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Background Interpopulation differences in drug responses
are well documented, and in some cases they correspond to
differences in the frequency of associated genetic markers.
Understanding the diversity of genetic markers associated
with drug response across different global populations is
essential to infer population rates of drug response or risk
for adverse drug reactions, and to guide implementation of
pharmacogenomic testing. Sri Lanka is a culturally and
linguistically diverse nation, but little is known about the
population genetics of the major Sri Lankan ethnic groups.
The objective of this study was to investigate the diversity of
pharmacogenomic variants in the major Sri Lankan ethnic
groups.

Methods We examined the allelic diversity of more than
7000 variants in genes involved in drug biotransformation
and response in the three major ethnic populations of Sri
Lanka (Sinhalese, Sri Lankan Tamils, and Moors), and
compared them with other South Asian, South East Asian,
and European populations using Wright’s Fixation Index,
principal component analysis, and STRUCTURE analysis.

Results We observed overall high levels of similarity within
the Sri Lankan populations (median FST= 0.0034), and
between Sri Lankan and other South Asian populations
(median FST= 0.0064). Notably, we observed substantial
differentiation between Sri Lankan and European
populations for important pharmacogenomic variants

related to warfarin (VKORC1 rs9923231) and clopidogrel
(CYP2C19 rs4986893) response.

Conclusion These data expand our understanding of the
population structure of Sri Lanka, provide a resource for
pharmacogenomic research, and have implications for the
clinical use of genetic testing of pharmacogenomic variants
in these populations. Pharmacogenetics and Genomics
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Introduction
Many drugs differ in their effectiveness or risk for

adverse drug reactions (ADRs) in different ethnic popu-

lations. In some cases, these interpopulation differences

in drug response show strong correspondence to the

frequencies of the associated pharmacogenomic risk

alleles. For example, the mean daily dose requirement of

warfarin across different ethnic groups is closely mirrored

by interethnic differences in the frequency of the

− 1639G variant (rs9923231) in the warfarin drug target,

VKORC1 [1,2]. This suggests that it may be possible to

infer population-level responses to medications by

examining differences in allele frequency. However, our

knowledge of the differences in the frequencies of

important pharmacogenomic variants in world popula-

tions is far from complete. It will be essential to define

the frequency of pharmacogenomic gene variants in dif-

ferent populations to assess the applicability of pharma-

cogenomic associations to different populations, to infer

population-level response rates and ADR risk for differ-

ent medications, and to guide the implementation of

pharmacogenomic testing in different population groups.

Earlier studies on pharmacogenomic diversity surveyed a

limited number of variants and populations [3]. Recently,
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more comprehensive surveys of pharmacogenomic

diversity have been conducted in Asian, African, and

various other populations [4–7]. Sri Lanka (SL) is an

island nation located off the Southern tip of India, with a

population of ∼ 20 million inhabitants [8] and a demo-

graphic profile shaped by multiple events in history.

Archeological excavations have suggested that there was

human habitation in SL as early as 28 000 years ago [9].

The three largest population groups are the Sinhalese,

the SL Tamils, and the Moors, accounting for 74.9, 11.1,

and 9.3% of the population, respectively [10]. Historical

records trace the origin of the Sinhalese people to East

India (Bengal) and the SL Tamils to waves of migration

from South India. However, the exact origin of these two

populations remains controversial [11–13]. The Moors are

thought to represent a hybrid population of Arab traders

who interbred with local inhabitants.

SL has substantial cultural and linguistic diversity.

Notably, the traditional religion among Sinhalese is

Buddhism and among Tamils is Hinduism. In addition,

the Sinhalese language is a member of the Indo-

European language group, whereas the Tamil language

is a member of the Dravidian language group. However,

whether this cultural diversity reflects underlying dif-

ferences in the population genetic structure is unknown.

Previous population genetic studies of SL have focused

on only a handful of loci, such as subtypes of blood

groups, red cell enzymes, and serum proteins [14], and

more recently the hypervariable segments of mitochon-

drial DNA [15]. The population genetics of SL people is,

therefore, not well defined. Furthermore, no previous

study has examined pharmacogenomic diversity among

these populations.

