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A B S T R A C T   

From the beginning of the paper-making process, the pulp and paper industry has utilized a large amount of 
water and generated a vast amount of highly polluted wastewater. The paper industry faces global pressure to 
reduce water use and lower environmental pollution. However, traditional physicochemical methods of waste-
water treatment need high energy input, and their ecological impact is questionable. Due to the zero discharged 
policy, the industries urgently require novel eco-friendly, sustainable, and efficient treatment techniques. Mi-
crobial technology is the most recommended option to treat wastewater and support sustainable growth. The 
present article describes the overview of traditional and novel methods, including membrane bioreactor (MBR) 
and moving-bed biofilm reactor (MBBR) technology’s with their current state and their limits for treating pulp 
and paper wastewater. It is expected to integrate the novel methods with advanced hybrid technology to fulfill 
wastewater treatment criteria and prospects. Furthermore, coupling MBR and MBBR technology make energy 
and water recovery possible, and recycling wastewater will be economically and environmentally feasible.   

Introduction 

In the last several decades, extensive industrial development has 
taken place at a rapid speed worldwide. This industrial revolution has 
disturbed the environment from earlier conditions. Globally, the pulp 
and paper industry is well established and considered as one of the most 
important sectors (Gupta and Gupta, 2019). Environmental pollution is 
one of the significant concerns associated with this industry with 
freshwater utilization (Negi and Suthar, 2018). The pulp and paper in-
dustry typically required a vast amount of water during various opera-
tional stages such as washing, pulping, bleaching, and paper-making. 
According to available data, the pulp and paper industry consumes 
250–300 m3 of water to produce 1 ton of paper (Chaudhry and Paliwal, 
2018). As a result, substantial liquid waste is discharged into the envi-
ronment, containing numerous harmful chemicals. According to the 
Ministry of Environmental and Forest, India (MoEF), the pulp and paper 
industries have come under the "Red Category" in the directory of 17 
most polluted industries based on toxic emissions. Literature showed 
that more than 250 chemical compounds are generated at different 

stages of the paper-making process (Kumar et al., 2018). Xenobiotic 
compounds such as chlorinated lignin, chlorinated phenol, chlorinated 
resin acid, dioxins, chlorophenols, phenols, adsorbable organic halogens 
(AOX), and extractable organic acids, halogens, metal ions, etc. is 
generated with lignin and other naturally occurring polymers 
(Chaudhry and Paliwal, 2018). These compounds are released in water 
bodies due to the industry’s inappropriate or absence of a wastewater 
treatment system. As a result, the wastewater is exceptionally contam-
inated with toxic compounds and lignin, which have high BOD and COD 
contents. The dark brown colored effluent harms aquatic life by 
restricting photosynthesis, changes the water pH and decreasing the 
dissolved oxygen level (Haq and Raj, 2020). However, in the developed 
countries in Europe and North America have well-established waste-
water treatment facilities and also there environmental control author-
ities set strict restrictions on the discharges of chlorinated compounds 
(Cabrera, 2017). 

Therefore, it’s necessary to require proper treatment of wastewater 
to minimize environmental damage. Consequently, it is essential to 
remove; otherwise, it may lead to a severe threat to the environment, 
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such as loss of environmental aesthetics, adverse effect on aquatic life, 
increase soil salinity by nutrients imbalance which ultimately affects on 
economic wealth of a country (Mahesh et al., 2016; Patel and Dudha-
gara, 2020). Answering these concerns, the environmental researcher is 
constantly working on various mechanisms to treat or recycle pulp and 
paper wastewater. Among the possible treatments, microbial groups 
fungi and bacteria are considered a significant prospect due to their 
biotransformation and biodegradation efficiency (Mir-Tutusaus et al., 
2018). Low-cost reactors and sequencing processes using biological 
treatment are worth utilizing at an industrial scale. 

This study reviews the in-depth knowledge about the various existing 
strategies to treat pulp and paper industry wastewater and focuses on 
eco-friendly "bio-based" treatment with a successful application 
example. 

