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1  |  INTRODUC TION

Oxygen is a fundamental element for all living organisms and pro-
vides energy by taking part in metabolism.1 Hypoxia refers to oxy-
gen levels lower than the normal value in the body or environment, 
which causes a series of different physiological and pathological re-
actions.2 The brain is the most sensitive organ to oxygen fluctuation. 
In particular, severe hypoxia usually causes acute and chronic brain 

damage; however, moderate hypoxia, such as levels used in inter-
mittent hypoxia (IH) treatment, shows neuroprotective effects in 
various central nervous system (CNS) disease models.3,4 Therefore, 
targeting hypoxia may be a potential therapeutic strategy for neuro-
logical diseases.5,6 In this review, we focus on the roles and mecha-
nisms of hypoxia in stem cells related to CNS, including embryonic 
stem cells (ESCs) and neuronal stem cells (NSCs), and also discuss the 
research progress of hypoxia in stem cell therapy of CNS diseases.
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Abstract
Hypoxia is involved in the regulation of various cell functions in the body, including the 
regulation of stem cells. The hypoxic microenvironment is indispensable from embry-
onic development to the regeneration and repair of adult cells. In addition to embry-
onic stem cells, which need to maintain their self-renewal properties and pluripotency 
in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also 
exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal 
dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can 
promote the proliferation, migration, and maturation of NSCs in these regions. Also, 
because most neurons in the brain are non-regenerative, stem cell transplantation is 
considered as a promising strategy for treating central nervous system (CNS) diseases. 
Hypoxic treatment also increases the effectiveness of stem cell therapy. In this re-
view, we firstly describe the role of hypoxia in different stem cells, such as embryonic 
stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-
treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and 
mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult 
proliferation of other cells in the CNS.
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2  |  HYPOXIA RESPONSE

The body can respond to oxygen fluctuations through a series of 
molecular mechanisms, of which hypoxia-inducing factors (HIFs) 
play a key role.7 HIF-1, composed of HIF-1α subunit and HIF-1β 
subunit, is the most important transcription factor in response to 
hypoxia in the brain. Under normoxic conditions, the HIF-1α subu-
nit can be hydroxylated by proline hydroxylase, after which it binds 
with Von Hippel–Lindau complex to be ubiquitinated and degraded 
through proteasomes. Under hypoxia conditions, however, HIF-1α 
cannot be degraded, but combines with HIF-1β and translocates 
to the nucleus, promoting the transcriptional activation of multiple 
downstream hypoxia-related genes, including vascular endothelial 
growth factor (VEGF), erythropoietin (EPO), glucose transporter 1, 
and more than 100 other genes.8

3  |  HYPOXIA AND STEM CELL S

Stem cells possess self-renewal activities and multipotency, char-
acteristics that tend to be maintained under hypoxic microenviron-
ments.9 HIF signaling is a primary modulator for cellular metabolism 
in stem cells to maintain their undifferentiated status and pluripo-
tent potential.10 In particular, stem cell niches usually exist in a hy-
poxic environment; for example, the oxygen level of the ESC niche 
is 2%–8%, and that of neural stem cells is 1%–8%.11 Hypoxia also 
maintains stem cell pluripotency and improves survival.12 In brief, 
hypoxia determines the fate of both embryonic and adult stem cells, 
as well as induced pluripotent stem cells (iPSCs) in vitro.13

3.1  |  Hypoxia and ESCs

Physiological hypoxia plays an important role in embryonic devel-
opment and is involved in angiogenesis and blood flow regulation 
neural development, among others.14 Therefore, hypoxia treatment 
is thought to be beneficial to the culture of ESCs. In vitro experi-
ments have shown that a hypoxic environment promotes stem cell 
survival; for example, 4% O2 maintains self-renewal characteristics 
and limits the spontaneous differentiation of human ESCs (hESCs).15 
Furthermore, 2%–5% O2 was shown to increase the total cell num-
ber approximately twofold compared with 20% O2 in mouse ESC 
cultures.16 Hypoxia was also found to facilitate the differentiation 
of ESCs into nerve cells. Under physiological hypoxic conditions, 
mouse ESCs were induced to differentiate into neural progenitor 
cells (NPCs), which were similar to mouse brain-derived NSCs in 
terms of proliferation and self-renewal ability, gene expression pro-
file, and pluripotency.17 In addition, hypoxia stimulation promoted 
ESCs to differentiate into nerve cells but did not change the cell fate; 
early passaged ESCs tended to give rise to neurons, whereas late-
passaged ESCs tended to give rise to glial cells.18