The objective of this study was to explore the population

diversity of variants in genes involved in drug bio-

transformation and response among individuals from the

three major SL ethnic groups (Sinhalese, SL Tamils, and

Moors), and to compare them with Indians (INS),

Chinese (CHS), and Malays (MAS) from the Singapore

Genome Variation Project (SGVP), as well as with other

South Asian (SAS) and European (CEU) populations

from 1000 genomes.

Methods
Study populations
The SL study population consisted of healthy individuals

from the three major ethnic groups (55 Sinhalese, 73 SL

Tamils, and 78 Moors). Ethnicity was assigned on the

basis of self-reported ethnicity. We required that the self-

reported ethnicity of the four grandparents of each par-

ticipant be the same, and that they report the absence of

intermarriage between ethnic groups over the previous

three generations. All participants gave their written

informed consent. This study was approved by the

Institutional Review Board of the University of Colombo.

For comparisons with the SGVP populations, we used

previously reported genotype data [5] from 253 indivi-

duals (88 CHS, 87 MAS, and 78 INS) that were merged

with genomewide data [16]. For comparisons with other

SAS [Gujarati INS from Houston, Texas (GIH); Punjabi

from Lahore, Pakistan (PJL); Bengali from Bangladesh

(BEB); SL Tamils from the UK (STU); Indian Telugu

from the UK (ITU)] and European [Utah residents with

Northern and Western European ancestry (CEU)]

populations, we used data from 1000 Genomes phase 3

release (http://www.1000genomes.org). We merged these

datasets with the SL dataset and used overlapping SNPs

for cross-population comparisons (see Figure, Supplemental

digital content 1, http://links.lww.com/FPC/A915).

Genotyping and quality control
We genotyped SL samples on a customized Illumina

Infinium array (Illumina, San Diego, California, USA)

containing 7907 SNPs in genes involved in drug

absorption, distribution, metabolism, and excretion

(ADME), which is an expanded version of a previously

described assay [5].

Concordance between sample technical duplicates and

duplicate SNPs was first checked, and any sample or

SNP with less than 99% concordance was removed.

Subsequently, samples were checked for concordance of

reported and estimated sex and cryptic relatedness based

on identity-by-state. As only ethnicity was important in

our analysis, we included two samples in high identity-

by-state pairs that belonged to the same ethnic group to

retain as many samples as possible. The data were then

filtered for SNPs with call rate less than 90% and for

those that deviated from Hardy–Weinberg equilibrium

(P< 0.001) in at least one ethnic group (see Figure,

Supplemental digital content 2, http://links.lww.com/FPC/
A916).

After data merging, we compared minor allele frequencies

(MAFs) between CHS from SGVP and CHS (Southern

Han Chinese) from 1000 Genomes. SNPs with clearly

different MAFs were excluded (see Figures, Supplemental

digital content 1, http://links.lww.com/FPC/A915 and

Supplemental digital content 3, http://links.lww.com/FPC/
A917). The concordance between MAFs of SL Tamils and

STU was also checked, and SNPs (see Figure,

Supplemental digital content 4, http://links.lww.com/FPC/
A918) with FST greater than 0.05 between the SL and STU

populations were confirmed using Sanger sequencing or

TaqMan genotyping (Life Technologies). SNPs with dis-

cordant genotypes were excluded from the dataset [for

principal component analysis (PCA) and STRUCTURE],

but the MAFs for SNPs from TaqMan genotyping were

included in the FST analysis (see Figure, Supplemental

digital content 1, http://links.lww.com/FPC/A915 and Table,

Supplemental digital content 5, http://links.lww.com/FPC/
A919). CYP2C19*2 (rs4244285), not present on the

Illumina array, was genotyped by TaqMan assay according

Pharmacogenomic diversity in Sri Lankans Chan et al. 29

http://www.1000genomes.org
http://links.lww.com/FPC/A915
http://links.lww.com/FPC/A916
http://links.lww.com/FPC/A916
http://links.lww.com/FPC/A915
http://links.lww.com/FPC/A917
http://links.lww.com/FPC/A917
http://links.lww.com/FPC/A918
http://links.lww.com/FPC/A918
http://links.lww.com/FPC/A915
http://links.lww.com/FPC/A919
http://links.lww.com/FPC/A919


to the manufacturer’s instructions. All analyses were carried

out in R Version 3.1.0 [17] using the GenABEL pack-

age [18].

