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Grass pollen is among the most common outdoor aeroallergens eliciting pollen allergies

throughout the world. Grass group-1 allergen or β-expansin is recognized as a major

pollen allergen, particularly in the grass family Poaceae. Expression of β-expansin has

been shown to be dynamic and can be influenced by environmental stresses. This study

evaluated the relative expression of β-expansin and IgE-binding ability of crude pollen

extract protein of rice and maize under three different stress conditions: flood, salt, and

drought. After 1 week of treatments, anthers containing pollen were collected followed

by RNA extraction and cDNA synthesis. To evaluate relative expression, qRT-PCR was

performed using specific primers for β-expansin and reference genes. Physiological

characteristics of treated and untreated maize and rice: plant height; fresh weight of

anthers; number of inflorescences, anthers, and pollen grains were also recorded. To

assess IgE-binding ability of proteins in rice pollen extracts, soluble crude proteins were

extracted and IgE immunoblot and ELISA were performed using serum samples from

grass-allergic subjects and healthy control donors. Results showed that plant height,

fresh weight of anthers, number of inflorescences, anthers, and pollen grains of both

maize and rice decreased significantly under drought stress conditions, but not in other

conditions. Expression of β-expansin in pollen of rice showed an apparent increase in

all stress treatments relative to control samples. In contrast, a significant decrease of

β-expansin expression was detected in maize pollen under all stress-treated conditions.

IgE-reactive protein bands from rice pollen extract proteins were ∼30 kDa, as expected

of the grass-group 1 protein. The intensity of IgE-reactive protein bands and the level

of IgE to rice pollen proteins showed significant differences among stress conditions.

In conclusion, environmental stresses—flood, salt, and drought, can elicit a change of

β-expansin expression and IgE reactivity to grass group-1 pollen allergens. Changes in

expression level of this gene likely reflected its importance during stress. However, the

response is highly dependent on different schemes employed by each plant species.
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INTRODUCTION

Atmospheric allergens are significant causes of allergic diseases
of both the upper and lower respiratory tracts. Environmental
fluctuations including global climate change affect the quantity,
quality, and distribution of aeroallergens such as pollen. This
phenomenon impacts the severity of seasonal allergic rhinitis and
other seasonal allergic diseases worldwide (1–3).

Among the various airborne pollen types, grass pollen is
considerably the most dominant type and the major allergenic
source of outdoor aeroallergens globally (4). Major group-
1 pollen allergenic protein is abundantly found in all grass
species including tropical/subtropical allergenic grasses (5–10).
For instance, Cyn d 1, Sor h 1, Pas n 1, Lol p 1, and Zea
m 1 are recognized as major group-1 grass pollen allergens
produced from Bermuda grass (Cynodon dactylon), Johnson
grass (Sorghum halepense), Bahia grass (Paspalum notatum),
ryegrass (Lolium perenne), and maize (Zea mays), respectively.

Previous reports showed that up to 90% of the grass-pollen
allergic patients are sensitized to the grass group-1 allergen (11–
13). Remarkably, the grass group-1 allergen was also reported as
a major cross-reactive protein for allergic patients in Thailand.
Thai grass-pollen allergic patients had high sIgE cross-reactivity
in subtropical allergenic grasses such as Bermuda, Johnson, and
Para grasses. Immunoblot analysis of pollen extracts from these
three grass species demonstrated sIgE binding to the protein at
29–30 kDa that was identified as group-1 allergen, functionally
characterized as β-expansin protein (14).

In general, allergenicity of pollen mostly depends on the sIgE
reactivity to allergenic proteins contained within the pollen, as
well as the expression levels of all allergenic proteins (15). The
amounts of allergens, their quality and distribution can fluctuate
and are often influenced by environmental factors (16–19). For
instance, rising temperature and atmospheric CO2 concentration
can induce plants to grow more vigorously, prolong the growing
seasons and speed up flower development. These phenomena
lead to pollen season shifting earlier as well as higher pollen
production (20–24).

Apart from the influences of temperature and ambient CO2

level, other abiotic stresses such as flood, salinity, and drought
also have impacts on plant allergens, particularly in terms
of transcription levels and protein expressions (25). Plants
have evolved several physiological and biochemical homeostatic
balances to attain tolerance and adaptation to such stressful
conditions by means of modulating gene expression, post-
transcriptional RNA modification, or protein modification (26,
27). For example, teff (Eragrostis tef ), a grass species known
as a major crop in Ethiopia and also found abundantly in the
Horn of Africa, was shown to have a significant upregulation
of several genes related to either cell growth or stress responses
such as β-expansins against waterlogging (28). Expansin-like
B protein, a member of the expansin superfamily, was a
notable 27-times higher in root tips of soybean seedlings
after flooding compared to control samples (29). The peanut
(Arachis hypogaea) pathogenesis-related class 10 (PR10) allergen
transcript, namely AhSIPR10, was rapidly upregulated in callus
cultures under saline conditions (30). Likewise, the PR10 proteins

as well as several proteins with similarities to the PR10 family
members found in peanut callus cultures were upregulated under
salt stress (31). The analysis of expressed sequence tags in
ragweed under drought stress showed increased expression of
allergenic ragweed (Ambrosia artemisiifolia) proteins, especially
Amb a 1, the major allergenic protein in pollen (32, 33).

Conversely, a study in buckwheat showed that prolamins and
gliadins, the major allergens in cereal grains, were decreased
under a drought-stress condition (34). Interestingly, well-
known fruit allergens chitinases and thaumatin-like proteins
had comparable levels in grapes (Vitis vinifera) treated with or
without water stress, suggesting that these proteins may not
be strongly influenced by environmental conditions (35). Apart
from the effects of abiotic stresses on either plant transcript or
protein expression, average pollen grains per anther and pollen
fertility of drought-treated plants generally show remarkable
decline (36).