Waste generation 

The pulp and paper industry generates various waste during the 
paper-making process at different operational stages, as illustrated in 
Fig. 1. A considerable volume of wastewater is generated in wood chip 
preparation, pulping, bleaching, and paper-making steps. The charac-
teristics of discharged wastewater from pulp and paper industries re-
ported by researchers are summarized in Table 1. During the wood chip 
preparation, washing, and pulping process, lignin and hemicelluloses 
were separated from the wood chips by NaOH or Na2S treatment under 
alkaline conditions (karft process). At this stage, generated lignin-rich 
effluent known as black liquor. In the bleaching process, the pulp is 
treated with hazardous chemicals such as chlorine, hydrogen peroxide, 

ozone, calcium oxide, hydrochloric acid, etc. (Virkutyte, 2017), adding 
more toxicity to the final collected effluents. However, the properties of 
generated wastewater from different process stages depend on the type 
of raw material, pulping process, the recirculation of effluent and the 
amount of water used (Pokhrel and Viraraghavan, 2004; Hubbe et al., 
2016). The wastewater contains high values of chlorine compounds, 
BOD, and COD that are accumulatively called as AOX, which generally 
corresponding to the chlorine consumption in bleaching process 
(Chaudhry and Paliwal, 2018). The COD value is an important for any 
wastewater treatment which represents the numbers of organic pollut-
ants present in a wastewater. The ratio of BOD to COD is an index of the 
presentation of biodegradation which refers as “biodegradability index” 
(Patel and Patel, 2020). These biodegradability index represent the 
fraction of organic compounds in the wastewater that are easy to 
degrade. According to the Dahlman et al. (1995) report, chemical 
pulping processes generate more than 40% of poorly biodegradable 
organic compounds within the total organic matter of the wastewater. 

Methods use in wastewater treatments 

Physical, chemical, and electrochemical process 

Different methods such as physical, chemical, and biological treat-
ments (AzadiAghdam et al., 2016) have been used to treat industrial 
wastewater, and each method has its advantage and drawbacks (Fig. 2). 
The presence of wood components such as cellulose, hemicellulose, and 
lignin in wastewater is easily degraded via natural processes but due to 
the incorporation of xenobiotic compounds, it will be hard to 

Fig. 1. Wastewater generation in various stages of pulp and paper manufacturing process.  
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biodegrade. The biodegradability index of industrial wastewater is less 
than 0.4, which means this wastewater is challenging to treat by the 
biochemical process (Kalyani et al., 2009). Earlier several techniques 
have been applied to treat pulp and paper industries effluent. Removal 
of chlorinated organics and chromophoric compounds was attempted by 
fly ash adsorbing medium (Sell et al., 1994), total organic carbon (TOC), 
adsorbable organic halides (AOX) and chemical oxygen demand (COD) 
reduction using photocatalytic treatment (Torrades et al., 2001; Moi-
seev et al., 2004), 99% AOX reduction was achieved by ultrafiltration 
treatment (Yao et al., 1994). The membrane-based reverse osmosis and 
nanofiltration are efficiently used to remove AOX, salt and color (Savant 
et al., 2006). AOX, salt and color etc., is also reduced by the ozonation 
treatment followed by biodegradation in a biofilm reactor (Mobius and 
Helble, 2004). Ganjidoust et al. (1997) used chitosan as a coagulant, 
which reduces 90% and 70% of color and TOC, respectively. 

Among the above-mentioned physicochemical methods, the coagu-
lation/flocculation technique has been the most commonly used in pulp 
and paper industries to separate suspended and dissolved solids from the 
wastewater (Toczyłowska-Mamińska, 2017). However, these physical, 
chemical and electrochemical wastewater treating processes are 
extravagant when applied alone at large-scale operations. In the coag-
ulation technique, a large amount of toxic sludge is produced, which 
creates disposal problems. Whereas, added metal (e.g., aluminum) in 
treated water, resulting in human health implications (Toczyłowska--
Mamińska, 2017). Moreover, an extreme pH range is used for optimum 
treatment, and therefore it’s necessary to be neutralize to neutral pH 
before reuse and recycle (Hubbe et al., 2016; Bajpai, 2018). Oxidation 
via ozone and hydrogen peroxide is expensive, and oxidation using 
chlorine species generates secondary pollutants. These physicochemical 
processes are also responsible for emitting greenhouse gas. 
Membrane-based technology also faces the flux decline process due to 
membrane fouling (Lin et al., 2012). Therefore it is necessary to develop 
economical and eco-friendly methods for the removal of hazardous 
compounds. 

Biological process 

Microbes have the unique capability to convert waste effluents into 
energy and raw materials for their growth (Ghosh and Thakur, 2017). 
Moreover, biological processes have cost-effective and eco-friendly 
compared to the physicochemical process. Commonly, the biological 
processess were applied after the preliminary clarification treatment. 
Biological treatment includes the application of bacteria, fungi, and 
their enzymes as single or in consortium with the various conventional 
(aerobic, anaerobic, and combination treatments) processes for the 
removal of organic (lignin-rich) pollutants (Pokhrel and Viraraghavan, 
2004; Bajpai, 2018; Chaudhry and Paliwal, 2018). Activated sludge and 
anaerobic treatment have been widely used in a majority of pulp and 
paper mills around the world. However, this both conventional biolog-
ical treatment required large space, high operational cost, generate high 
amount of sludge etc., which makes overall treatment costly. Therefore, 
recently emerged MBR and MBBR techniques for wastewater treatment 
gives first choice over the conventional biological treatments (Iorhemen 

