tiny, micrometer-sized samples. Due to sample radiation damage caused 
by charged-particle microscopies, multiple measurement on the very same sample region is often problematic. 
Scanning hard XRF imaging and tomography has high analytical sensitivity (with trace, ≤ ppm detection limit) 
for transition metals and heavier elements. Moreover, their large information depth of several tens/hundreds 
of microns permits the non-invasive multilength-scale 3D study of mesoscale samples. Multiple measurements 
and hence, multi-scale and local tomography is readily available by scanning X-ray imaging techniques, where 
radiation damage is smaller than by charged particle microscopies.

Methods
Data acquisition. The experiments were performed at the KB-based nanoprobe station of the Nanosco-
pium beamline of Synchrotron  Soleil21. Two energy-dispersive silicon drift detectors, placed at 120° to the inci-
dent beam path, collected the X-ray fluorescence (XRF) spectra. The intensity of the incident and the transmitted 
beam has been collected in each pixel by two Si diodes placed before and behind the sample, respectively. An 
RT100 air-bearing rotation stage has been used for tomography measurements. The experiments have been 
performed by the Flyscan  architecture1.

In the case of scanning X-ray single slice tomography, the number of angular projections has been chosen 
according to the Nyquist sampling condition (see Eq. 3) in order to preserve the spatial resolution along the 
horizontal direction in the reconstructed tomograms.

The medium resolution 3D elemental distribution of the Arabidopsis seed has been obtained by sparse XRF 
tomography at 11 keV excitation X-ray energy. We collected 20 projections at 18 degrees angular intervals over 
360°. These scanning parameters are proposed by default for sparse tomography by our workflow since, accord-
ing to our experience with multiple samples and imaging modalities, they are proved to be the best-balanced 
parameters for almost all experimental conditions. At each projection angle, a total area of 581 × 445 μm2 has 
been scanned with 2 μm pixel size and 20 ms dwell time in continuous scanning mode. The collection of the 
full XRF sparse tomography dataset of this mesoscale sample took 8 h 40 min. For high-resolution single slice 
tomography, we measured 360 angular projections over 360° with a lateral step size of 2 μm and a dwell time 
of 20 ms/pixel, with a total measurement time of 35 min. For high-resolution 2D projection imaging, a field of 
view of 375 × 434 μm2 was scanned with a step of 500 nm and a dwell time of 40 ms per pixel. The total acquisi-
tion time was 7 h 30 min.

In the case of the mouse renal papilla sample, the sparse tomography was performed at 12 keV. A 586 × 272 μm2 
region of the sample was mapped at 22 angular positions over 360° with a lateral step size of 2 μm and an exposure 
time of 20 ms/pixel, with a total measurement time of 5 h. This is followed by a high-resolution local tomography 
of a local sample volume with 65 angular positions over 360° with a dwell time of 40 ms/pixel and a uniform 
lateral step size of 500 nm, covering a total area of 67 × 16 μm2. The total acquisition time was 3 h.

Data processing. The elements present in the investigated samples were identified from the sum-spectra of 
all angular projections. The sum XRF spectra were fitted by the PyMCA  software49 for the identification of the 
elements present in the sample. The elemental distribution maps and sinograms were then extracted from the 
raw dataset by integrating pre-selected spectral regions of interest corresponding to the detected elements. The 
transmitted and incident beam intensity ratio at each pixel gives access to the sample absorption maps and sino-
grams. The sinograms were then reconstructed either by the MLEM or FBP algorithms. The overall reduction 
process is performed automatically with a robust in-house MATLAB code. The reconstructed volumetric data 
were exported from MATLAB as 16-bit z-stacks and imported either to  ImageJ50 for analysis or to  Chimera51 
for 3D visualization.

The overall data processing is performed on a workstation with an Intel® Xeon® Processor E5-2630 v3 @ 
2.40 GHz × 32 CPU with 125.8 GB of system RAM.

Reconstruction algorithms. Two different tomography reconstruction algorithms have been integrated 
into the workflow: the  FBP42,52,53 and  MLEM54 methods. The first, which is an analytical filtering inversion 
technique, is the most commonly used method in routine tomography reconstruction. It is the fastest method, 
exploiting fast Fourier transforms. However, FBP suffers from a lack of robustness when the measurements are 
sparse, of low contrast, or  noisy55,56, which is often the case in XRF tomography. MLEM is an iterative algorithm 
that explicitly accounts for the noise affecting the data and imposes positivity on the estimated pixels. MLEM 
was initially developed for the analysis of positron emission tomography (PET) data. It assumes a Poisson dis-
tribution of the acquired photon statistics and thus might be more noise-tolerant than  FBP22. MLEM belongs to 
the class of majorization-minimization  algorithms57. By construction, it decreases the negative log-likelihood of 
the estimated image of the given data monotonically. Moreover, it involves only simple multiplicative updates in 
such a way that the estimated image has positive pixel values, if all the pixels of the starting assumption image are 
positive. The MLEM algorithm provides good performance with sparse datasets, and the streak artifacts can be 
reduced as long as it is combined with an appropriate early stopping strategy, as is described hereafter.