Environmental fluctuations not only affect plants, but also
increase the incidence of allergies worldwide (2, 22, 37). A 27-
year study of airborne pollen dynamics in Italy demonstrated an
obvious positive association between an increase in total pollen
of various plant species such as olive and cypress by ∼25%
on average and a constant rise in temperature and radiation.
Remarkably, these changes also showed a strong-positive
correlation with allergic sensitization rates, suggesting that
climate variations have a direct role in the epidemiologic impact
of pollen allergy (38). In Thailand, as of 2019, the prevalence
of allergic rhinitis in Thai children was slightly higher than the
average of the Asia-Pacific and global prevalence. Concerningly,
the allergic prevalence among Thai citizens has been rising
continuously (21, 39, 40), although not enough evidence can
directly pinpoint environmental changes as the culprit.

Although several studies have revealed the effects of
plant abiotic stresses on pollen production and allergen
transcript/protein expression levels, no information is available
on the influences of abiotic stresses on the grass group-1 allergen
(β-expansin) of major crop plants, particularly in the region
of Southeast Asia. Therefore, this study aims to investigate the
effects of abiotic stress conditions: flood, salinity, and drought,
on the grass group-1 allergen transcript expression in rice (Oryza
sativa) and maize (Zea mays). Furthermore, IgE binding to
crude protein extracts was assessed to determine the change in
immunoreactivity of rice pollen after stress treatments.

MATERIALS AND METHODS

Plant Materials and Growth Condition
Rice (Oryza sativa) cultivar “Supan Buri 9” and maize (Zea mays)
cultivar “Top Sweet 801” were chosen as representatives of the
grass family Poaceae in this study. Rice and maize seeds imbibed
tap water for 24 and 48 h, respectively. The imbibed seeds were
germinated in a 50-well nursery tray containing soil to facilitate
normal root and shoot developments for 14 days in a greenhouse.
The 14-day old rice and maize seedlings were transplanted and
grown in individual 5-L and 20-L pots, respectively. Fertilizer
(46–0–0) was applied to the soil at 0.5 grams per pot before
transplantation. Transplanted rice and maize plants were kept
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in a greenhouse. The potted rice plants were arranged in 231
× 273 × 28 cm plots built from cement blocks lined with
double sheets of black polyester (PE) plastic sheet. Tap water
was added into the plots until the water was 25 cm deep for
irrigation, mimicking the rice cultivation condition in the field.
The individually potted maize plants were irrigated every day.
Experiments were conducted in a completely randomized block
design with six replications (n = 6) per treatment: untreated
control, flood-, salt-, and drought-treated conditions, with one
plant per replicate (Figure 1). Each rice plant consisted of 5–
8 culms, which matured at different time. All experiments
were repeated three times independently, except those involving
patient serum, which were performed only once due to serum
sample limitation.

Stress Treatments
Rice and maize plants were randomly divided into untreated
control and stress-treated groups. Stress treatments include flood,
salt, and drought. Stress treatments were applied to the plants
as soon as their flag leaves became visible. The duration of all
treatments was seven days, before pollen samples were collected.

Flood Stress
To simulate the flooding conditions, potted plants were moved to
the experimental plots lined with black PE plastic sheets (155 ×

156 × 84 cm for rice; 194 × 234 × 84 cm for maize). The plots
were filled with tap water to 70 cm in depth, which was ∼50 cm
above the crown for rice and 40 cm for maize.

Salt Stress
Cultivated plants were subjected to 50mM NaCl (Electrical
conductivity, EC ∼6 mS/cm) as salt stress treatment. For salt
stress treatment of rice, water was completely drained out of
the experimental plot and replaced with 50mM NaCl solution
to 25 cm depth. The EC was measured using an EC meter
(LAQUAtwin EC-11, Horiba Ltd., Kyoto, Japan), and adjusted
daily to 5.9–6.2 mS/cm. For salt stress treatment of maize, 500ml
of 50mM NaCl solution was used for irrigation daily at 8 am.

Drought Stress
For rice, water was completely drained out of the plot to simulate
the drought stress condition. Drought stress was imposed to
maize by withholding water. For each treatment, normally
irrigated plants were used as controls.

Physiological Observation and Pollen
Collection
After seven days of treatments, all plants of each condition
were in a flowering phenological stage. Plant height, number of
inflorescences, and fresh weight of anthers of six plants (n = 6)
per each condition were recorded. Plant height of each condition
was recorded at 0 and day 7. Number of anthers were randomly
counted from four plants (n = 4) per each condition. Pollen-
containing anthers were manually removed from inflorescences
undergoing anthesis using 75% (v/v) ethanol-sterilized forceps,
and placed in 1.5ml microcentrifuge tubes. The samples were
stored at−80◦C for further analyses.

Pollen grain counting, pollen morphology study, and pollen
size measurement were performed on fresh pollen on the day
of pollen collection. One milliliter of Calberla’s solution as
mounting media was added to stain pollen grains. The sample
was placed on a glass slide and the microscopic observations
were performed using the Olympus BX43 (Olympus Corp., PA,
USA) compound microscope attached with the Olympus DP11
digital camera (Olympus Corp., PA, USA) at the magnification
of 40x. To count pollen grains, an individual anther from four
selected anther (n = 4) per each treatment was observed. Pollen
morphology and pollen size were studied in rice only for the
photographs. Length and width of 20 rice pollen grains (n = 20)
per each sample group was measured using Image J (NIH Image,
MD, USA).