et al., 2016). This MBR and MBBR techniques required small space, less 
sludge production, and also provide water reuse option. The various 
microbial species were reported for pulp and paper mill wastewater 
treatment are summarized in Table 2. These biological methods are 
helping to reduce pollution in an eco-friendly way. Pulp and paper 
wastewater contains the higher molecular weight of cyclic groups of 
lignin residue, cellulose, and other organic compounds, making it 
difficult to degrade by microbial degradation (AzadiAghdam et al., 
2016). However, microbes have developed a unique strategy to defeat 
this restriction for complex lignin resides. The use of consortium is a 
worth-explore method to reduce the organic compounds load in the 
effluent. 

Aerobic process 
Many anaerobic processes are being used to treat large scale pulp and 

paper industrial wastewater. Extensive lab and large commercial scale 
research are available for aerobic processes in wastewater treatment. 
The activated sludge process can reduce the amount of BOD, COD, total 
suspended solids (TSS), total organic carbon (TOC), AOX, and chlori-
nated compounds from the pulp and paper wastewater (Ashrafi et al., 
2015). Ghoreishi and Haghighi (2007) used Activated sludge (AS) sys-
tem and determined the capacity to treat pulp and paper wastewater. 
Although this study showed the AS system’s capability to remove 92% 
COD, 99% BOD, and 97% TSS from the wastewater. Leiviskä et al. 
(2008) treated wastewater from a pulp and paper mill using AS process 
and successfully removed 60–70% COD, 95% BOD, and 60% TOC. 
Similarly, Bengtsson et al. (2008) used the AS process in a batch system 
and removed 74–95% COD from the pulp and paper mill. Abedinzadeh 
et al. (2018) carried out AS process using a sequence batch reactor (SBR) 
in combination with advanced oxidation processes (AOPs) at a bench 
scale and successfully remove 74.8% COD and 58.3% color. Further-
more, they also enhanced COD and color removal efficiency by Fenton 
oxidation as post-treatment. Bryant (2010) reported aerated stabiliza-
tion basins (ASB’s) efficiency with nitrogen supplement conditions to 
remove 67% COD and 90% BOD from the pulp and paper wastewater. 
Other investigations (Dykstra et al., 2015; Lewis et al., 2018) treated 
various pulp and paper wastewater using the ASB’s process and could 
remove 84–88% COD, 90–94% BOD, 82–94% phytosterol and other 
AOX and chlorinated compounds. The aerobic process required a higher 
amount of oxygen to promote biological oxidation. All these aerobic 
treatments have a significant disadvantage because of the constant 
requirement of high oxygen and energy supply (Toczyłowska-Ma-
mińska, 2017). 

Anaerobic process 
In anaerobic processes, up-flow anaerobic sludge blanket reactor 

(UASBR) and fluidized-bed reactor (FBR) have been widely used and 
established methods to treat pulp and paper wastewaters (Ashrafi et al., 
2015). The anaerobic process has greater COD removal capacity in a 
small process area. Chinnaraj and Venkoba Rao (2006) utilized the 
UASB reactor and effectively removed COD (80–93%) from the 
agro-based pulp and paper industry’s wastewater. This UASB reactor 
technique has an advantage over the anaerobic lagoon system because a 

Table 1 
Typical characteristics of wastewater effluents from pulp and paper industries.  

Refs. pH color (co-pt) BOD (mg L− 1) COD (mg L− 1) Lignin (mg L− 1) Phenol (mg L− 1) Sulfate (mg L− 1) Total solids (mg L− 1) 

Eskelinen et al. (2010) 6.4–7.3 660–1230 142–221 1170–1510 133–265 - - 354–563 
Chandra and Singh (2012) 7 ± 0.20 8942 ± 15.0 8296 ± 45 22,189 ± 39 1124 ± 12.09 364 ± 20.13 1089 ± 19.67 1799 ± 17.61 
Garg et al. (2012) 7.4 ± 0.1 1761 ± 2.3 185 ± 2.9 2420 ± 17 - - - 2359 ± 14.2 
Raj et al. (2014) 8.2 ± 1.0 2242 ± 56 385 ± 12 792 ± 70 436 ± 18 42 ± 2.5 993 ± 6 850 ± 30 
Yadav and Chandra 

(2015) 
8.5 ± 1.0 2538 ± 53.3 7250 ± 123.0 16,550 ± 507.2 800 ± 18.4 - 1003 ± 5.3 977 ± 7.2 

