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Nature killer (NK) cells play a critical role in host innate and adaptive immune defense against viral infections and tumors. NK cells
are enriched in liver hematopoietic cells with unique NK repertories and functions to safeguard liver cells against hepatitis virus
infection or malignancy transformation. However, accumulating evidences were found that the NK cells were modulated by
liver diseases and liver cancers including hepatocellular carcinoma (HCC) and showed impaired functions failing to activate the
elimination of the viral-infected cells or tumor cells and were further involved in the pathogenesis of liver injury and
inflammation. The full characterization of circulation and intrahepatic NK cell phenotype and function in liver disease and liver
cancer has not only provided new insight into the disease pathogenesis but has also discovered new targets for developing new
NK cell-based therapeutic strategies. This review will discuss and summarize the NK cell phenotypic and functional changes in
liver disease and HCC, and the NK cell-based immunotherapy approaches and progresses for cancers including HCC will also
be reviewed.

1. Introduction

Liver is a vital organ in human; however, many people suf-
fered from liver disease and liver cancers, such as hepatocel-
lular carcinoma (HCC) which is one of the leading causes of
cancer-related death worldwide [1]. The incidence of several
major types of cancer, such as lung cancer, colon cancer, and
prostate cancer, decreased in recent decade. In contrast, the
incidence of HCC increased year by year [1]. In addition,
the mortality rate of HCC is similar to the incidence rate
which indicates that effective treatments for HCC are lacking
in clinic [2, 3]. The major risk factors causing HCC include
chronic viral infection, alcohol-related cirrhosis, and nonal-
coholic steatohepatitis (NASH) [4]. Chronic hepatitis B virus
(HBV) and hepatitis C virus (HCV) infections account for
most of HCC cases worldwide [4, 5]; however, NASH will
likely become a leading cause of HCC in the future, as the
successful HBV vaccination and effective anti-HCV drugs
will significantly reduce the number of chronic viral hepatitis
patient in the near future [6–8].

In recent decades, accumulating evidences supported that
the liver is also an immunological organ with predominant

innate immunity [9–11]. The liver is enriched with innate
immune cells including Kupffer cells, nature killer (NK) cells,
NK T cells, and γδ T cells. These cells are critical in host
defense against invading pathogens, liver injury and repair,
and tumor development [11]. NK cells have been originally
described as innate immune cells that are involved in the
first line of immune defense against viral infections and
tumors. In human, NK cells are phenotypically defined
as CD3−CD56+ large granular lymphocytes. Recently, a
population of liver-resident NK cells was defined as
CD49a+DX5− NK cells in mice. These cells originated
from T hepatic hematopoietic progenitors and showed
memory-like properties [12, 13]. The counterpart of these
liver-resident NK cells was also characterized in human
[14, 15]. The functions of NK cells are strictly regulated
by the balance of activating receptors and inhibitory recep-
tors interacting with target cells. These receptors can bind
to specific ligands; for example, the major histocompatibility
complex class (MHC-1) is expressed on healthy hepatocytes,
which interacts with inhibitory receptors on NK cells and
prevents the activation of NK cells. NK cells can directly
eradicate infected cells or tumor cells lacking of MHC-1
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molecule expression [16]. Once MHC-1 is downregulated by
viral infection or tumorigenesis on the hepatocytes, the NK
cells will loss the inhibitory signal controlled by the interac-
tion of the NK inhibitory receptor with the MHC-1 complex,
and the NK cells will be activated to kill infected hepatocytes.
In the liver, the percentage of NK cells in total lymphocytes is
around 5 times higher than the percentage in peripheral
blood (PB) or spleen; thus, the NK cells were considered to
play a very important role in the prevention of HCC and
therefore were considered a potential cell therapy resource
for the treatment of HCC [17].

In this review, we will summarize the phenotypes and
functions of NK cells in chronic viral hepatitis, alcoholic liver
disease, NASH, and HCC, and the progresses in NK cell-
based immunotherapy for cancers but not limited to HCC
are also reviewed.