Statistical analysis
Variance in allele frequencies
To assess the variance in ADME SNPs across different

populations, we calculated Wright’s fixation index (FST)

[19] at each SNP for various population comparisons. FST

values range from 0 to 1, with greater values indicating a

greater extent of differentiation. Generally, values less

than 0.05 indicate little differentiation and those greater

than 0.15, substantial differentiation [19]. Comparisons

were made within the SL populations, between SL and

SAS populations, between SL and SGVP populations,

and among all populations.

Principal component analysis
PCA was carried out by performing classical multi-

dimensional scaling on the distance matrix of the geno-

mic kinship matrix, which was computed within the

GenABEL package in R on all autosomal SNPs. This was

carried out on the four sets of populations described

above to dissect their relationships at the ADME SNPs.

STRUCTURE analysis
We carried out STRUCTURE analysis, using version

2.3.4 [20], on merged data from all populations for a

different perspective on interpreting the genetic struc-

ture of these populations at the ADME SNPs. The

analysis was carried out assuming the admixture model

and correlated frequencies among populations, with

10 000 burn-in iterations and 10 000 samplings. We ran

the analysis for number of populations (K) ranging from 2

to 12, which is the maximum number of populations

included in this study. Therefore for each run,

STRUCTURE attempts to cluster all individuals into K
populations.

Results
Population structure at pharmacogenomic loci
We genotyped individuals from the major SL ethnic

groups at more than 7000 SNPs in ADME genes. After

applying quality control filters, we analyzed data from 49

Sinhalese, 72 SL Tamils, and 76 Moors (see Figure,

Supplemental digital content 2, http://links.lww.com/FPC/
A916). We observed relatively little overall differentiation

among the three SL ethnic groups at the ADME SNPs

(Figs 1a and 2a), indicating that, from the perspective of

global pharmacogenomic diversity, these three populations

are highly similar. Including the SAS populations revealed

little overall differentiation on comparison of FST (Fig. 1b).

However, PCA revealed evidence of subtle population

substructure between the SL and the GIH/PJL popula-

tions (Fig. 2b and Figure, Supplemental digital content 6,

http://links.lww.com/FPC/A920). On comparing SL and

SGVP populations, greater differentiation was observed

between SL and CHS/MAS populations compared with

that between SL and INS (Figs 1c and 2c). Finally, in

analysis of all populations, the greatest differentiation was

observed among the major ancestral groups, with the SL

and SAS populations clustering together (Figs 1d and 2d).

Pairwise FST comparisons also showed that the CHS,

MAS, and CEU populations were more differentiated from

the SL, SAS, and INS populations than were the SL, SAS,

and INS populations among themselves (Fig. 3).

Next, we used STRUCTURE analysis to infer ancestral

population groups. Overall, these results were consistent

with the patterns observed on PCA (Fig. 4). However,

within the SL population, the Moor population displayed

more admixture than the Sinhalese and SL Tamil

populations, consistent with their demographic history

(Fig. 4a), a feature that was not apparent on PCA plots. At

K= 3, the inferred ancestry corresponds to the three main

ancestral groups (CEU, CHS/MAS, and SL/SAS/INS).

With increasing K, no further distinct populations were

apparent, suggesting that SL, SAS, and INS could not be

separated into distinct ancestral populations, although

they displayed varying degrees of admixture (data not

shown). The GIH and PJL populations displayed the

most admixture with the CEU population, whereas the

BEB population showed some admixture with East

Asians. This is consistent with the slight shift of GIH and

PJL populations away from the other SL and SAS

populations and toward the CEU population, observed

on PCA (Fig. 2b and d and Figure, Supplemental digital

content 6, http://links.lww.com/FPC/A920). Collectively,

the evidence from FST, PCA, and STRUCTURE ana-

lyses indicates that there is high similarity among SL

populations and between the SL population and other

SAS populations, including INS from Singapore; how-

ever, the SL population is genetically distinct from CHS,

MAS, and CEU populations.