Rajwar et al. (2017) 9.8 ± 1.3 7253 ± 64.2 2934 ± 38.3 6735 ± 45.3 1863 ± 52.6 - 852.4 ± 34.1 1753 ± 34.2 
Kumar et al. (2018) 7.7 ± 0.02 1202 ± 6.53 180.54 ± 4.70 584 ± 3.62 - - - 1686 ± 10.58 
Zalnith et al. (2019) 8.1 ± 1.0 1065 ± 89.3 426 ± 30.6 774 ± 43.7 529 ± 20.10 39.3 ± 12.0 866 ± 47.0 859 ± 45.3  
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Fig. 2. Conventional and advanced physicochemical, biological methods used to treat pulp and paper mill wastewater.  
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UASB reactor has a methane recovery system, and this methane is used 
as biogas or fuel. The UASB reactors used by Buzzini and Pires (2007) for 
the treatment of bleached and unbleached kraft industry wastewaters. 
These studies showed 78–82% COD and 71–99% chlorinated organics 
compounds removal from wastewater. According to Ortega-Clemente 
and Poggi-Varaldo (2007), adding ligninolytic fungi in an FBR to treat 
pulping wastewater improves the COD and color removal efficiencies. 
Deshmukh et al. (2009) treated bleaching wastewater using an up-flow 
anaerobic filter (UAF), and effectivety removes COD (50%), BOD (70%), 
and AOX (50%). Detailed studies revealed that the UASB reactor had 
lower energy requirements, the fixed-film reactor had lower capital cost, 
and FBR has higher contaminant removal efficiency in treating pulp and 
paper wastewater (Rajeshwari et al., 2000). 

Role of bacteria 
In pulp and paper effluent treatment, bacteria play an essential role 

due to their vast environmental adaptability. Bacterial genus such as 
Bacillus, Pseudomonas, Micrococcus, Methylobacterium, Ancylobacter, 
Paenibacillus, etc., was reported decolorizing, lignin removing, and 
organochlorine degradation ability from the pulp and paper industries 
wastewater (Chaudhry and Paliwal, 2018). Bacterial strain 
B. megaterium, P. aeruginosa, Paenibacillus sp., Aneurinibacillus aneur-
inilyticus, Pseudochrobactrum glaciale, Providencia rettgeri, Pantoea sp., 
were reported for their decolourizing ability from the bleach kraft 
effluent (Raj et al., 2007; Tiku et al., 2010; Chandra and Singh, 2012). 
Apart from the decolourizing ability, bacteria have a piece of unique 
enzymatic machinery that offers lignin’s depolymerization. The bacte-
rial species B. subtilis, Micrococcus luteus, Cupriavidus basilensis, etc., were 
reported to degrade lignin from the pulp and paper wastewater (Tyagi 
et al., 2014). B. aryabhattai reduced 67% and 54% color and lignin 
respectively from the pulp and paper mill effluent (Zainith et al., 2019). 
Degradation of organochlorine from the bleached kraft pulp and paper 
industries wastewater by strains of Pseudomonas, Ancylobacter, and 
Methylobacterium was reported by Keharia and Madamwar (2003), and 
they observed that Ancylobacter has the potential to reduce the AOX 
from softwood effluents. The lignin degradation by bacteria is limited 
because lignin-degrading enzymes such as laccases, xylanases, 
manganese-dependent peroxidase, glutathione S-transferases, ring 
cleaving dioxygenases, monooxygenases, and phenol oxidases were 
produced in a lesser quantity (Paliwal et al., 2012). Most bacteria can 
degrade the low-molecular-weight lignin components, which produce 
after the fungal attack on lignin. Moreover, the single bacterial strain has 
a lack all the lignin-degrading enzymes. Therefore, applying more than 
two bacterial strains or synergy work with fungi is necessary, which 
helps complete lignin removal from the pulp and paper industries 
wastewater. 

Role of fungi 
Fungi are the potent biological agents to depolymerize lignin mole-