Total RNA Extraction and cDNA Synthesis
Total RNA was extracted using TRIzolTM Reagent kit
(Invitrogen, CA, USA). About 50–100mg of pollen-containing
anthers were rapidly ground into a fine powder using a mortar
and pestle that was pre-cooled with liquid nitrogen. The
total RNA was purified with FavorPrepTM After Tri-Reagent
RNA Clean-Up Kit (Favorgen Biotech Corporation, Ping-Tung,
Taiwan). The purified RNAwas used as a template for first-strand
cDNA synthesis using iScriptTM cDNA Synthesis Kit (Bio-Rad,
CA, USA) according to manufacturer’s instructions. The cDNA
was synthesized from 500 ng RNA using oligo-dT primer and
iScript reverse transcriptase (Bio-Rad, CA, USA). Concentration
and purity of the cDNA were assessed by NanoDrop 2,000
Spectro-photometer (Thermo Scientific, MA, USA). The cDNA
was stored at−20◦C until used.

Quantitative Real-Time RT-PCR
Quantitative RT-PCR (qRT-PCR) was used to quantify the
amount of specific cDNA in each sample. The concentration of
cDNA template was adjusted to 650 ng/ml. All specific primers
for β-expansin and reference genes: actin (ACT1 for rice and
ACT2 for maize) and ubiquitin (UBQ10 for rice and UBQ7 for
maize), used in this study are listed in Table 1. Each PCR reaction
was mixed thoroughly and then added into the MicroAmpTM

Optical 96-Well Reaction Plate (Applied Biosystems, CA, USA).
Samples were analyzed in triplicates using 7,500/7,500 Fast Real-
Time PCR Systems (Applied Biosystems, CA, USA).

Rice Pollen Crude Protein Extraction
Before pollen protein was extracted, the collected pollen-
containing anthers of six plants from each treatment condition
were pooled together and then split into three replicates (n =

3). Sample pooling was necessary because the amount of pollen
obtain from each plant was limited, and variable. Despite of
the fact that the experiment was performed with pooled pollen
samples from six plants for each stress condition, each pollen
sample was obtained from more than a hundred anthers derived
from several rice culms that developed independently, each
anther was considered as independent sample. Approximately
25mg of −80◦C frozen rice pollen (within 120–150 anthers)
was put into a mortar and ground rapidly at room temperature.
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FIGURE 1 | Schematic overview of experimental methods.
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TABLE 1 | Primer sequences for either β-expansin or reference genes of rice and maize.

Gene Primer sequence (5′ —> 3′) References

Forward Reverse

OsEXPB AAGGATGGCAAGGACGAAGA CATCACCAGCGACGTACTTG This study

OsACT1 CTGCGGGTATCCATGAGACT TGGAATGTGCTGAGAGATGC (41)

OsUBQ10 TGGTCAGTAATCAGCCAGTTTGG GCACCACAAATACTTGACGAACAG (42)

ZmEXPB ACGAGGTGAGATGCAAGGAA GAACTCGACGTCCATGATGC This study

ZmACT2 CTGAGGTTCTATTCCAGCCATCC CCACCACTGAGGACAACATTACC (43)

ZmUBQ7 CAGACTACAACATCCAGAAG TATTAGACGACGACATCCATA (44)

Os, Oryza sativa (rice); Zm, Zea mays (maize); EXPB, β-expansin; ACT1, actin-1; UBQ10, ubiquitin-10; ACT2, actin-2; UBQ7, ubiquitin-7.

Two hundred fiftymicroliters of extraction buffer [1X phosphate-
buffered saline (PBS), pH 7.0 at 4◦C], was added. The pollen
in the extraction buffer was continuously ground to extract
the pollen proteins. The duration of extraction was totally in
10min. To stop protease enzymatic reactions, ten microliters
of 1mM PMSF was added into the sample. Crude pollen
extract was centrifuged at 10,000 rpm for 10min at 4◦C to
remove insoluble particles. The supernatant was collected into
a new microcentrifuge tube. Soluble protein concentration was
determined by Bradford assay in comparison with Bovine Serum
Albumin (BSA) (Sigma-Aldrich, MO, USA) standard curve.
Light absorbance was detected at 595 nm by Biochrom EZ
Read 400 Microplate Reader (Biochrom, Cambridge, UK) and
quantified by Galapagos Data Acquisition Software (Harvard
Bioscience, Inc., MA, USA). The evaluated OD was measured in
three replications.

Sodium Dodecyl Sulfate-Polyacrylamide
Gel Electrophoresis With Coomassie Blue
Staining
Crude pollen protein extract of experimental rice in 1X PBS was
incubated at 95◦C for 5min before being separated using 14%
separating and 7% stacking gel electrophoresis. Ten micrograms
of the rice protein extract were loaded into each well. For
visualization, the SDS-PAGE gels were stained with 0.3% (w/v)
Coomassie Brilliant Blue R-250 (Merck, NJ, USA) solution and
destained with destaining solution [40% (v/v) methanol and 10%
(v/v) acetic acid].

Serum Samples and Ethics Approval
Serum samples were obtained from a collection of 126 donors:
104 patients diagnosed with allergic rhinitis (AR) and 22 healthy
donors, with the informed consent as a part of the project number
758/2559 (EC2), in accordance with the approved ethics for
research in humans by the Human Research Ethic Committee of
Siriraj Hospital, Mahidol University, Bangkok, Thailand. Grass
pollen sensitization was assessed based on clinical diagnosis
by skin-prick test (SPT) with three common allergenic grass
pollen extracts: Bermuda (Cynodon dactylon), Johnson (Sorghum
halepense) and Para (Urochloa mutica) grasses performed at the
ENT Allergy Clinic, Siriraj Hospital.

Of all 104 AR patients, 80 subjects were sensitized to at
least one grass pollen extract with the wheal size ≥3 × 3mm
were considered to have positive test results. All healthy donors
showed negative skin test to all three grass pollen extracts (wheal
size <3 × 3mm) were considered as negative controls. Serum
samples were collected from each participant, aliquoted, and
stored at−20◦C until use.