Critical signaling molecules are involved in the regulation of 
ESCs under hypoxic conditions. Specifically, hypoxia was shown to 

promote pluripotency of hESCs and maintain their self-renewal char-
acters by promoting Notch activation.19 Hypoxia was also shown to 
regulate self-renewal of hESCs through HIF-2α and glycolytic sen-
sors C-terminal binding proteins.20 Hypoxic preconditioning en-
hanced hESC neural differentiation and cell survival by upregulation 
of HIF-1α and HIF-2α signaling.21 In addition to HIF-mediated sig-
naling, hypoxia also modulates ESCs via mitogen-activated protein 
kinase (MAPK)/extracellular regulated protein kinase signaling.22 
Taken together, these findings suggest that hypoxia is necessary to 
maintain the pluripotency and self-renewal capacity of hESCs.

3.2  |  Hypoxia and NSCs and NPCs

Similar to ESCs, oxygen concentration is also involved in the regula-
tion of NSCs and NPCs. NSCs and NPCs can self-renew and gen-
erate terminally differentiated nerve cells that integrate into the 
neural circuitry and further contribute to the regulation of neurolog-
ical function throughout life.23 During early cortical development, 
the presence of HIF-1α prevents NSCs from producing differenti-
ated progeny.24,25 Furthermore, during embryonic neural develop-
ment, the effects of hypoxia on NSCs are temporally regulated. 
Specifically, hypoxia inhibits NSC differentiation and maintains their 
undifferentiated state during early development, whereas it induces 
neural differentiation at later stages.26 Recently, NSC-based treat-
ment was shown to be a promising therapeutic strategy in hypoxic-
ischemic brain injury, which is an important cause of morbidity and 
mortality in adults and newborns. The above data indicate that hy-
poxia promotes the differentiation and development of iPSCs, which 
may have a promising therapeutic outcome in CNS diseases.

Multiple signaling pathways are involved in the regulation of 
NSCs by hypoxia. Hypoxia was shown to increase the proliferation 
of NSCs by upregulating HIF-1α expression and activating the Wnt/
β-catenin pathway.27 Similarly, hypoxia-induced HIF-1α expression 
prevented NSCs from premature neuronal differentiation by acti-
vating neural repressor Hes1, which is independent of Notch sig-
naling.28 Hypoxia also upregulated the expression of several HIF-1α 
downstream proteins, including VEGF.29 In addition, hypoxia pro-
moted cell proliferation by increasing miR-21 expression in NSCs; 
an action possibly mediated by phosphatidylinositol 3-kinase (PI3K) 
signaling pathway activation.30 Finally, hypoxic exposure was found 
to promote proliferation of NPCs via PI3K/protein kinase B (AKT)-
dependent glycogen synthase kinase-3β signaling.31

Hypoxia and ischemia triggered NPC proliferation by upregulat-
ing complex 1-chromobox7 through HIF-1α activation.32 Ischemia 
and hypoxia by unilateral carotid occlusion also promoted migra-
tion and proliferation of NPCs through chemokine upregulation.33 
RNA-binding protein RBM3 was found to be highly upregulated in 
response to hypoxia, which in turn increased proliferation of pri-
mary NSCs.34 In addition, gene set enrichment analysis identified 
the calcium-regulated transcription factor NFATc4, which is signifi-
cantly upregulated in NSCs after hypoxia treatment, as a potential 
candidate in the regulation of hypoxic NSC functions.35 Therefore, 
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hypoxia plays an important role in the development and differenti-
ation of NSCs and NPCs and suggests that understanding the mo-
lecular mechanism of hypoxia-mediated behavioral changes in NSCs 
and NPCs is helpful to optimize stem cell therapies for neurological 
diseases.36,37