cules non-specifically. Fungi have a unique extracellular enzyme system, 
including laccase, lignin peroxidase, manganese peroxidase, which is 
responsible for decolorization, and lignin depolymerization. Fungi also 
have a high survival rate in the high effluent load (Kamali and Khoda-
parast, 2015). Fungal strains have also shown superior resistance against 
inhibitory compounds than do bacterial species. The cell walls of fungi 
are made by an extra-polysaccharide matrix, which helps them from 
inhibitory compounds through adsorption. Additionally, fungi contain 
more genes for tolerating inhibitory compounds than bacteria, which 
might help to adapt to the hazardous environment (Gupta and Gupta, 
2019). All these extraordinary features make fungi a potential candidate 
for the biodegradation of pulp and paper effluent. The previous study 
showed that certain fungi could degrade the complex organochlorine 
compounds and absorb heavy metals from aqueous solution (Bajpai, 
2018). Several fungal species such as Aspergillus niger, Trametes versi-
color, Coriolus versicolor, Phanerochaete chrysosporium, Ganoderma 
lucidum, Irpex lacteus, Fomes lividus, Lentinus edodes, Schizophyllum 
commune, Tinctoria borbonica, Trichoderma sp., Datronia sp., Thelephora 
sp., Pleurotus sp., and Ceriporiopsis sp. have been identified as significant 
lignin degrader (Singh, 2018). Among the other fungi, white-rot fungi, 
namely T. versicolor and P. chrysosporium are well-characterized for 
their degrading and decolorizing nature. These white-rot fungi have 
been evaluated on a pilot scale using various strategies like trickling 
filters, airlift reactors, and fluidized bed reactors (Bajpai, 2018). Detail 
study on P. chrysosporium showed that mycelia have color removal and 
organochlorine degrading efficiency (Pointing, 2001). Datronia sp. 
KAPI0039 (54.9%) and Trichaptum sp. KAPI0025 (54.4%) were reported 
to decolourize the pulp and paper mill wastewater (Apiwattanapiwat 
et al., 2006). Pleurotus sajorcaju, Rhizopus oryzae, Perenniporia tephropora 
KU-Alk4, and Phlebia brevispora BAFC 633 reported for biodegradation 
of organic compounds of bleached pulp wastewater (Fonseca et al., 

Table 2 
Microbial species involved in the treatment of pulp and paper mill wastewater.  

Microbial species Pollution parameters Refs. 

Bacteria   
Aeromonasformicans lignin (78%), COD 

(71%), color (86%) 
Gupta et al. (2001) 

Pseudomonas fluorescens lignin (45%), COD 
(79%), phenol (66%), 
color (75%) 

Chauhan and 
Thakur (2002) 

Paenibacillus sp., 
Aneurinibacillusaneurinilyticus, 
and Bacillus 
sp. 

lignin (28–53%), COD 
(52–78%), BOD 
(65–82%), total 
phenol (64–77%), 
color (39–61%) 

Raj et al. (2007) 

Serratiamarcescens, Citrobacter 
sp., and Klebsiella 
Pneumonia 

COD (83%), BOD 
(74%), color (85%) 

Chandra et al. (2011) 

BrevibacillusparabrevisMTCC 
12,105 

lignin (42.6%), COD 
(60.3%), color (51.6%) 

Hooda et al. (2018) 

Planococcus sp. TRC1 lignin (74%), COD 
(85%), phenol (81%), 
color (96%) 

Majumdar et al. 
(2019) 

Fungi   
Meruliusaureusand 

Fusariumsambucinum 
lignin (79%), COD 
(89.4%), color (78.6%) 

Malaviya and 
Rathore (2007) 

Cryptococcus sp. lignin (24%), color 
(27%) 

Singhal and Thakur 
(2009) 

Phanerochaetechrysosporium lignin (79%), COD 
(89.4%), color (78.6%) 

Saritha et al. (2010) 

Trametespubescens 2-Chlorophenol 
(73.39%),2,4- 
Dichlorophenol 
(69.59),2,4,6,- 
Trichlorophenol 
(38.17), 
Pentachlorophenol 
(58.57) 

Gonzalez et al. 
(2010) 

Phanerochaetechrysosporium lignin (71%), COD 
(56%), color (86%) 

Chopra and Singh 
(2012) 

Trametesversicolor COD (82%), 
pentachlorophenol 
(98%), 2,4,5-trichloro-
phenol (92%), 3,4- 
dichlorophenol (90%), 
4-chlorophenols 
(99%), color (80%) 

Pedroza-Rodríguez 
and Rodríguez- 
Vázquez (2013) 

Bierkanderaadustaand 
Phenarochetecrysosporium 

lignin (74–97%) TOC 
(35%) 

Costa et al. (2017) 

Pleurotusostreatus lignin (37.7–46.5%) Li et al. (2019) 
PleurotusostreatusEB016 COD (99.2%), phenol 

(92.2%) 
Heinz et al. (2019) 

Algae   
Chlorella, Chlorococcum, 

Chlamydomonas, Pandorina, 
eudorina, Nitzschai, Cyclotella, 
Microcyctis, and Anabaena 

COD (85%), color 
(75%), AOX (93%) 

Tarlan et al. (2002b) 

Scenedesmus sp. COD (75%), BOD 
(82%) 

Usha et al. (2016)  
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2015; Singh and Arya, 2019). 