Among all sensitized subjects and negative controls, eight
patients and negative controls gave consent for further research
studies. Four patient sera with highest IgE reactivity to at least one
grass pollen extract and two control sera with no IgE reactivity
to all grass extracts, and enough serum volume available were
chosen for this study.

Immunoblot Assay
One SDS-PAGE gel with four rice pollen extract samples:
untreated control, flood, salt, and drought, was prepared for
each serum sample. Ten micrograms of the pollen extract
quantified by the Bradford assay were separated by SDS-
PAGE as described above. The separated proteins were electro-
transferred from gels to nitrocellulose membranes using Trans-
blot R© TurboTM Transfer System (Bio-Rad, CA, USA) with
the manufacturer’s protocol. The membranes were blocked
with 3% (w/v) Skim Milk Powder (Merck, NJ, USA) in 0.2%
(v/v) phosphate buffered saline with Tween R© 20 (Sigma-
Aldrich, MO, USA) (PBST) as a blocking buffer at room
temperature for 1 h. Each membrane was incubated with
individual serum sample (primary antibody) diluted in a blocking
buffer (1:20), shaken gently at 4◦C overnight. The individual
membrane was then incubated at room temperature for 1 h
with 1ml of HRP-labeled mouse IgG anti-human IgE antibodies
(SeraCare Life Sciences, MA, USA) (secondary antibody)
diluted in blocking buffer (1:5,000). Bound IgEs were detected
using ImmobilonTM Western Chemiluminescent HRP substrate
(Millipore, Germany) and visualized by a gel documentation
system (ImageQuant LAS 500, GE Healthcare Life Sciences, MA,
USA) with 1min of exposure time. The molecular weight of the
reactive protein bands was estimated by comparison with the
standard protein molecular weight markers, BLUeye Prestained
Protein Ladder (GeneDireX, Keelung, Taiwan), on the developed
SDS-PAGE gels. The immunoblot assay was performed once due
to serum limitation.
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Indirect Enzyme-Linked Immunosorbent
Assay
Each experimental rice pollen extract was diluted with 1X PBS
to a concentration of 1 µg per well. One hundred microliters
of the diluted protein sample was coated on ELISA plates and
incubated at 4◦C overnight. The coated plates were washed five
times with a washing buffer (0.05%, v/v, Tween in 1X PBS) and
blocked with a blocking solution (1%, w/v, skim milk powder
in 0.05% PBST) for 1 h at room temperature. The coated plates
were then incubated with diluted serum (1:4) of either allergic
donors (n = 4) or non-allergic donors (n = 2) for 2 h at
room temperature. The bound IgEs were detected by incubating
with 1:1,000 diluted HRP-labeled mouse IgG anti-human IgE
antibodies in blocking solution at room temperature for 1 h.
Fifty microliters of TMB (3,3′5,5-tetramethylbenzidine) substrate
(SeraCare Life Sciences, MA, USA) was added to each well and
incubated in dark condition at room temperature for 30min.
The enzymatic reaction developed a blue color with increasing
IgE interaction and was stopped by 1N HCl. Light absorbance
was measured at optical density (OD) of 450 nm using Biochrom
EZ Read 400 Microplate Reader (Biochrom, Cambridge, UK)
with Galapagos Data Acquisition Software (Harvard Bioscience,
Inc., MA, USA). The OD levels were obtained by subtracting
the sample OD with its negative control (no allergen). Each of
the three extracts was then tested with each serum sample in
three separate reactions, for the total of nine reactions per serum
sample. Each data point on the graph was the average value from
nine OD readings.

Statistical Analysis
All statistical analyses were conducted by GraphPad Prism
version 9.0.0 (GraphPad Software, CA, USA). The assumptions
of normality and homogeneity of variance were tested using
Shapiro-Wilk test and Levene’s test, respectively. The statistical
analysis of physiological characteristics for each treatment
group was tested by one-way analysis of variance (ANOVA)
with Tukey’s multiple-comparison test. The comparison of
plant heights between 0 and day 7 was tested by paired
sample t-test. The significant difference of expression of β-
expansin relative to the reference genes, ACT and UBQ, of
experimental rice and maize was analyzed using Kruskal-
Wallis test with Dunn’s multiple-comparison test. The
statistical significance of soluble pollen protein concentration
for each experimental rice group was tested by one-way
ANOVA with Fisher’s least significant difference (LSD)
multiple-comparison test.

Demographic data: age, gender, smoking status, pet, family
history of allergic disease, and current medication was presented
as either mean ± standard deviation (SD) and range for
continuous data or frequency and percentage for categorical
data. The demographic data of grass-allergic subjects and healthy
control subjects was compared using the student’s unpaired t-test
(for continuous data) or Fisher’s exact test (for categorical data).

The IgE levels of four grass-allergic patients (n = 4) and two
healthy controls (n = 2) evaluated by immunoblot and ELISA
were analyzed. The significant difference of the immunoblot

IgE-reactive band intensity and ELISA OD between patients and
controls was analyzed for each stress condition using Mann-
Whitney U-test (median used for the analysis of non-parametric
data). To compare IgE reactivity levels between rice pollen
extracts in each stress condition for each subject group, one-
way ANOVA was used with Tukey’s multiple-comparison test
for grass-allergic patients (average values used for the analysis
of parametric data) and Kruskal-Wallis H-test with Dunn’s
multiple-comparison test was used for healthy control donors
(average rank used for the analysis of non-parametric data).

A p-value of <0.05 (p < 0.05) was considered
statistically significant.

RESULTS

Rice and maize plants given flood, salt, or drought stress
for 1 week were investigated to confirm the extent of
physiological changes caused by the stresses. Overall, the
stress treatments resulted in visible symptoms such as dried
leaves in rice, particularly under drought conditions (Figure 2A).
On the contrary, inflorescence and pollen shapes did not
change significantly compared with the untreated control
(Supplementary Figure 1). Interestingly, although the rice
pollen morphology under all treatment conditions was
comparable, the pollen size affected by salt treatment was
significantly larger compared to that of the drought treatment
(width: p < 0.05; length: p < 0.0001) (Table 2).