3.3  |  Hypoxia and iPSCs

Advances in human iPSC technology have resulted in the develop-
ment of new drug candidates for many CNS diseases by capturing 
patient heterogeneity. Hypoxia may enhance iPSC generation and 
maintenance. Specifically, iPSC generation has been shown to be 
poor under normoxic conditions; however, under mildly hypoxic 
conditions (5% O2), iPSC generation and reprogramming efficiency 
increased.38 The pluripotency of iPSCs is a prerequisite for their 
differentiation and expansion, and hypoxic conditions help to main-
tain the pluripotency of iPSCs.39 In addition, hypoxia was shown 
to promote iPSCs to differentiate into specific cell types, such as 
endothelial cells (ECs),40,41 neurons,42,43 and cardiomyocytes.44 
HIF-1α signaling is critical for iPSC pluripotency and lineage differ-
entiation.45 In addition, FGFR1-induced activation of PI3K/AKT and 
MAPK signaling was also involved in mild hypoxia-mediated mainte-
nance of iPSC pluripotency.46

3.4  |  Hypoxia and stem cell treatment

Due to the poor regeneration capacity of the nervous system, stem 
cell transplantation therapy is a promising strategy for CNS disease 
treatment.47 Mesenchymal stromal cells (MSCs) are a group of cell 
types commonly used in stem cell therapy.48,49 These cells are dis-
tributed in various tissues, such as bone marrow, umbilical cord, 
nasal mucosa, and fat; furthermore, their pluripotency is largely 
regulated by hypoxia.50 Hypoxia has regulatory effects on cell vital-
ity and repair effects on cell function. MSCs cultured under hypoxic 
conditions upregulated several stem cell markers and promoted cell 
proliferation.51,52 Exosomes derived from hypoxia-treated MSCs 
promoted functional behavioral recovery in a spinal cord injury 
mouse model by shifting microglial polarization from the M1 to M2 
phenotype.53

Bone MSCs (BMSCs) are commonly used stem cells, as they 
have been shown to develop into neurons and glia in vitro. Hypoxic 
preconditioning of BMSCs enhanced generation of NPCs54 and the 
secretion of bioactive factors.55 Interestingly, a combination of hy-
poxia and modest inflammatory stimuli promoted the migration of 
BMSCs.56  Mechanically, hypoxia preconditioning enhanced BMSC 
survival and reinforced their regenerative properties by upregu-
lating HIF-1α and various trophic/growth factors, including brain-
derived neurotrophic factor (BDNF), VEGF, and EPO. Hypoxia also 
promoted the proliferation and migration of umbilical cord blood-
derived human MSCs via the HIF-1α/FASN/mTORC1 axis.57 Hypoxia 
preconditioning enhanced BMSC survival after transplantation by 

activating HIF-1α in a spinal cord injury model. Transplantation of 
these hypoxia pretreated BMSCs enhanced neurogenesis and angio-
genesis in cerebral ischemia rats.58 In addition, hypoxic conditions 
were also shown to affect other types of stem cells, for example, 
the proliferation of MSCs in adipose tissue of livestock and their 
differentiation and transformation into pluripotent stem cells.59 
Furthermore, treatment with human amnion epithelial cells could al-
leviate hypoxic-ischemic injury in the perinatal brain.60 Hypoxic pre-
conditioning increased grafted-cell survival of NSCs and improved 
therapeutic effects of NSC transplantation in a hemorrhagic stroke 
mouse model.61 Finally, hypoxia-preconditioned olfactory mucosa 
MSCs were shown to inhibit the death of microglia after cerebral 
ischemia/reperfusion insult via HIF-1α activation.62

3.5  |  Hypoxia and adult neurogenesis

Neural stem cells exist not only in the developing mammalian nerv-
ous system but also in the adult nervous system. Among them, the 
lateral ventricle subventricular zone (SVZ) and hippocampal dentate 
gyrus (DG) are recognized as the most concentrated regions of NSCs 
in the adult brain.63 Under certain conditions, NSCs can differenti-
ate into neurons to participate in the repair process of nerve func-
tion, which is called neurogenesis.64 The biggest difference between 
the two regions is that DG NSCs cannot be transported over a long 
distance, whereas those of the SVZ can; therefore, SVZ NSCs are 
a better model for studying neural cell value-added migration and 
differentiation.65 Similar to embryonic neurodevelopment, in adult 
mammals, moderate hypoxia can also promote neurogenesis both in 
the SVZ and DG.66