2. NK Cells in Chronic Viral Hepatitis

Chronic viral hepatitis including HBV and HCV is the
leading cause for the development of liver cirrhosis and
subsequent HCC. HBV and HCV are pathogen replicate
and grow inside of hepatocytes which alter the surface
molecule for the interaction with NK cells. NK cells are
critical in the early immune response for the clearance of
virus. In chronic HBV and HCV patients, the percentage of
circulating PB NK cells was lower than that in healthy
controls [18–21]. In addition, the production of proinflam-
matory cytokines such as interferon gamma (IFN-γ) and
tumor necrosis factor-α (TNF-α) by NK cells was decreased
in chronic HBV and HCV patients [18, 19, 22]. However,
the impact of chronic viral infection on the cytolytic activity
of NK cells was controversial. Several reports showed that
NK cytolytic effector function was not changed [18, 20],
while other researchers observed impaired NK cytolytic
activity [23–25]. The differences between these studies were
probably due to the lack of standardized protocol and
reagents as well as the heterogeneity of patients. The pheno-
type of NK cells between HBV and HCV patients was
different, and NK cells showed an increase in the activating
receptor NKG2D expression and a decrease in inhibitory
receptor expression phenotype in chronic HCV patients,
while in chronic HBV patients, the percentage of activating
NKG2C+ NK cells increased and the inhibitory receptor
expression was normal [18]. The reduced percentage and
impaired function of NK cells in chronic viral hepatitis
patients were believed to contribute to the disease progres-
sion and the transformation of HCC.

3. NK Cells in Alcoholic Liver Disease

Alcoholic liver disease is caused by alcohol abuse and also
considered a major cause for cirrhosis and HCC, and around
half of liver cirrhosis was related to alcohol [26]. NK cells
were shown to play a critical role in resolving fibrosis by
directly killing activated hepatic stellate cells (HSCs) and
inducing HSC apoptosis by the production of IFN-γ
[27]. However, chronic exposure to alcohol reduced the
expression of NKG2D, tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL), and IFN-γ on NK
cells, which subsequently abrogated the antifibrotic effects
of NK cells [28, 29]. In addition, the suppression of NK
cell activation by chronic alcohol consumption was sup-
ported by several studies [30–32]. The elevation of NKG2D,
granzyme B, perforin, Fas ligand (FasL), TRAIL, and IFN-γ
expression in NK cells by poly I:C stimulation was blocked
in ethanol diet-fed mice [30]. More evidence and further
study are needed to confirm whether the impairment of NK
cell function by chronic alcohol consumption contributes to
the development of alcohol-related HCC.

4. NK Cells in NASH

Although the incidence of chronic viral hepatitis decreases
benefiting from the vaccinations and the advanced clinical
therapies, the incidence of HCC gradually increases in
developed countries. The nonalcoholic fatty liver disease
(NAFLD) and NASH become two of the leading causes of
HCC. However, there were only very limited studies about
the role of NK cells in the pathogenesis of NAFLD and
NASH. Less circulating PB NK cells and cytotoxic ability
were found in patients with obesity than in healthy controls
[33]. In contrast, another report showed that NK cell-
derived mediators such as NKG2D and TRAIL mRNA levels
were increased in NASH patients [34]. In a recent study,
DX5+ NKp46+ NK cells were found to be increased in a
NASH mouse model. Moreover, these NKp46+ NK cells
regulate M1/M2 polarization of liver macrophages and
inhibit the development of liver fibrosis in the NASH model
[35]. So, how the dysregulation of NK cells in NASH contrib-
utes to HCC development is still largely unknown.