Role of algae 
Remediation with algae is another approach to treat pulp and paper 

industrial polluted wastewater. The algae can transform/decolourize the 
chromophoric lignin molecules into a colorless form via its metabolic 
activity (Chandra and Singh, 2012). Several algal species have been 
reported for their ability to degrade/remove kraft lignin and heavy 
metals from the wastewater of paper industries (Table 2). The algal 
species Planktochlorella nurekis and Chlamydomonas reinhardtii were 
reported to effectively remove nitrate, phosphate, COD, and many 
metals from the pulp and paper wastewater (Sasi et al., 2020). It is found 
that mixed algal strains have better degradation than a shorter time to a 
single algal species, which takes more time. Tarlan et al. (2002a) apply a 
hybrid algal approach using Chlorella, Chlorococcum, Chlamydomonas, 
Pandorina, and eudorina, resultant 75% COD, 84% color, and 80% AOX 
was removed. Usha et al. (2016) carried out wastewater treatment by 
employing the mixed culture of Scenedesmus sp. They found maximum 
removal of BOD and COD in a lab-scale study. 

Role of enzymes 
Microbial enzymes include cellulases, xylanases, laccases, peroxi-

dases, catalases, amylases, proteases, lipases, etc., which play an 
essential role in managing the organic waste of pulp and paper in-
dustries. The rate of waste bioremediation depends on the microbial 
species and environmental conditions. The white-rot fungi produce one 
or more types of ligninolytic enzymes reported to degrade lignin and 
various kinds of xenobiotic compounds (Deshmukh et al., 2016). The 
ligninolytic enzymes produced by white-rot fungi are characterized into 
two groups: Lignin Peroxidases (LiP) and Manganese Peroxidases (MnP) 
(He et al., 2015). Laccase and class II peroxidases from white-rot fungi 
are well established to degrade persistent organic pollutants (Ikehata, 
2015). Laccase oxidizes most phenolic and non-phenolic compounds 
and T. versicolor reported more than 20 times higher laccase activity 
than other microbes (Margotet al., 2013). Enzymatic treatment is 
entirely or partially removed the pollutant compounds such as penta-
chlorophenol (PCP), 4,5-dichloroguaicol, 4,5,6-trichloroguaicol, tetra-
chloroguaiacol, pentachlorophenol, and 2,4,6-trichlorophenol from the 
pulp and paper industry wastewater (Shankar et al., 2020). According to 
Hossain and Ismail (2015) study, laccase has the potential to decolourize 
the black liquor and also reduce reported BOD and COD of the pulp and 
paper wastewater. However, the study showed that the waste degrada-
tion efficiency is improving by immobilizing the microbial enzymes. 

Membrane bioreactor technology 

The membrane bioreactor (MBR) technologies are commonly used 
for the biodegradation and physical separation of waste compounds. 
This MBR technology involves the fusion of the biological reactor, which 
is coupled with membrane units. In this technology, membranes are 
used to critical solid-liquid separation. Researchers have already re-
ported this MBR technology for treating various kinds of wastewater, 
including municipal, high strength wastewater, pharmaceutical, tan-
nery, food industry, dye industry, etc. (Izadi et al., 2018). Beside this, 
MBR technology was also recognized for the production of clarified and 
high-quality treated effluent. MBR technology comparatively more ad-
vantages over the activated sludge method due to the less sludge pro-
duction, higher separation efficiency, and retaining low molecular 
weight organic micropollutants (Neoh et al., 2016). Further, MBR also 
offers wastewater reuse in various industrial and agricultural sectors 
(Krzeminski et al., 2017; Patel and Patel, 2020). Beside the advantage, 
membrane fouling is a significant drawback in MBR technology. Due to 
the pore-clogging, a foulant layer is formulated, reflecting the negative 
impact on MBR performance. Low filterability/high capillary suction 
time is also a major concern to limit MBR use in wastewater treatment 
(Scholes et al., 2019). There is an insufficient source of published 

literature regarding long-term operational concerns in full-scale indus-
trial MBR. Therefore, environmental researchers are currently focusing 
on improving the MBR technology by coupling them with advanced 
oxidation processes, reverse and forward osmosis, granulation technol-
ogy, membrane distillation bioreactor (MDBR), and hybrid moving bed 
biofilm reactor-membrane bioreactor (Hybrid MBBR-MBR). Studies 
have shown that this integrated technique overcomes the membrane 
fouling problem by regular back-washing membrane pores and en-
hances the overall stability of treatment. Qu et al. (2012) achieve an 
88.6 ± 1.9 to 92.3 ± 0.7% COD reduction by completely decolorizing 
the effluent by combining thermophilic submerged aerobic membrane 
bioreactor and electrochemical oxidation technology. Merayo et al. 
(2013) reported 90% COD removal of pulp mill effluent by MBR inte-
grated with advanced oxidation processes (AOPs) followed by ozona-
tion. The sequence batch reactor incorporated with the bacterial 
consortium (Klebsiella sp., Alcaligens sp. and Cronobacter sp.) reduce the 
72.3% COD, 91.1% BOD, 55% color, 45.4% AOX, 22% TDS, and 86.7% 
TSS within 14 h from the wastewater of paper mill (Kumar et al., 2014). 