3.6  |  Hypoxia and SVZ neurogenesis

Hypoxia is involved in SVZ neurogenesis throughout life (Figure 1). 
In fact, most of the neuroblasts produced from SVZ NSCs migrate a 
long distance to the olfactory bulb where they differentiate into local 
neurons.67 Hypoxia and hypoxic preconditioning were shown to en-
hance the regenerative capacity of neural progenitors in the perinatal 
SVZ region.68,69 Furthermore, perinatal asphyxia promoted cell prolif-
eration and neurogenesis in the SVZ, delayed cell death and affected 
the neural circuits of the basal ganglia and hippocampus, although the 
mechanism remains to be elucidated.70 Neonatal hypoxic-ischemic in-
jury also promoted SVZ neurogenesis.71 IH enhanced expansion and 
differentiation of NPCs in the SVZ.72 Creating an endogenous hypoxic 
environment, such as during intense exercise, restored the normal cell 
cycle length and quiescent phase of stem cells and neuroblasts by 
promoting the proliferation of adult SVZ stem cells of mice.63

At the molecular level, HIF-1α signaling is necessary for the 
maintenance of NSCs and vascular stability in the SVZ. In partic-
ular, genetic inactivation of HIF-1α results in gradual loss of NSCs 
in the adult SVZ.73 As hypoxia has been shown to upregulate the 
expression of HIF-1α and VEGF and to promote the regulation of cell 
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division in the SVZ,74 it may also improve the prognosis of newborns 
after ischemia and hypoxia.75 H19, a long noncoding RNA, was sig-
nificantly upregulated during the hypoxic response of SVZ NSCs in a 
focal cerebral ischemia rat model.76

3.7  |  Hypoxia and hippocampal DG neurogenesis

The hippocampus is characterized by the presence of lifelong 
neurogenesis (Figure  2).77,78 Specifically, newborn neurons in the 

F I G U R E  1  Hypoxia involves 
subventricular zone (SVZ) neurogenesis. 
Neural stem cell (NSC) in lateral ventricle 
(LV) SVZ could migrate a long distance 
to the olfactory bulb (OB) through 
rostral migratory stream (RMS). Hypoxia 
promotes SVZ neurogenesis in several 
stages, including proliferation, migration, 
and differentiation

F I G U R E  2  Hypoxia involves hippocampal neurogenesis. Hypoxia promotes hippocampal neurogenesis in various stages, including self-
renewal, proliferation, differentiation, and maturation. Several mediators or pathways are involved in these processes, such as HIF-1α, brain-
derived neurotrophic factor (BDNF)/tryrosine receptor kinase B (TrkB), erythropoietin (EPO)/EPO receptor (EPOR), and so on. AKT, protein 
kinase B; PI3K, phosphatidylinositol 3-kinase
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hippocampus are mainly generated by dentate granule cells, which 
then integrate into the neural circuit and maintain hippocampal 
function.79 Many adult newborn cells die during early differentiation 
in the hippocampus, with oxidative damage being a critical factor.80 
Similar to SVZ NSCs, hypoxia also determines the survival and pro-
liferation of newborn cells derived from the DG.81,82

Adult hippocampal neurogenesis is critical for cognitive func-
tion, especially during aging or after brain injury, such as ischemia.83 
Newborn hippocampal neurons contribute to memory performance 
by establishing functional synapses with target cells.84 Hippocampal 
neurogenesis in DG improve cognitive and emotional remodeling 
in chronic unpredictable mild stress-induced rats.85 A moderate 
hypoxic treatment was shown to enhance adult hippocampal neu-
rogenesis both in vitro and in vivo.4,86 Furthermore, mild hypoxic 
conditions increased NSCs proliferation, promoted newborn neu-
ron survival and migration, and contributed to the maturation of 
hippocampal neurons.81,87 Therefore, activation of neurogenesis by 
hypoxic treatment may be a potential therapeutical strategy for var-
ious CNS diseases.88