5. NK Cells and HCC

As we discussed above, NK cells are enriched in healthy liver,
and they play critical roles in the surveillance of HCC. Similar
to chronic viral hepatitis, the number of peripheral NK cells,
especially CD56dimCD16+ NK cells, dramatically reduced in
HCC patients [36, 37]. The NK cell number in the liver
tumor area was also less than the NK cell number in the
nontumor area and showed impaired cytotoxic ability as well
as IFN-γ production [36, 38]. Moreover, the number of
infiltrating and CD56+ NK cells positively correlated with
HCC cancer cell apoptosis and patient survival [39, 40].
Several mechanisms had been proposed to explain the defect
of the NK cell number and function in HCC; for example,
infiltrated monocytes/macrophages in the peritumoral area
induced rapid activation of NK cells. These activated NK cells
then became exhausted and eventually died which was medi-
ated by the CD48/2B4 interactions [38]. Myeloid-derived
suppressor cells (MDSCs) may also interact with NK cells
in HCC patients. MDSCs from HCC patients directly
inhibited cytotoxicity and cytokine production of NK cells
in a contact-dependent manner [41]. In addition, fibroblasts
derived from HCC triggered NK cell dysfunction which was
mediated by indoleamine 2,3-dioxygenase (IDO) and prosta-
glandin E2 (PGE2) produced by the HCC cells, and these two
natural immunosuppressants downregulate activating NK
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receptors [42]. Taken together, multiple mechanisms were
involved in the NK cell malfunction, resulting in the develop-
ment of HCC, and the lack of the NK cell number and the
defects in function of NK cells facilitated the escape of tumor
cells from immune surveillance.

6. NK Cell-Based Immunotherapy for Cancer

As we discussed above, NK cells, as a type of innate immune
cell, are rapidly mobilized and serve as the first-line immune
responders against viral-infected cells and tumor cells; how-
ever, the NK cells usually become inhibited in many cancers
including HCC. Studies have been performed to explore NK
cell-based immunotherapy for cancers. These approaches
include either endogenous stimulation of the NK cells in
patients, such as administration of cytokines to activate NK
cells in cancer patients and treatment of the patients with
antibodies that target the NK inhibitor receptor or check-
point protein to activate NK cells or agonist of NK cell
activating receptors, or adoptive NK cell transfer to the
cancer patients. The therapeutic effects and progresses of
these approaches will be reviewed in this article.

6.1. Cytokine Treatment to Increase the Cytotoxicity of NK
Cells. Interleukin-2 (IL-2) was the first FDA-approved cyto-
kine to boost cytotoxicity of NK cells [43]. However, IL-2
can act not only on NK cells but also on T cells including reg-
ulatory T cells (Tregs) which may inhibit NK cell function.
Depletion of Tregs improved NK cell proliferation and out-
come in acute myeloid leukemia (AML) therapy [44]. Several
strategies were used to improve the efficiency of IL-2, includ-
ing a modified IL-2 called “super-2” which can activate NK
cells and cytotoxic CD8 T cells but not Tregs [45]. The fusion
protein of IL-2 and NKG2D ligand only activated on
NKG2D-expressing NK cells but on T cells [46].

Interleukin-15 (IL-15) is another cytokine to boost NK
activity and increase cytotoxicity of both NK cells and
CD8+ T cells without activating Tregs [47]. IL-15 treatment
significantly increased the number of NK cells in both mouse
model and human patients [48, 49]. Several IL-15 fusion
proteins or modified IL-15 have been developed to increase
their stability and efficiency [50–52]. The clinical trials for
the antitumor effect of IL-15, modified IL-15, and IL-15
fusion proteins are ongoing.

6.2. Antibodies to Modulate the NK Cytotoxic Function. Killer
cell immunoglobulin-like receptors (KIRs) are expressed on
NK cells and a minority of T cells [53]. KIRs bind with
MHC-1 molecules to control the cytotoxic function of these
immune cells. NK cells express both inhibitory KIR and
activating KIR. The balance between the NK KIR inhibitory
signal and KIR activating signal defines the NK effector
function. Tumor cell-derived MHC-1 or class I-like mole-
cules usually bind to KIR to inhibit NK cell activation [54].
Antibodies against inhibitory KIR showed promising effects
on promoting NK cell cytotoxicity in mouse models [55].
However, the clinical trial did not show favorable effects of
the KIR2D (an activating KIR receptor) antibody IPH2101
in multiple myeloma (MM) patients [56]. The lack of

efficiency of the KIR2D antibody IPH2101 was probably
due to the depletion of KIR2D-expressing NK cells by the
antibody. The combination of lenalidomide, an immuno-
modulatory drug that can activate NK cells, with IPH2101
showed promising beneficial effects on MM patients in a
phase I clinical trial [57].