Plant height, number of inflorescences, number of anthers,
fresh weight of anthers, and number of pollen grains
were recorded from stress-treated rice and maize plants
(Figures 2B–F). At the day of treatment, rice and maize plants
had uniform height (p > 0.05). After 1 week of treatments, the
maximum height was observed under flood condition in both
rice and maize (Figure 2B). Drought treatment reduced maize
plant height more than control (p < 0.05), flood (p < 0.0001),
and salt (p < 0.05) (Figure 2B, right panel).

The number of inflorescences in flood-treated and salt-treated
rice was comparable with that in untreated control with an
average of five inflorescences/plant, while the drought-treated
rice plants had the lowest number of inflorescences (average:
two inflorescences/plant) (Figure 2C, left panel). Each untreated-
and salt-treated maize plant produced about nine inflorescences.
The inflorescence number was highest in flood-treated maize
plants and lowest in drought-treated maize plants (Figure 2C,
right panel).

Similarly, anther number was significantly affected by stress
treatments. More anthers were produced in rice under flooding
stress than under salt stress and untreated control. The numbers
of maize anthers were comparable in the untreated, flood-treated,
and salt-treated groups. However, lower quantities of both rice
and maize anthers were recorded in the drought-treated group
(Figure 2D). The fresh weight of rice anthers was the highest
in flood-treated samples at about 25 mg/plant. On the other
hand, the weight of drought-treated anthers, which were the
lightest of all samples, was 60% less than the weight of flood-
treated anthers. The maximum weight of maize anthers was also
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FIGURE 2 | Effects of abiotic stress on experimental plants. Morphological characteristics of untreated control, flood-, salt-, and drought-treated rice were observed

at day 7 (the reference scale: 25 cm) (A). Physiological variations of experimental rice (left panel) and maize (right panel) were recorded as follows: plant height at 0 and

day 7 (B), number of inflorescences (C), number of anthers (D), weight of anthers containing pollen (E), and number of pollen grains (F). Bars with error bars

represent mean and SD. Box plots with error bars represent median and interquartile range. Comparing plant heights between 0 and day 7 of each treatment was

tested by paired sample t-test. Comparing other characteristics between control, flood, salt, and drought was tested by one-way analysis of variance (ANOVA)

(parametric test) with Tukey’s multiple-comparison test. A statistically significant difference was indicated with the following asterisks: *(p < 0.05), **(p < 0.005), ***(p <

0.001), and ****(p < 0.0001).

produced by maize under flood stress (800 mg/plant), which
was about 4-fold higher than the anther weight in the drought-
treated group (Figure 2E). When the number of pollen grains per

anther was counted, it was found that rice plants under salt and
drought treatments produced an average of 400 grains/anther.
This level was about half the amount of pollen produced by
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TABLE 2 | Pollen size of rice under each experimental condition.

Condition Pollen size (µm)
†
,
††

,
†††

Width Length

Control 40.4 ± 3.1a 43.8 ± 2.3a

Flood 40.3 ± 2.8a 43.4 ± 2.4a

Salt 41.3 ± 2.9b 45.7 ± 3.6b

Drought 38.2 ± 3.3a 41.6 ± 2.5a

†
Measured from 20 grains per sample group;

††
Mean ± SD;

†††
One-way ANOVA with

Tukey’s multiple-comparison test was used to compare either pollen width or length

of each experimental group.; a,bDifferent letters correspond to statistically significant

differences at 95% C.I.

flood-treated rice plants (Figure 2F). The largest quantity of
pollen grains was recorded from flood-treated maize plants
(average: 6,700 grains/anther).

Expression of reference genes, ACT (ACT1 for rice and
ACT2 for maize) and UBQ (UBQ10 for rice and UBQ7 for
maize), remained stable in both rice and maize among the four
experimental conditions (no statistically significant difference
between the treated conditions; rice: p = 0.26; maize: p = 0.41;
data not shown). Relative expression of β-expansin significantly
increased in pollen of all stress-treated rice (Figure 3A). The
highest level of β-expansin transcript (4-fold increase compared
to the untreated control) was found in flood-treated rice pollen (p
< 0.0001). Drought treatment increased β-expansin expression
in rice pollen ∼2-fold (p < 0.05), whereas salt treatment
increased the expression 3.7-fold (p < 0.0001) compared to the
control. On the contrary, all stress treatments decreased the
expression levels of β-expansin in maize pollen by the average
of 20% (Figure 3B). The minimum transcript level of β-expansin
was found under salt stress conditions and was nearly 60% lower
than the transcript level in untreated maize pollen.

When the basal expression level of β-expansin in rice and
maize was adjusted to one unit (Figure 3C), five times higher
expression level was found in flood-treated rice compared to the
flood-treated maize. Under salt and drought conditions, the β-
expansin expression levels in rice pollen were ∼3-fold higher
than those in maize pollen.

Immunoblotting and indirect ELISA were performed to
determine whether the increase of RNA expression in the
rice pollen after stress treatments was consequently reflected
by the increase of grass-group 1 allergenic proteins, and
thereby could increase the IgE reactivity of the pollen. Serum
samples of four grass-allergic patients and two healthy control
donors, with demographic data summarized in Table 3 and
Supplementary Table 1, were used for immunoblotting and
ELISA. The majority of patients and control donors were
adults (average age of patients: 34.5 ± 13.9; control donors:
30.5 ± 9.19 years). All patients took antihistamine and/or
intranasal corticosteroid as prescribed. Average age, gender
distribution, smoking and pet status, family history of allergic
diseases, and medication were not different between patients and
control donors.