Chronic hypoxia (10% O2) treatment was shown to stimulate hip-
pocampal neurogenesis by activating the Wnt/β-catenin signaling 
pathway in an Alzheimer's disease mouse model.89 Chronic inter-
mittent hypobaric hypoxia also rescued spatial and object memory 
deficits by promoting hippocampal neurogenesis and synaptic plas-
ticity via the Wnt/β-catenin pathway in pilocarpine-treated epileptic 
rats.90 IH, a type of mild hypoxia strategy, is thought to have neuro-
protective effects in many types of CNS diseases.91 A study showed 
that IH rescued spatial learning and prevented memory impairment 
by inducing hippocampal neurogenesis.92 IH was also found to al-
leviate long-term memory impairment induced by ischemic injury 
by increasing hippocampal neurogenesis and synaptogenesis via 
BDNF/PI3K/AKT signaling.92 IH enhanced NSC proliferation, new-
born neurons survival, and dendritic spine morphogenesis in the DG 
by activating Notch1, whereas Notch1 deficiency inhibited hippo-
campal neurogenesis induced by IH.87 HIF-1α–Notch signaling is also 
involved in increased neurogenesis in epilepsy rats.93 Consecutive 
mild hypoxia exposure for 28 days was shown to contribute to hip-
pocampal neurogenesis and rescue cognitive deficits by activating 
Notch1 and Hes1 signaling in epileptic rats.94

Brain-derived neurotrophic factor is a neurotrophic factor involved 
in neurogenesis and neuroplasticity.95,96 Severe hypoxia was shown to 
inhibit synaptic plasticity, which contributed to cell death and impaired 
neurogenesis.97 However, modest episodes of hypoxia were found to 
exert neuroprotective effects by triggering adaptation of cells.98,99 
Enhancement of BDNF expression is regarded as a recognized protec-
tive mechanism of hypoxia-related treatment, such as IH. Specifically, 
IH improved cognitive function and depressed anxiety by enhancing 
BDNF expression in the hippocampus of mice.4 Furthermore, IH was 
found to produce antidepressant-like effects by targeting BDNF-
tyrosine receptor kinase B signaling in rats.81 In addition, IH promoted 
serotonin-dependent BDNF synthesis and improved synaptic plas-
ticity.100 Post-ischemia IH intervention increased synaptogenesis via 
upregulation of BDNF in neurons92 and protected vulnerable neurons 

from hypoxia/ischemia-induced injury.101 Meanwhile, enhancing 
BDNF secretion from brain ECs into the cerebral microvasculature 
has also been considered as a potential therapeutic target of IH treat-
ment.102 IH training combined with physical exercise promoted the 
proliferation of endogenous neural progenitors and further enhanced 
BDNF expression in the adult hippocampus, eventually leading to an 
increased number of newborn neurons.103 Taken together, these re-
sults suggest that moderate IH treatment exerts neuroprotective ef-
fects by promoting BDNF expression and secretion.

4  |  HYPOXIA AND NON-NEURONAL CELL 
PROLIFER ATION IN THE CNS

Hypoxic responses in the CNS are not limited to stem cell prolif-
eration; other cells also undergo changes in this hypoxic environ-
ment,104 such as vascular ECs105 and glial cells,106 among others. 
Hypoxia-induced changes can promote metabolism, which is condu-
cive to energy production and waste excretion in the body.107 At the 
same time, hypoxic conditions can provide energy for signal trans-
mission, such as neurogenesis and stem cell proliferation, which are 
significant for CNS subordinate feedback loops that help to adjust 
the subordinate to initiate corresponding strategies through the in-
tegration of information; the CNS in turn sends signals to instruct 
the subordinate to initiate the corresponding changes.108 Glial cells 
are significant components of the CNS and, as they do not conduct 
electrical impulses like neurons, have long been considered to play a 
supporting role. It is only in recent years that scientists have begun 
to realize the regulatory role of glial cells in the brain.109 In the fol-
lowing sections, we discuss the effects of hypoxia on glial cells and 
ECs from the perspective of cell proliferation.

4.1  |  Hypoxia and astrocytes

Astrocytes are the most widely distributed type of cells in the mam-
malian brain and are also the largest type of glial cells.110 They are star-
shaped with many long and branched protrusions from the cell body, 
which stretch and fill the space between neuronal cell bodies and their 
projections, helping to support and separate neurons.111 In particu-
lar, because astrocytes are involved in the structural and functional 
interface of cerebral circulation and neuronal networks, they play an 
important role in the resistance to hypoxia-induced brain damage.112

