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A B S T R A C T   

Background: Limited clinical prediction models exist to assess the likelihood of acute kidney injury 
(AKI) occurrence in ischemic stroke individuals. In this retrospective study, our aim was to 
construct a nomogram that utilizes commonly available clinical features to predict the occurrence 
of AKI during intensive care unit hospitalization among this patient population. 
Methods: In this study, the MIMIC-IV database was utilized to investigate potential risk factors 
associated with the incidence of AKI among ischemic stroke individuals. A predictive nomogram 
was developed based on these identified risk factors. The discriminative performance of the 
constructed nomogram was assessed. Calibration analysis was utilized to evaluate the calibration 
performance of the constructed model, assessing the agreement between predicted probabilities 
and actual outcomes. Furthermore, decision curve analysis (DCA) was employed to assess the 
clinical net benefit, taking into account the potential risks and benefits associated with different 
decision thresholds. 
Results: A total of 2089 ischemic stroke individuals were included and randomly allocated into 
developing (n = 1452) and verification cohorts (n = 637). Risk factors for AKI incidence in 
ischemic stroke individuals, determined through LASSO and logistic regression. The constructed 
nomogram had good performance in predicting the occurrence of AKI among ischemic stroke 
patients and provided significant improvement compared to existing scoring systems. DCA 
demonstrated satisfactory clinical net benefit of the constructed nomogram in both the validation 
and development cohorts. 
Conclusions: The developed nomogram exhibits robust predictive performance in forecasting AKI 
occurrence in ischemic stroke individuals.   
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1. Introduction 

Ischemic stroke is a significant global health concern, with an estimated lifetime risk of approximately 25 % among individuals 
aged 25 and above [1], making it the second leading cause of mortality worldwide. The substantial burden it places on healthcare 
systems and the associated economic implications are profound [2]. Patients with chronic kidney disease have an increased suscep-
tibility to cerebrovascular diseases [3,4]. However, a growing body of evidence has elucidated a close link between ischemic stroke and 
subsequent acute kidney injury (AKI) [5–7], prompting researchers to investigate the intricate interplay of the “brain-kidney axis” [8]. 
In a comprehensive dataset comprising 5,751,601 cases of acute ischemic stroke, acute renal dysfunction emerged as the second most 
prevalent post-stroke complication, with an incidence rate of 10.1 % [9]. Significantly, the prevalence of acute renal function 
impairment exhibited a notable threefold surge, rising from 4.8 % to 14 % over the span of 2007–2019 [9]. 

Prior studies have endeavored to construct a nomogram for AKI incidence in ischemic stroke patients using the Medical Information 
Mart for Intensive Care (MIMIC) III database [10]. Regrettably, this model relies on the Oxford Acute Severity of Illness Score (OASIS), 
which introduces clinical intricacy and restricts its broader applicability. Moreover, the existing model solely forecast AKI within 48 h 
of ICU admission, lacking the ability to accurately predict AKI throughout the entire ICU stay [10]. Therefore, it is imperative to devise 
a simplified nomogram based on readily accessible clinical features, enabling prompt and effective assessment of the risk of AKI 
incidence during the ICU hospitalization of individuals with ischemic stroke. This research endeavor represents a pivotal focus in the 
realm of clinical science. 

To the best of our knowledge, this study represents the first endeavor to construct an intuitive and efficient nomogram, tailored for 
clinical use, to predict the risk of AKI incidence during the ICU hospitalization of individuals with ischemic stroke, utilizing commonly 
available clinical features collected on the first day after transfer to the ICU from ischemic stroke individuals in the MIMIC-IV database. 

2. Methods 

2.1. Source of data 

The study data were obtained from a comprehensive critical care database called MIMIC-IV (version 2.1), which encompasses 
multi-parameter intelligent monitoring. MIMIC-IV is an openly accessible and freely available database that includes intensive care 
data from more than forty thousand patients from 2008 to 2019 [11]. The establishment of this database was conducted in compliance 
with the ethical guidelines and regulations, receiving approval from both the Massachusetts Institute of Technology (MIT) and the Beth 
Israel Deaconess Medical Center (BIDMC). The main researcher has duly fulfilled the requirements of the Human Subject Research 

Fig. 1. Diagram illustrating the process of participant inclusion in the study. MIMIC-IV, medical information mart for intensive care IV; ICU, 
intensive care unit. 
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Table 1 
Clinical features of ischemic stroke individuals categorized based on randomization allocation.  