Next, we examined the SNPs with the highest level of

differentiation within the SL populations, and between

the SL population and other populations (see Tables,

Supplemental digital contents 7–10, http://links.lww.com/
FPC/A921, http://links.lww.com/FPC/A922, http://links.lww.
com/FPC/A923, http://links.lww.com/FPC/A924). Among

the most differentiated SNPs across the main population

groups and between SL and SGVP populations are

VKORC1 SNPs, associated with warfarin dose (Fig. 5c and

d). However, within the SL and SAS populations, the

MAFs of these SNPs were similar. Instead, SNPs in

SLC13A3, ERCC5, HLA-E, ALDH3B1, and PCMT1, and
MCM6, SFTA2, CYP4F12, and ACBG1 were the most

differentiated within SL and between SL and SAS

populations (Fig. 5a and b). Within the SL populations,

SLC10A2 rs2301159, associated with increased risk for

docetaxel toxicity, and ERCC1 rs3212986, associated with

protection from cisplatin-induced nephrotoxicity, were

the most differentiated (see Table, Supplemental digital

content 7, http://links.lww.com/FPC/A921).
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Pharmacogenomic diversity at PharmGKB clinically
annotated SNPs
We next examined differentiation at clinically annotated

SNPs from PharmGKB [21] (evidence level 1–2B) to

determine differences in the frequencies of these key

pharmacogenomic gene variants (Table 1). Across all

populations, the clinically annotated variants with the

greatest differentiation were in VKORC1, associated with

warfarin dose requirement (rs9923231, rs9934438,

rs17708472, rs2359612, rs2884737, FST= 0.053–0.359).

ABCG2 rs2231142 and SOD2 rs4880, associated with

increased statin exposure and increased cyclopho-

sphamide efficacy, respectively, also displayed moderate

differentiation across the populations (FST= 0.063 and

0.082, respectively).

We also observed lower, but potentially clinically rele-

vant, differentiation at VKORC1 SNPs within the SL

populations. For example, rs9923231 was nearly twice as

common in Moors (MAF 0.132) and Sinhalese (MAF

0.102) compared with SL Tamils (MAF 0.056; Table 1).

There were also notable differences within the SL

populations at ERCC1 rs3212986 and UGT1A1 rs4148323,
associated with reduced platinum drug-induced nephro-

toxicity and increased risk for irinotecan-induced neu-

tropenia, respectively (Table 1). The MAF of these

variants differed by 1–7-fold within the SL populations,

with MAF of ERCC1 rs3212986 ranging from 0.181 (SL

Tamils) to 0.382 (Moors) and MAF of UGT1A1 rs4148323
ranging from 0.007 (Moors) to 0.051 (Sinhalese).

Comparing SL/SAS/INS and CHS/MAS, CYP4F2

Fig. 1
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rs2108622 (associated with lower warfarin dose require-

ments) and ADD1 rs4961 (associated with increased

response to furosemide and spironolactone) showed

substantial differences (MAFs in SL/SAS/INS vs. CHS/

MAS ∼ 0.43 vs. ∼ 0.20 for rs2108622, and ∼ 0.19 vs. ∼ 0.39

for rs4961).

To gain further insight into how these results may

influence the clinical use of warfarin in the SL popula-

tions, we examined genotype combinations of VKORC1
rs9923231, CYP2C9*2, and CYP2C9*3 variants, which

collectively explain ∼ 40% of interindividual variation in

warfarin dose requirement [24]. About 60% of SL

populations carries the GG *1/*1 genotype, similar to the

SAS and INS populations (Fig. 6b). According to FDA-

recommended genotype-guided dosing, more than 75%

of SL populations is predicted to require a high starting

dose of warfarin (5–7 mg/day), compared with 55% of

CEU and only 16% of CHS (Fig. 6a). The overall

distribution of genotype combinations in SL is similar to

that in SL/SAS/INS, with ∼ 25% of these populations

requiring low to mid warfarin doses. Given the sub-

stantial proportion of individuals requiring a high dose,

these data suggest that use of a standard fixed dose for

these populations is likely to be suboptimal.