The maximum soluble protein concentration of rice pollen
extract assessed by Bradford assay was found in the salt-
treated samples followed by drought, flood, and control samples
(Table 4). IgE-immunoblotting was used to study the profile of
IgE reactivity to grass group-1 pollen allergenic proteins. The
most prominent IgE-reactive protein bands of rice pollen under
flood, salt, drought and control treatments were ∼30 kDa (4/4,
100% of patients). Two minor bands at 11 kDa and slightly lower
were also detected in 2/4 patient serum samples (Figure 4A). In
all treatments, there was no detectable IgE reactivity of sera from
healthy control donors to rice pollen extract. Consequently, IgE
reactivity to the rice pollen extract of sera from grass-allergic
subjects were different from those from control donors in both
immunoblotting assay and ELISA (Figures 4B,C).

The intensity of IgE reactivity to the 30 kDa protein among the
grass-allergic patient serum samples, corresponding to the grass
group 1 major allergen/β-expansin, was significantly higher (p <

0.05) in extracts from rice pollen subjected to flood treatment
than those from salt-treated or drought-treated rice pollen
(Figure 4B). A trend was observed that the flood treatment
slightly increased the IgE reactivity compared to the untreated
control, although the difference was not statistically significant (p
> 0.25).

Indirect ELISA was used to assess IgE levels in sera of grass-
allergic subjects against rice pollen extracts (Figure 4C). The IgE
level of allergic subjects against salt rice pollen extract or drought
rice pollen extract showed a significant decrease compared to
the level of IgE against control rice pollen extract. The allergic
subjects have a significantly higher level of IgE to flood rice pollen
extract compared to either salt or drought rice pollen extracts.
Both immunoblotting and ELISA assays produced similar results,
and generally corresponded with the β-expansin expression
results with the exception of the low basal expression in the
untreated pollen samples.

DISCUSSION

Since the beginning of the 21st century, the incidence of
grass pollen sensitization worldwide, particularly in Thailand
has been rising continuously (45). Importantly, grass pollen
allergens, particularly the group-1/β-expansins, are reported as
a major cross-reactive protein for allergic patients (14). Apart
from the amounts of pollen released into the air, allergenic
potency of pollen can also influence the prevalence and/or
severity of allergic diseases (15). In addition, anthropogenic and
environmental factors can lead to changes of plant distribution,
plant adaptation, and the volumes of pollen released into the
atmospheric air.

This study demonstrates the effects of environmental stresses
on plant physiological characteristics, β-expansins expression,
and IgE reactivity to major rice pollen allergens. The visible
changes in plant growth, development, and productivity,
including plant height, as well as number of anthers and pollen
grains resulting from either flood, salt, or drought stresses is
consistent with previous studies (46–48).
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FIGURE 3 | Relative expression of group-1 expansin, β-expansin in the experimental rice and maize pollen. The expression was relative to the reference genes: ACT

(ACT1 for rice and ACT2 for maize) and UBQ (UBQ10 for rice and UBQ7 for maize). The box plot showed the relative expression of the experimental rice (A) and maize

(B) under either untreated, flood-, salt-, or drought-treated conditions. Box plots with error bars represent median and interquartile range. The comparative diagram

(C) showed the mean relative expression of β-expansin in the experimental rice and maize. Bars with error bars represent mean and SD. A statistically significant

difference tested by Kruskal-Wallis test with Dunn’s multiple-comparison test was indicated with the following asterisks: *(p < 0.05), **(p < 0.005), and ***(p < 0.0001).

The changes in physiological characteristics of rice and
maize were indicative of mild-to-moderate stress as intended
by the stress treatments (49, 50). Importantly, these stresses
are comparable to what the plants are exposed to occasionally
during the pollen-forming stages and are likely to experience
more frequently as the result of climate change in the near future
(51). These physiological changes can also serve as a reference
for further research investigating other cultivated or naturally
distributed grass species.

The expression of β-expansin transcript in the experimental
rice pollen under flooding, salt, and drought conditions was
significantly induced compared to the control pollen not
subjected to stress, whereas the expression in all pollen samples
from stress-treated maize was obviously repressed relative to
the control.

For rice, the highest upregulation level of β-expansin
was observed in the flood-treated group followed by salt-
and drought-treated groups, respectively. According to several
previous observations, the increase in expression level of
expansin genes, particularly β-expansin in stress-treated plants

were shown to correlate with the maintenance of plant growth or
stress relaxation, in accordance with the function of β-expansin
in plant cell-wall modification (28, 52–54).

However, the expression patterns of β-expansin in all stressed
maize tended to be reduced. The maximum level of β-expansin
transcript was detected in the untreated control samples, whereas
the lowest expression level was exhibited in the salt-treated
samples. Corresponding to the previous study (55), the relative
expression levels of several β-expansin isoforms, ZmEXPB2,
ZmEXPB6, ZmEXPB7, and ZmEXPB8, in 100mM NaCl-treated
maize were significantly lower compared to the expression levels
in 1 mM-NaCl-treated control. Moreover, the Western blot
analysis revealed a decrease of β-expansin protein detected in
response to the 100mM NaCl treatment (55). Based on our
findings, it was hypothesized that the downregulation of β-
expansin transcripts may contribute to the decreased abundance
of β-expansin protein accompanying shoot growth defects during
high-salt treatment (55, 56).

Notably, several stress-responsive genes encode pollen
allergens. For instance, several isoforms of Bet v 1, a major
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TABLE 3 | Demographic data of patient and control subjects recruited in this

study.