Another NK receptor target to improve the cytotoxic
function of NK cells is NKG2A. NKG2A is expressed in NK
and CD8+ T cells as an inhibitor receptor. The heterodimer
of NKG2A and CD94 can bind to HLA-E which is usually
upregulated in tumor cells [54]; therefore, the tumor cells
escaped the NK by this inhibitory signal. An antibody
targeting NKG2A showed increased NK cell cytotoxicity
and reduced disease progression in human primary leukemia
or Epstein-Barr virus cell line-infused mouse model [58]. The
clinical trial is ongoing to evaluate its safety and efficiency for
cancer therapy.

Programmed cell death protein 1 (PD-1) is a well-known
immune checkpoint of T cells. It is a cell surface receptor; the
integration with its ligand on target cells suppresses the T cell
activation and plays an important role in downregulating the
immune system. Recently, the PD-1 receptor is found to be
highly expressed on PB and tumor-infiltrating NK cells from
patients with multiple myeloma (MM) and with digestive
cancers including esophageal, colorectal, biliary, gastric, and
liver cancers [59]. In the digestive cancer study, the investiga-
tors showed that PD-1 upregulation on NK cells correlated
with poorer disease outcome in esophageal and liver cancers.
In both the MM study and the digestive cancer study, PD-1-
blocking antibody could increase the NK cytotoxic function
in vitro targeting the tumor cell line or primary cancer cells.
Moreover, the PD-1 antibodies inhibited the tumor growth
in a xenograft mouse model [59]. These findings suggested
that PD-1 blockade might be an efficient strategy in NK
cell-based tumor immunotherapy.

In a recent study, Zhang et al. have found that the
checkpoint inhibitory receptor TIGIT (“T cell immunoglob-
ulin and immunoreceptor tyrosine-based inhibitory motif
domain”) was highly expressed on the exhausted tumor-
(colorectal cancer) associated infiltrating NK cells. Monoclo-
nal antibody-mediated blockade alone which targets TIGIT
or in combination with the antibody against the PD-1
ligand PD-L1 increased the antitumor activity of both
NK cells and T cells in preclinical mouse models and effi-
ciently delays tumor growth [60]. Therapeutic strategies
combining multiple blocking antibodies to treat cancer
patients with NK cell exhaustion may improve the therapeu-
tic efficacy, although the side effect of the antibody treatment
needs to be carefully evaluated.

6.3. Agonist of NK Cell Activating Receptors. NK cells express
a variety of activating receptors that play critical roles in reg-
ulating NK cell function. Major activating receptors on NK
cells were well studied such as NKG2D, NKp30, NKp44,
NKp46, and NKp80 [61]. Induction of NK cell activation to
release cytokines or direct kill target cells requires combina-
torial activating receptor synergy [62]. Activating receptor
downregulation is observed in cancer patients and was corre-
lated with poor disease outcomes [63–66]. It is believed that
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the tumor cells express a high soluble amount of activation
receptor ligand that induced the downregulation of activa-
tion receptors on NK cells in the patients [66–68]. Modulat-
ing NK cell activating receptor expression by neutralizing
their soluble ligand secreted by tumor cells in patients is a
potential clinical therapeutic strategy.