We carried out a similar analysis to predict response to

clopidogrel on the basis of the presence of CYP2C19*2
and *3 variants. Individuals who carry these low-activity

variants have reduced conversion of clopidogrel to its

active metabolite and an increased risk for stent throm-

bosis after percutaneous coronary intervention [25–30].

We used the CYP2C19 allele frequency to estimate the

proportion of individuals in each population who would

be expected to have a good or poor response to

clopidogrel (Fig. 7), according to the recommendations

from the Clinical Pharmacogenetics Implementation

Consortium guidelines [31]. On the basis of the predicted

Fig. 2
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CYP2C19 phenotype, we observed a nearly two-fold

difference in the proportion of good responders within

the SL populations, ranging from 24% among Sinhalese

to 45% among Moors. In all SL populations, the pro-

portion of good responders was substantially lower than

that among CEU (76%; Fig. 7a). These suggest that a

majority of SL patients would be expected to have a poor

response to clopidogrel, and conversely, that the diag-

nostic yield of pharmacogenetic testing for CYP2C19 loss-
of-function variants in this population would be high.

Discussion
We explored the pharmacogenomic diversity of the three

major SL ethnic groups and compared them with other

South Asian, South East Asian, and European popula-

tions. To our knowledge, this is the first study of phar-

macogenomic diversity of SL population groups, as well

as the most comprehensive population genetic study of

these groups to date. Our results point to a high overall

degree of similarity at pharmacogenomic loci within SL

populations and with the SAS populations.

On a global level, we observed the greatest degree of

differentiation at variants in VKORC1, ADH (alcohol

dehydrogenase) genes, SLC (solute carrier family), and

ABC (ATP-binding cassette) transporters. In most cases,

the differentiation was driven by differences with the

CHS, MAS, and CEU populations (see Tables,

Supplemental digital content 9, http://links.lww.com/FPC/
A923 and Supplemental digital content 10, http://links.
lww.com/FPC/A924). This is consistent with previous data

that have also indicated that variants in these genes are

the most differentiated among CHS, MAS, INS, and

Fig. 3
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CEU populations [5]. This finding has immediate rele-

vance for warfarin pharmacogenomics in SLs. On the

basis of the genotype combination of the three estab-

lished VKORC1 and CYP2C9 alleles, we estimate that

more than 75% of SLs would require high warfarin doses,

and about 20% would require an intermediate dose (Fig. 6a).

Recent clinical trials of genotype-guided dosing of warfarin

have suggested that this strategy is superior to standard dosing

in some populations [33], but they have also suggested that

the benefit may differ across population groups [34]. On the

basis of the genetic diversity at the VKORC1 and CYP2C9 loci

in SAS populations, our data suggest that a fixed dose strategy

is unlikely to be optimal and highlight the need for studies

comparing fixed and genotype-guided warfarin dosing in SL

or other South Asian populations.

Between the SL and SAS populations, few SNPs displayed

moderate or greater levels of differentiation (MCM6
rs4988235, SFTA2 rs3131787, CYP4F12 rs609290, ABCG1
rs225434). Differentiation at these loci was driven primarily

by differences with PJL and GIH populations (see Table,

Supplemental digital content 8, http://links.lww.com/FPC/
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A922). More SNPs were moderately differentiated

between SL and GIH or PJL populations than between

SL and BEB, STU, or ITU, a pattern that mirrors the

subtle shift of GIH and PJL away from the other SL and

SAS populations on the PCA plots (Fig. 2 and Figure,

Supplemental digital content 6, http://links.lww.com/FPC/
A920). However, most of these highly differentiated SNPs

have not been assigned a high level of evidence for asso-

ciation with drug response, and the implication of these

differences therefore requires future research. Although

the SL populations themselves generally showed high

levels of similarity at pharmacogenomic alleles, two clini-

cally important SNPs showed moderate or high levels of

differentiation. These include SLC10A2 rs2301159, which

is associated with an increased risk for docetaxel toxicity

and was twice as common in SL Tamils and Moors com-

pared with Sinhalese (MAF=0.264, 0.237, and 0.092,

respectively), and ERCC1 rs3212986, which is associated

with a reduced risk for cisplatin nephrotoxicity and was

nearly twice as common in Sinhalese and Moors compared

with SL Tamils (MAF= 0.306, 0.382, and 0.181, respec-

tively; see Table, Supplemental digital content 7, http://
links.lww.com/FPC/A921).