Determination of the number of iterations: automatic early stopping strategy for 
MLEM. Although the loss of the MLEM algorithm decreases along with iterations, there is also an increase in 
the noise amplitude, which significantly impacts the final reconstruction results. This is typical for non-regular-
ized reconstruction methods. Therefore a so-called early stopping strategy with a well-tuned criterion is crucial 
and must be integrated into the  workflow58. We implemented the figure of merit about the Normalized Root 
Mean Square Error Deviation (NRMSED) as an indicator:
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where x(i) is the sinogram of the measured data, x̃(i) is the estimated sinogram by MLEM and N is the pixel 
number in the sinogram. NRMSED indicates the accordance between the reconstructed and measured data. In 
addition to this, information about the derivative of NRMSED between two successive iterations should also be 
considered, and the ratio R is therefore defined as:

where �NRMSED = NRMSED(i) − NRMSED(i−1) is the derivative of NRMSED. This similarity increases mono-
tonically with the number of iterations. A threshold is set to terminate the algorithm when the evolution curve of 
R is close to zero: R ≥ threshold . We have chosen − 0.15% as threshold, since this value, obtained as average over 
numerous test data sets, gave robust and rapid results for all tested data sets and imaging modalities.

In the implementation of our workflow, a relatively large number (~ e.g., 200) of iterations is preset to limit the 
maximum reconstruction time. The reconstruction of the tomograms using the MLEM algorithm is performed 
slice by slice, and the ratio R is calculated for each slice after each iteration. The algorithm terminates automati-
cally for a given virtual slice after reaching the threshold and proceeds to reconstruct the next slice. Optionally, 
the reconstruction could perform a few additional iterations after reaching the R threshold. According to our 
experience, the algorithm generally reaches the R ≥ threshold condition around 20 iterations, well before 200 
iteration steps.

The process of the optimization of the iteration number can be summarized as follows:

(1) For all the slices, set the threshold to − 0.15% and the initial number of iterations to a relatively large value 
(~ 200);

(2) Start the reconstruction for the first slice using the MLEM algorithm while calculating the ratio R for each 
iteration;

(3) Stop the iteration when the condition R ≥ threshold is reached;
(4) Repeat (2)–(3) for all slices.

This robust automatic reconstruction process provides exploitable results even for 5 angular projections, 
and it assures that even inexperienced users in synchrotron-based imaging/tomography can reconstruct their 
tomographic dataset on-site.

Spatial resolution evaluation. Nyquist angular sampling condition. During the experiment, a reason-
able trade-off must be reached between the acquisition time and spatial resolution. For the analytical reconstruc-
tion methods, the number of projections has to satisfy the Nyquist angular sampling  condition59 in order to 
preserve the spatial resolution along the horizontal direction in the reconstructed tomogram:

where nproj is the number of projections over 180°, and N is the number of pixels along the scanning direction.
The corresponding maximum resolvable spatial frequency fres in the Fourier domain can be written as:

where P is the pixel size.
The resolution limit R in direct space is then:

This resolution limit decreases with increasing number of projections.

Fourier ring correlation for spatial resolution estimation. The most common method to estimate spatial resolu-
tion is the knife-edge technique. However, in the case of sparse tomography of highly heterogeneous samples, it 
can be challenging to find a sharp edge for the knife-edge method. To overcome this difficulty, the Fourier ring 
correlation (FRC)60–62 method can be used as a general approach.

For the iterative reconstruction methods, the estimation of the achievable spatial resolution in the function 
of the number of projections can be described by the Fourier ring correlation approach. FRC estimates this by 
measuring the normalized cross-correlation of two independent datasets of the sample. The spatial frequency 
elements at different radii can be integrated circularly in the frequency domain:

where ri is the ith frequency element at radius r , F1 and F2 denote the Fourier transform of the two reconstructed 
tomograms.

At a specified cut-off threshold, the FRC curve drops below the threshold, indicating an indistinguishable 
signal-to-noise ratio. This defines the spatial resolution.
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√

∑N
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2
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Theoretically, the two data sets used in FRC calculation should be formed by independent  measurement63, 
but this can be impractical, especially in the high-resolution scanning experiments, where the acquisition time 
is generally several hours at 3rd generation synchrotrons. To overcome this problem, the two subsets used 
for FRC calculation were extracted from the high-resolution tomography sinogram, from which independent 
tomographic images of the same slice were reconstructed. This resolution estimation method is mostly applied 
to 2D high-resolution datasets.
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