Patients

(n = 4)

Controls

(n = 2)

P-value
†

Age (years)

Mean ± SD 34.5 ± 13.9 30.5 ± 9.19 0.738 (NS)

Gender

Male (%) 0 (0%) 1 (50%) 0.178 (NS)

Female (%) 4 (100%) 1 (50%)

Smoking (%) 2 (50%) 0 (0%) 0.467 (NS)

Pet (%) 2 (50%) 0 (0%) 0.467 (NS)

Family history of allergic disease (%) 2 (50%) 0 (0%) 0.467 (NS)

Medication
††

(%) 4 (100%) 0 (0%) 0.067 (NS)

†
To compare the demographic data between patients and controls, student’s t-test was

used for age and Fisher’s exact test was used for gender, smoking, pet, family history

of allergic disease, and medication.; NS, non-statistical difference at 95% C.I.;
††
Current

medication with antihistamine and/or intranasal corticosteroid.

TABLE 4 | Soluble protein concentration of rice pollen extract.

Condition Concentration (mg/ml)
†
,
††

Control 4.19 ± 0.64a

Flood 4.26 ± 0.48a

Salt 5.66 ± 0.74b

Drought 5.48 ± 0.65b

†
Mean ± SD;

††
One-way ANOVA with Fisher’s least significant difference (LSD) multiple-

comparison test was used to compare soluble protein concentration of each experimental

group.; a,bDifferent letters correspond to statistically significant differences at 95% C.I.

allergen in birch (Betula pendula) pollen, are encoded by
multiple PR10 genes such as Bet v 1 genes belonging to the
pathogenesis-related gene family that play a role in biotic and
abiotic stress responses (57). β-expansins encoded by β-expansin
genes also belong to major grass pollen allergens that impact
on a large number of grass allergic individuals worldwide. This
pollen allergen as well as its allergenicity were speculated to be
influenced by either up- or down-regulation of plant β-expansin
transcripts under unfavorable environmental conditions.

The comparison of β-expansin expression patterns across
the two plant species: rice and maize, revealed highly different
transcriptional dynamics in response to either flood, salinity, or
drought. This is in agreement with several previous investigations
indicating that the expression of different sets of genes can be
variable across plant species in response to various environmental
or stress conditions (58, 59). For instance, salt-responsive genes
in rice and barley showed variations in types or levels of
expression during salt treatment (60).

The profiles of IgE-immunoblotting emphasized that IgE
serum samples of all grass allergic patients were reactive to the
β-expansin-like protein indicated at a molecular weight of about
30 kDa in all experimental rice pollen extracts. The immunoblot
results showed that the stress treatments affected the levels of β-
expansin-like protein, but did not noticeably lead to increased

production of other IgE-reactive proteins. The relative band
intensity of patient IgE against the flooded rice pollen extract was
significantly higher than either salt-treated or drought-treated
rice pollen extracts but was comparable to the control. The
OD levels assessed from the indirect ELISA showed a similar
trend of relative intensity. Based on ELISA, the IgE reactivity
against the major rice pollen allergens fluctuated. Higher levels
of IgE were observed against either flood-treated or untreated
rice pollen extracts whereas lower levels of the IgE were detected
against either salt-treated or drought-treated rice pollen extracts.
Generally, ELISA is quantitative and more favorable for certain
purposes, but the semi-quantitative IgE-immunoblotting also
has advantages in that the proteins are separated by size, and
therefore reactivity to specific protein bands can be selectively
assessed without the confounding background.

Although grasses are dominant allergenic species in most
regions of the world, most allergenic grass species distributed
naturally are not easily cultivated in a greenhouse for pollen
collection and gene expression analyses. Moreover, several
species and/or cultivars cannot be verified due to their high
taxonomic diversity. Therefore, in this study of immunoreactivity
to grass pollen allergens, rice and maize were chosen due to their
certified genetic background, ease of cultivation, and previous
literature about gene and protein sequences. In Thailand, like
most of Asia, rice is the most widely cultivated grass economic
crop species, averaging 11 million hectares in cultivation area,
which is ∼ten times larger than maize cultivation area (1.1
million hectares) (61). Therefore, most people throughout the
country, especially occupational workers such as farmers can
be highly exposed to large amount of rice pollen. Due to the
limitation of serum samples in this study, rice was, therefore,
the only species selected for the analysis of the IgE reactivity
immunoblot assay.

The study of rice pollen immunoreactivity has still been
limited and rice pollen is likely well-tolerated by the immune
system of local farmers. However, the grass group-1 allergens
have high potential to cause severe allergenicity in grass pollen-
allergic patients and high frequency (>90%) of patients reacted
to them. Group-1 grass allergens from pollen of different
subtropical grasses frequently found in Southeast Asia were
shown to be nearly identical (97.79–100% identity) (62). Another
previous study from Dhammachat et al. (63) showed the high
percentage (81%) of sequence identity between grass group-1
allergen in rice (Ory s 1) and in Para grass (Uro m 1.03), another
dominant allergenic grass species found in Thailand. Because
of the large cultivation area of rice and maize and the highly
similar allergenic protein sequence among tropical/subtropical
grass species, the fluctuation of rice and maize pollen is likely
to have clinical relevance for patients already sensitized to grass
pollen allergens.

The IgE reactivity evaluated by IgE immunoblotting and
ELISA showed generally consistent results with the relative
expression of β-expansin transcripts, with the exception of
the basal expression in the untreated control samples. This
discrepancy may be associated with the specificity of target
samples. For the transcript analysis, the designed primers specific
for β-expansin transcript were used to specifically quantify the
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FIGURE 4 | IgE reactivity to rice pollen protein extracts. SDS-PAGE and IgE immunoblots (A) of rice pollen protein extracts under stress conditions from four

representative patient samples for grass pollen (no. 1–4) and two representative control samples (no. 5–6), were shown. Arrows on IgE immunoblots indicate major

IgE reactive bands. An arrow on each SDS-PAGE indicated the corresponding protein band. The interleaved scatter plot showed intensity of IgE immunoblot (B) and

ELISA OD (C) indicated IgE reactivity between grass-allergic patients (n = 4) and controls (n = 2) to each of the experimental rice pollen extracts were illustrated.