Correlating MAFs of risk variants with their associated

ADRs would offer empirical evidence of the validity of

inferring response and ADR risk from frequencies of risk

variants. SL populations are reported to have high rates of

cisplatin-induced nephrotoxicity [35] compared with the

rates reported in European populations [35,36].

However, to the best of our knowledge, no previous

study has examined differences in the rates of cisplatin-

induced nephrotoxicity within SL population groups.
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Future studies exploring cisplatin ADR risk within SL

populations are warranted.

Asian populations are generally thought to be more

sensitive to docetaxel than Caucasians, requiring lower

doses and experiencing higher rates of febrile neu-

tropenia (FN) [37]. The reported prevalence of

docetaxel-induced FN in Indian populations (3–39%) is

similar to that reported in Chinese populations (2–42%)

and is higher than that reported in European populations

(5–23%), showing rough correspondence to the fre-

quency of the rs2301159 risk allele in these three popu-

lation groups (0.25, 0.295, and 0.182 in INS, CHS, and

CEU, respectively; see Table, Supplemental digital

content 11, http://links.lww.com/FPC/A925). On the basis

on the observed differentiation of rs2301159 within SL

populations, we hypothesize that the Tamil and Moor

populations would be at a higher risk for docetaxel-

induced FN compared with the Sinhalese population.

Clopidogrel has been identified as a high-priority drug for

clinical implementation of pharmacogenomic testing

[38]. Pharmacogenomic implementation guidelines

recommend that carriers of the CYP2C19 loss-of-function

alleles *2 and *3 receive an alternative antiplatelet drug,

for example, prasugrel or ticagrelor [31]. We observed

that the frequency of *2 in the SL populations was

31–45%, with the highest frequency among Sinhalese.

This is comparatively higher than a MAF of only 13% in

the CEU population (Table 1). Collectively, more than

60% of SL individuals had a non-*1/*1 genotype, com-

pared with less than 25% of CEU individuals (Fig. 7b).

Consistent with these observations, South Asians have

been reported to have higher residual platelet reactivity

(suggesting poorer response) after receiving clopidogrel

compared with Caucasians [39]. Although this suggests a

correspondence between the proximal pharmacodynamic

effects of clopidogrel and the CYP2C19 phenotype in

South Asian populations, additional studies will be

necessary to determine whether this leads to adverse

cardiovascular outcomes in these populations. These data

provide impetus to incorporate CYP2C19 genotyping into

antiplatelet drug treating strategies in SL, as the strategy

of using only clopidogrel is predicted to result in a sub-

optimal antiplatelet effect in the majority of the popula-

tion. Additional training and capacity-building in

genomics may aid in the clinical translation of these

results [40].

There are several limitations to our study. First, clinical

information on drug responses in SL ethnic groups is very

limited. Future studies will be necessary to better

understand how the differences in allele frequency that

we have observed contribute to differences in drug

response in these populations. Second, we did not per-

form high-resolution typing of HLA alleles as part of this

study. Future focused studies on the frequency of

important HLA alleles in the SL populations are

warranted. Finally, the genotyping-based approach that

we undertook provides important data on a large number

of alleles, but it does not allow discovery of novel variants

that may be unique to the SL populations. Future

sequencing-based studies to examine novel and rare

variants in the SL populations will complement the data

that we have generated.

Conclusion
We have surveyed more than 7000 variants in ADME

genes in the three major SL ethnic groups and compared

them with other South Asian, South East Asian, and

European populations. Our results show, for the first

time, an overall high level of genetic similarity among the

major SL ethnic groups, as well as between SL and the

SAS populations. We also identified specific variants that

are highly differentiated between the SL and CHS/MAS

and CEU populations. These results extend our under-

standing of pharmacogenomic diversity to the South

Asian populations, and this study is the largest population

genetic study of the SL population to date. These data

have implications for the clinical use of pharmacoge-

nomic testing in SL, and provide a resource for future

clinical, regulatory, and research activities in pharmaco-

genomics in these populations.
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