Hypoxia can stimulate astrocytes to activate and proliferate to 
help maintain neuronal networks and cerebral microcirculation.113 
Astrocytes are able to regulate cerebral blood flow to maintain con-
stant PO2; furthermore, local astrocytes are also involved in the pro-
tective effect of hypoxia-induced ischemic nerve injury.112 Hypoxia 
can induce the proliferation of astrocytes via various pathways, such 
as HIF114 and Notch.115 Hypoxia-induced astrocyte proliferation is 
involved in the formation of glial scarring following ischemic hypoxic 
brain injury.116,117 Hypoxic preconditioning can upregulate glucose 
transporter levels and activity in astrocytes during acute hypoxia, 
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increasing glucose uptake and promoting cell glycolysis and lactic 
acid production, which provide energy for neuronal activity.118–120

4.2  |  Hypoxia and microglia

Microglia are considered to be the largest population of local im-
mune cells in the CNS and are involved in the removal of damaged 
neurons, plaques, and infectious substances.121,122 However, micro-
glia play a “double-edged sword” role in CNS diseases, as studies 
have shown that abnormal microglial activation is involved in the 
pathogenesis of neurodegenerative diseases, such as Parkinson's 
disease, multiple sclerosis, and Alzheimer's disease.123–125

Different degrees of hypoxic treatment have different effects 
on residential microglia or repopulated microglia; the underlying 
mechanisms remain obscure. In general, mild and short-term hypoxic 
stimulation activates resident microglia first,126–128 whereas stron-
ger continuous hypoxia induces microglia proliferation. Microglia are 
considered to be the final product of neural differentiation, a spe-
cial support cell that is very different from neurons, whereas recent 
studies suggested that some glial cells may act as primary progeni-
tors or NSCs.129 These glial cells could differentiate and proliferate 
under hypoxia stimulation and exert neuroprotective effects.104,130 
Specifically, hypoxia treatment produced mildly stressed microglia, 
which activated a feedback loop to regulate the increase in antiinflam-
matory factors, thus exerting a protective effect. Therefore, hypoxia 
treatment not only causes mild stress in microglia to modulate inflam-
matory responses but also stimulates the differentiation and prolifera-
tion of certain microglia to promote CNS recovery following an insult.

4.3  |  Hypoxia and oligodendrocytes

Oligodendrocytes, which are smaller than astrocytes, are widely dis-
tributed in the CNS. Their main function is to surround axons to form 

an insulating myelin structure and to further assist in the efficient 
transmission of bioelectrical signals.131

Oligodendrocyte progenitor cells (OPCs) are the main prolifera-
tive cells in the adult brain, which differentiate into myelinated oli-
godendrocytes during the CNS development.132 When the nervous 
system is damaged, especially myelin-related damage, OPCs differ-
entiate and proliferate to aide in repair.133,134 Hypoxia and HIF sig-
naling play an important role in stimulating OPCs differentiation.135 
HIF signaling activated-patient-derived iPSCs transplanted into the 
brain during the subacute phase of white matter stroke induced the 
proliferation and remyelination of endogenous oligodendrocyte pre-
cursors and promoted axonal budding and, thus, cognitive recovery 
effects.136 HIF-1α-induced oligodendrocyte lineage gene-1 expres-
sion promotes the growth of oligodendrocytes and triggers the re-
pair of hypoxic-induced neuronal myelin damage.137

4.4  |  Hypoxia and vascular ECs

Vascular proliferation refers to the formation of new blood ves-
sels by sprouting or intussusception from preexisting blood ves-
sels through the proliferation and migration of ECs.138 This process 
is critical for the transportation of oxygen and nutrients to cells 
through the blood, which in turn promotes tissue regeneration, de-
velopment, and repair.139 Recent evidence suggests that there may 
be an interaction or dependence between stroke-induced neuro-
genesis and angiogenesis. Ischemic stroke promotes neurogenesis 
through growth factors such as VEGF and improves the recovery 
of neurological function after stroke.140 VEGF increases the pro-
liferation of NSCs through the VEGF receptor 2 signaling pathway, 
promotes the migration of new cells, actively participates in the ini-
tial stage of neurogenesis, and reduces cognitive impairment after 
epilepsy.141 Vascular ECs play a significant role in regulating blood 
pressure and the balance of coagulation and anticoagulation, so as 
to maintain the normal flow of blood and the long-term patency of 