Giacobbo et al. (2015) designated the integrated 
MBR-photoelectrooxidation (MBR–PEO) method for tannery waste-
water treatment, and they achieved a 97% COD and 87.8% BOD 
reduction with MBR–PEO reactor. The integration of MBR and electro-
coagulation is highly efficient in removing more than 90% metals, i.e. 
Cu, Cr and Zn (Vijayakumar and Balasubramanian, 2015). The MBR 
integrating with AOPs and electrocoagulation techniques helped over-
come membrane fouling, removal of recalcitrant and coloured com-
pounds, and metals. In biofilm membrane bioreactor (BF-MBR), 
addition carriers are incorporated inside the MBR, which is responsible 
for decreasing the concentration of suspended solids without limiting 
the process’s efficiency and leads to mitigation of membrane fouling 
(Neoh et al., 2016). Gao et al. (2016) reported 83% of COD removal from 
the pulping wastewater by a submerged anaerobic membrane bioreactor 
(SAnMBR). Izadi et al. (2019) used a fixed-bed membrane bioreactor 
(FBMBR) with a hydraulic retention time (HRT), which reduce COD 
(92–99%), ammonium (59–97%), nitrite (78–97%), nitrate (59–98%) 
and total nitrogen (62–92%). Similarly, a hybrid airlift membrane 
bioreactor (HAMBR) was developed by Izadi et al. (2020), was effec-
tively reduce COD (88–99%), ammonium (54–83%), nitrite (70–90%), 
nitrate (65–95%) and total nitrogen (61–90%). Recently documented 
submerged polyvinylidene fluoride MBR by Poojamnong et al. (2020) 
having 73% COD, and 79% color removal efficiency from the pulp and 
paper industry wastewater. 

Moving-bed biofilm reactor (MBBR) technology 

The biofilm-based MBBR technology was invented in the late 1980s 
to treat wastewater (Ødegaard, 2006). Different biofilm systems were 
already used in trickling filters, granular media biofilters, rotating bio-
logical contractors, etc., for wastewater treatment, but these methods 
have several disadvantages. Therefore, the MBBR process emerged and 
was established as a simple, compact, and flexible wastewater treat-
ment. More than 700 MBBR based wastewater treatment systems are 
operated/installed in over 50 countries (Ødegaard, 2006). The MBBR 
process has shown great potential to reduce suspended solids with the 
production of high-quality reusable water. 

The MBBR system comprises an aeration tank with special design 
carriers that are made of plastic (Fig. 2). The microbial decomposers 
adhere to carriers and are responsible for the formation of biofilm (De 
Oliveira et al., 2014). These carriers increase surface area for microbial 
growth and also improve cell retention time. The higher concentration 
of solids adhered with carriers that make fast decomposition of organic 
matter. The significant advantage of these processes including the sep-
aration of surplus biomass without the sludge recirculation process. The 
MBBR process has high treatment efficiency, low operational, capital, 
maintenance, and replacement cost (Barwal and Chaudhary, 2014). In 
comparision to MBR technology, there is no membrane surface fouling 
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and membrane channel clogging problems in MBBR technology. 
Whereas, the major cons associated with this technology is to manual 
monitoring i.e., periodically sample collection and analyses for the 
presence of microbes on the carriers. Different types of insects like 
sewage flies, mosquitoes and red worms are also attracted toward the 
biofilm. 

The MBBR system has been successfully used to treat municipal and 
industrial wastewater, including pulp and paper industries, pharma-
ceutical, dairy, refinery and slaughterhouse (Barwal and Chaudhary, 
2014). Both pilot-scale and full-scale MBBR plants have been docu-
mented to treat releasing industrial wastewater (Ødegaard, 2006). 
Papermill of Klabin and Suzano (Brazil), Stora Papyrus Grycksbo AB, 
Stora Cell Industri AB, StoraForsBillerud AB and Norske Sande Skog 
(Sweden) are documented for treating the wastewater via the MBBR 
process (Rusten et al., 1994). Broch-Due et al. (1994) carried out a 
pilot-scale study using the MBBR system, removing 98% toxicity and 
70% COD at organic load 25 kg COD m− 3 day− 1 from the paper mill 
wastewater. Wastewater of integrated newsprint mill was treated by 
pilot-scale MBBR system, resultant 65–75% COD and 85–95% BOD 
removal at 4–5 h HRT (Broch-Due et al., 1997). Embley (2001) suc-
cessfully treated kraft pulp wastewater using the MBBR system, 
removing 63% BOD5. Jahren et al. (2002) reported 60–65% soluble 
chemical oxygen demand (SCOD) removal at 2.5–3.5 kg SCOD m− 3 d− 1 