Comparing IgE level between grass-allergic patients and controls to each of the experimental rice pollen extracts was tested by Mann-Whitney U-test. Comparing IgE

level between control, flood, salt, and drought rice pollen extracts was performed by one-way ANOVA with Tukey’s multiple-comparison test for parametric data or

Kruskal-Wallis H-test with Dunn’s multiple-comparison test for nonparametric data. A statistically significant difference was indicated with the following asterisks: *(p <

0.05), **(p < 0.001), and ***(p < 0.0001).

expression level of β-expansin in pollen samples. However, for
the IgE reactivity study, the soluble pollen extract proteins
were applied for immunoblotting and ELISA. We hypothesized
that the rice pollen extract containing several protein isoforms
of β-expansin as well as other minor allergens could react
to the patient IgE, resulting in high background readings in
control samples.

Apart from the influence of other β-expansin isoforms
interacting with patient IgE, the effects of various stress-related
proteins being expressed under stress conditions are worth
a discussion. Due to the evaluation of IgE reactivity to the
experimental rice pollen extracts using the soluble pollen extract

proteins, the highest protein concentration (5.66 mg/ml) was
found in the salt-treated group followed by drought (5.48
mg/ml), and flood (4.26 mg/ml) treated groups, as well as the
untreated-control group (4.19 mg/ml), respectively. According
to the results of IgE reactivity, the immunoblotting and ELISA
of salt- and drought-treated samples showed a significant low
reactivity in spite of their high soluble protein concentrations.
Those observations were different from the IgE reactivity of
flood-treated and untreated control groups. The results suggested
that the soluble protein concentrations were not agreeable with
the Ig reactivities. We hypothesized that the high amount of
soluble protein concentrations could be affected by an increase
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of large amounts of other stress-related proteins, including
heat-shock and dehydration responsive-element binding (DREB)
proteins, in response to abiotic stresses (64–66). According
to several previous studies, for example, the overexpression
of OsDREB genes and also non-allergenic OsDREB proteins
was found in most parts of rice, particularly in spikelets and
anthers under drought stress (67–70). This result could reduce
the proportion of β-expansin in the experimental samples,
particularly salt- and drought-sample groups contributing to a
decrease in IgE reactivities.

The amount of major pollen allergen could fluctuate among
plant species and environmental conditions, including climatic
variations and/or atmospheric pollution (15, 32, 71). Our
findings revealed similar evidence compared to several previous
studies. For instance, an increase of Amb a 1 transcript was
observed in ragweed pollen exposed to a high level of CO2 and
treated with drought in accordance with the Amb a 1 protein
content in ragweed pollen that was also found to increase under
the stress conditions (32, 72).

Another interesting study of environmental effects on plant
allergens showed that a Phl p 5 protein in timothy grass
pollen could be altered by oxidative damage resulting from
high O3 exposure. This factor contributed to a reduction
in the human IgE antibody recognition as observed from
the 2D-gel allergen pattern of O3-exposed pollen (73, 74).
Under a drought stress condition, several previous investigations
indicated that, for example, rice treated with either water
deficit or salinity (120mM of NaCl) for at least 8 days had
significant increases in superoxide anion, hydrogen peroxide,
and malondialdehyde (a highly reactive compound acting
as a marker for oxidative stress) (75–80). In keeping with
previous literature, an increase in oxidative damage in stress-
treated plants causes several protein-conformation changes
and/or denaturation (81, 82). Our findings, particularly in
drought- and salt-stress-treated rice, indicated a lower level
of IgE reactivity compared to flood-treated and untreated-
control rice. It is likely that the β-expansin conformation in
salt- or drought-treated conditions could be altered and/or
damaged by oxidative stress at the equivalent concentration of
loaded proteins. In effect, this may contribute to a decrease in
the allergen recognition by IgE in addition to the reduction
of detectable IgE reactivity to the stress-treated rice β-
expansin.

Another study of hypersensitivity reactions in allergic
conjunctivitis influenced by ragweed pollen-induced oxidative
stress revealed a different aspect. Experimental mice challenged
with ragweed pollen pretreated with a superoxide scavenger
Tiron showed a significant decrease in mast cell degranulation
compared to the ragweed pollen treated with NAD (P) H
oxidases. The authors presumed that the stimulation of mast
cell degranulation in the conjunctiva is significantly induced
by ROS from NAD (P) H oxidase treated ragweed pollen
together with the pollen allergens (83). Remarkably, several
previous studies demonstrated that environmental fluctuations
can govern both the expression of gene-encoding major pollen
allergens and the allergenicity of pollen, similar to the findings in
this study.

CONCLUSION

As expected, rice and maize plants subjected to environmental
stresses during pollen development, particularly drought stress,
exhibited significant differences in plant height, anther fresh
weight, number of inflorescences, anthers, and pollen grains.
The stress conditions also elicited the changes in β-expansin
gene expression. For rice, the β-expansin expression in pollen
of flood-treated samples was ∼four times higher than that
of untreated controls, followed by salt- and drought-treated
samples. In contrast, the expression of β-expansin in pollen of
maize showed an apparent decrease under all stress treatments.
IgE-immunoblot analysis showed IgE-reactive protein bands
from rice pollen extracts at about 30 kDa as belonging to the
grass-group 1 protein. The intensity of IgE-reactive protein bands
and the IgE level to rice pollen extracts showed significant
differences among stress conditions, particularly salt and drought
stresses compared to the untreated condition. These findings
suggest that environmental conditions during plant growth and
flowering, which regulate the total β-expansin content, could
significantly influence the allergenic potency of rice and maize
pollen, and possibly the severity of rice pollinosis. Further studies
should be conducted to expand our understanding about effects
and consequences of the concerning environmental changes on
pollen allergies in the near future.
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