F I G U R E  3  Hypoxia promotes stem 
cell proliferation, differentiation, 
and survival. Hypoxia promotes the 
pluripotency, proliferation, and directed 
differentiation of embryonic stem cells 
(ESCs) and neural stem cells (NSCs) and 
helps induced pluripotent stem cells 
(iPSCs) to develop into different types 
of cells in vitro. Hypoxia is also involved 
in adult neurogenesis, angiogenesis, and 
gliogenesis. DG, dentate gyrus; LV, lateral 
ventricle; SVZ, subventricular zone
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blood vessels.142 VEGF is highly specific to vascular ECs and has 
important biological functions such as promoting the prolifera-
tion of ECs. VEGF is a downstream gene of HIF, and its expression 
is upregulated by hypoxic stimulation.143 In the developing brain, 
neurons expressing VEGF-A are closely linked to blood vessels, and 
miR-9 directly targets the transcription factors TLX and ONECUTs 
to regulate VEGF expression. Due to the dual role of miR-9 in the 
proliferation and angiogenesis of neural stem cells, the regulation of 
VEGF expression by miR-9 is of great research significance for the 
treatment of stem cell regeneration.144 Neurovascular unit (NVU) 
is a special cerebrovascular structure composed of ECs, neurons, 
pericytes, glial cells, and other cells; it plays an important role in 
maintaining brain function.145 At present, there are few studies on 
the relationship between hypoxia and NVU; in-depth and system-
atic researches on this field are of great significance for us to under-
stand the role of hypoxia-induced neurogenesis and angiogenesis in 
treatment of CNS diseases.

5  |  PERSPEC TIVES AND CONCLUSION

Hypoxia plays a significant role in the construction of the microen-
vironment and differentiation of NSCs and in the protection of neu-
rons after CNS injury. NSCs have the characteristics of self-renewal 
and the ability to differentiate into multiple cells and, as such, have 
broad application prospects in cell transplantation therapy.146 
Hypoxia was shown to enhance the directional differentiation of 
stem cells. Furthermore, hypoxia promoted ion human iPSCs to 
differentiate into NSCs by regulating the Wnt/β-catenin pathway. 
Together, these findings have important implications for potential 
therapeutic strategies for CNS diseases.147 At present, NSC trans-
plantation is a hot topic in the treatment of stroke,148 spinal cord 
injury,149 traumatic brain injury,150 and other CNS diseases. Indeed, 
NSCs were shown to induce the release of Mir-133b in BMSCs to 
promote the survival of neurons, thus further improving the thera-
peutic effect of NSC transplantation on cardiac arrest-induced 
brain injury.151 In recent years, hypoxia has been proven to induce 
stem cell differentiation, which indicates that hypoxia combined 
with stem cell therapy is not only a therapeutic target for ischemic 
stroke but also shows great potential for multiple therapeutic strat-
egies in other CNS diseases treatment. However, further studies are 
needed to understand the molecular mechanisms of hypoxia in the 
treatment of CNS diseases.152

In addition to CNS diseases, hypoxia combined with stem cell 
therapy can be applied to a variety of other diseases. Hypoxia pro-
moted human iPSCs to differentiate into neural crest cells, which 
produced functional EPO and induced hematopoietic progenitor 
cells differentiate into erythrocytes, thus exerting therapeutic ef-
fects in renal and nonrenal anemia.153 In addition, hypoxia may have 
a role in delaying senescence, and a previous study showed that the 
life span of mammalian primary cells increased under hypoxia con-
ditions.154 It has also been shown that hypoxia can induce MSCs to 

differentiate into tendon, which indicates that hypoxia combined 
with stem cell therapy could also be applicable to tendon injury 
intervention.155 Taken together, the results indicate that hypoxic 
treatment combined with stem cell therapy can be applied to com-
bat anemia, aging, tendon injury, and so on. However, the molecular 
mechanisms associated with this combined therapeutic approach 
are still unclear, which limits the application of these therapies.

In conclusion, hypoxia can induce many types of stem cells to 
proliferate, differentiate, and develop into specific cell types, such 
as neurons. Although its specific molecular mechanisms are not en-
tirely clear yet, hypoxic treatment has great therapeutic promise for 
the treatment of CNS diseases. Therefore, it is important to further 
investigate the molecular mechanisms of hypoxia-induced stem cell 
maintenance and optimize and promote the use of hypoxia in stem 
cell therapy associated with CNS diseases (Figure 3).
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