organic loading rates of the thermo-mechanical pulping white-water 
using lab-scale MBBR system. Das and Naga (2011) treated combine 
effluents of the pulp mill, powerhouse, chemical recovery plant and 
domestic via a full-scale MBBR system and removed 50% SCOD, 21.53% 
COD and 33.5% BOD. The modified MBBR process has more advantages 
over the traditional process. The paper mill SuzanoPapele Cellulose 
(Mucuri/Brazil) carried out the treatment in aerated lagoon followed by 
three MBBR in series with HRT system. These combined processes help 
to enhance the wastewater treatment process in a shorter time (Oliveira 
et al., 2014). Leyva-Diaz et al. (2013) reported 90–91% COD removal 
from the wastewater treatment plant using the MBBR-MBR system. A 
novel anaerobic MBBR-MFC was recently designed for simultaneous 
bioelectricity generation and paper mill wastewater treatment (Chen 
et al., 2020). These novel approaches showed superior bioelectricity 
performance (power density: 94.5 mW/m2; internal resistance 35.7 Ω) 
with 65.6% COD removal efficiencies. 

Recycle and reuse biologically treated wastewater 

Due to the high water demands in the pulp and paper industries, it is 
necessary to recycle and reuse generated wastewater. The resue of un-
treated water can increase the concentration of organic and inorganic 
matter, which affect the paper quality and also increase corrosion and 
odours (Thompson et al., 2001). The coupling of membrane filtration 
with existing wastewater treatment plant can help to enhance the effi-
ciency of overall treatment and also offer the reuse of wastewater. Chen 
and Horan (1998) treated wastewater of activated sludge treatment 
plants with chemical coagulation to produce high-grade recycled water 
suitable for reuse in fiber plants. The microbial treatment or combine 
physicochemical process can effectively reduce the high concentration 
of toxic pollutants and improves wastewater quality. The microfiltration 
followed by the reverse osmosis filtration step enhances the recovery 
and reuse of more than 80% of the original wastewater (Pizzichini et al., 
2005). 

Similarly, Sahinkaya et al. (2008) treat and reuse denim textile 
wastewater by coupling the activated sludge treatment with nano-
filtration, which has 91 ± 2% COD and 75 ± 10% color removal effi-
ciency. The lab-scale study carried out by Mänttäri et al. (2008) 
suggested that the use of nanofiltration after microbial treatment reduce 
the contaminants (turbidity, color, COD, sulfate, chloride, and bicar-
bonate) from wastewater and open the door for reuse. The integrated 
thermophilic submerged aerobic membrane bioreactor (TSAMBR), fol-
lowed by the electrochemical oxidation process, produces high-quality 

water that is further reused in various stages (Qu et al., 2012). With 
this strategy, complete decolourization was achieved, and 96.2 ± 1.2 to 
98.2 ± 0.3% COD was removed. 

Emerging technologies 

There is rapid improvement in the new technology/process devel-
opment due to the necessity of treating pulp and paper industry 
wastewater. Combining the micro-physicochemical process, modifica-
tion, or hybrid of the existing process will reduce the contaminants and 
improve treated water quality for reuse. Advance technology (Fig. 2), 
such as biosorption, photoelectrolysis, advanced oxidation (Photo-Fen-
ton oxidation), Filtration Assisted Crystallization Technology (FACT) 
etc., are in the initial development stages (Crini and Lichtfouse, 2019). 

Conclusions 

Based on the pulping process, pulp and paper industry wastewater 
contains various complex organic and inorganic compounds that are 
generally considered toxic for all living biota. Physicochemical treat-
ment is usually applied to treat pulp and paper wastewater, but it’s 
economically unsuitable, whereas biological process takes longer time, 
and alone this process straggles to treat wastewater. Hybrid MBR tech-
nology has emerged with solid potential to treat wastewater. These 
hybrid MBR and filtration technology provide the option of recycling 
and reuse of pulp and paper wastewater. Similarly, MBBR-MFCs are 
another attractive technology that can simultaneously treat wastewater 
and convert chemical energy to electricity in one step. Reducing fresh-
water consumption is also necessary, and it is achieved by blending 
treated wastewater with fresh water. Reuse of wastewater overcame the 
large consumption of fresh water and an essential economic and 
ecological point of view. 
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