6.4. Adoptive Transfer of NK Cells. NK cell adoptive transfer
therapy requires the NK ex vivo expansion, in vivo long
persistence, maximal in vivo activity, and NK cell killing
specificity. The source of NK cells for adoptive transfer
therapy can be autologous or allogeneic PB NK cells, stem
cell-derived NK cells, and NK cell lines such as NK-92 and
KHYG-1. Fresh or expanded NK cells derived from patients
(autologous) failed to show improved clinical outcome in
several types of cancers [69, 70]. The reason was that these
transferred NK cells remained in circulation rather than in
tumor tissue [69]. In contrast, NK cells derived from a
healthy donor (allogeneic) showed a positive response in
AML patients [71], and the following studies also showed
encouraging results by using haploidentical NK cells for both
elderly and pediatric AML patients [72–74]. The clinical
efficacy of the allogeneic NK cell adoptive immunotherapy
to treat solid tumors has also been evaluated by several
groups [75–77]. Lin et al. had reported that percutaneous
cryoablation combined with allogeneic NK adoptive transfer
significantly increased the median progression-free survival
of advanced HCC patients [75]. And multiple allogeneic
NK cell infusion was associated with better prognosis in
advanced cancers, including advanced HCC [75] and stage
III pancreatic cancer [76]. Allogeneic NK cell immunother-
apy for advanced non-small-cell lung cancer also showed a
significant benefit in clinic [77]. The successful allogeneic
NK cell adoptive transfer therapy may depend on the
protocol for isolation and expansion and the purity of NK
cells [78–80].

To increase the killing specificity and efficiency of NK
cell-based immunotherapy, several genetic modification
approaches have been developed. The genetic modification
for NK cells was not as easy as that for other immune cells
such as T cells due to the resistance to retroviral infection.
Several strategies were explored to improve the efficiency
for transfection in NK cells [81, 82]. The introduction of
CD16a, IL-15, and IL-2 in NK cells may increase the prolifer-
ation, activation, and cytotoxicity of NK cells [83–85].
Recently, the successful application of the chimeric antigen
receptor (CAR) in T cells was adopted in NK cells to increase
the specificity and efficiency of NK cell immunotherapy.
Compared with CAR-T cells, CAR-NK cells were short lived,
which reduced the risk for autoimmunity and tumor trans-
formation. The cytokines released from NK cells such as
IFN-γ and granulocyte-macrophage colony-stimulating
factor (GM-CSF) were safer than the cytokine storm in
CAR-T cell therapy [86]. As we mentioned above, due to
the difficulties in expansion and transduction of primary
NK cells, the only FDA-approved cell line for use in clinical
trials, NK-92, was considered an ideal NK cell source for
CAR-NK cell therapy [87–89]. ErbB2/HER2-specific
CAR-NK-92 cells showed very encouraging efficiency in

target therapy of glioblastoma in an animal model [90].
CD19-specific CAR-NK-92 cells were sufficient to lyse
CD19+ B-precursor leukemia cell lines as well as lympho-
blasts from leukemia patients [91, 92]. In a preclinical study,
CD5 CAR-NK-92 cells shows consistent, specific, and potent
antitumor activity against T cell leukemia and lymphoma cell
lines and primary tumor cells [93]. For the HCC, the first
report was published very recently; glypican-3- (GPC3-) spe-
cific CAR-NK-92 cells showed potent antitumor activities in
multiple HCC xenografts with both high and low GPC3
expressions. As expected, the GPC3 CAR-NK-92 cells did
not show cytotoxicity to GFP3-negative HCC cells [94].
Currently, 9 clinical trials are ongoing to evaluate the safety
and efficiency of CAR-NK cells, of which 7 trials are used
for leukemia or lymphoma and 2 trials are for solid tumor.
In the current preclinical study, some other NK sources are
under investigation [95], such as the NK cells derived from
hematopoietic progenitor cells [96] or from cord blood, and
expanded in vitro with the aAPC K562-based system [97].

7. Summary

NK cells have been discovered for more than 40 years [98];
however, how to manipulate NK cells for the therapy of
diseases remains elusive. The impairment of the function of
NK cells was observed in many types of liver diseases
including chronic viral hepatitis, alcoholic and nonalcoholic
steatohepatitis, and HCC. Several approaches have been
developed to boost the activity of NK cells for therapeutic
purpose, but most of these studies are still in a preclinical
stage. With the success of ex vivo genetic modification of T
cells in the therapy of leukemia, it is promising that the
similar strategy, as wells as other approaches to regulate the
balance between activating and inhibitory receptors in NK
cells, might also lead to the successful treatment for various
liver diseases including HCC.
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