Characteristics All patients (N = 2089) Developing cohort (n = 1452) Verification cohort (n = 637) P value 

Age, median (IQR) 68.92 (57.33, 78.86) 68.74 (57.36, 78.78) 69.26 (57.29, 79.25) 0.836 
Female, No. (%) 993 (47.53) 693 (47.73) 300 (47.10) 0.790 
Weight, median (IQR) (kg) 78.10 (66.50, 93.50) 77.95 (66.30, 93.55) 79.40 (67.00, 93.20) 0.685 
Race, No. (%) 
White 1242 (59.45) 836 (59.44) 379 (59.50) 0.724 
Hispanic 74 (3.54) 52 (3.58) 22 (3.45) 
Black 223 (10.67) 154 (10.61) 69 (10.83) 
ASIAN 60 (2.87) 37 (2.55) 23 (3.61) 
Other 490 (23.46) 346 (23.83) 144 (22.61) 
Marital Status, No. (%) 
Married 894 (42.80) 635 (43.73) 259 (40.66) 0.676 
Single 516 (24.70) 349 (24.04) 167 (26.22) 
Widowed 217 (10.39) 153 (10.54) 64 (10.05) 
Divorced 146 (6.99) 100 (6.89) 46 (7.22) 
Other 316 (15.13) 215 (14.81) 101 (15.86) 
Underlying Diseases, No. (%) 
Myocardial Infarct 327 (15.65) 238 (16.39) 89 (13.97) 0.161 
Congestive Heart Failure 467 (22.36) 320 (22.04) 147 (23.08) 0.600 
Chronic Pulmonary Disease 377 (18.05) 255 (17.56) 122 (19.15) 0.384 
Mild Liver Disease 111 (5.31) 79 (5.44) 32 (5.02) 0.696 
Severe Liver Disease 35 (1.68) 27 (1.86) 8 (1.26) 0.322 
Diabetes without chronic complication 573 (27.43) 399 (27.48) 174 (27.32) 0.938 
Diabetes with chronic complication 175 (8.38) 126 (8.68) 49 (7.69) 0.454 
Malignant Cancer 181 (8.66) 134 (9.23) 47 (7.38) 0.166 
Charlson Comorbidity Index, median (IQR) 7.00 (5.00, 8.00) 7.00 (5.00, 9.00) 7.00 (5.00, 8.00) 0.397 
Disease severity Scoring System, median (IQR) 
Firstday GCSa 12.00 (8.00, 14.00) 12.00 (8.00, 14.00) 11.00 (8.00, 14.00) 0.510 
Firstday SOFA 4.00 (2.00, 6.00) 4.00 (2.00, 6.00) 4.00 (2.00, 7.00) 0.332 
Firstday LODS 4.00 (2.00, 7.00) 4.00 (2.00, 7.00) 4.00 (2.00, 7.00) 0.684 
Firstday OASIS 33.00 (26.00, 40.00) 33.00 (26.00, 39.50) 33.00 (26.00, 40.00) 0.348 
Firstday APS III 42.00 (30.00, 61.00) 42.00 (30.00, 61.00) 43.00 (31.00, 63.00) 0.355 
Firstday SAPS II 32.00 (25.00, 41.00) 32.00 (25.00, 41.00) 32.00 (26.00, 42.00) 0.310 
Vital Indicators, median (IQR) 
Temperature (◦C)b 37.28 (37.06, 37.83) 37.28 (37.06, 37.83) 37.28 (37.00, 37.83) 0.847 
Heart Rate (beats/min)c 80.00 (70.15, 90.96) 79.72 (70.48, 90.47) 80.72 (69.58, 92.27) 0.870 
Respiratory Rate (breaths/min)b 27.00 (24.00, 31.00) 27.00 (24.00, 31.00) 27.00 (23.00, 31.00) 0.701 
MBP (mmHg)a 65.00 (56.00, 75.00) 65.00 (57.00, 75.00) 65.00 (56.00, 74.00) 0.506 
Glucose (mmol/L)b 8.50 (6.83, 11.33) 8.50 (6.83, 11.44) 8.44 (6.83, 10.94) 0.513 
Firstday Urine Output (L) 1.60 (1.04, 2.35) 1.62 (1.05, 2.36) 1.55 (1.00, 2.31) 0.243 
Laboratory Indicators, median (IQR) 
White Blood Cells (K/uL)b 11.90 (8.80, 15.90) 11.75 (8.70, 15.90) 12.10 (9.00, 15.80) 0.327 
Creatinine (μmmol/L)b 88.40 (70.72, 114.92) 88.40 (70.72, 114.92) 88.40 (70.72, 114.92) 0.410 
Potassium (mEq/L)b 4.30 (3.90, 4.70) 4.30 (3.90, 4.70) 4.20 (3.90, 4.70) 0.637 
Calcium (mEq/L)a 2.13 (1.98, 2.23) 2.13 (1.98, 2.23) 2.10 (1.98, 2.23) 0.128 
Medications and Interventions, No. (%) 
Endovascular Obstruction Removal 192 (9.19) 139 (9.57) 53 (8.32) 0.362 
Alteplase 38 (1.82) 23 (1.58) 15 (2.35) 0.225 
Furosemide 93 (4.45) 60 (4.13) 33 (5.18) 0.285 
Vasoactive Agent 515 (24.65) 368 (25.34) 147 (23.08) 0.268 
Invasive Mechanical Ventilation 756 (36.19) 526 (36.23) 230 (36.11) 0.958 
Supplemental Oxygen 794 (38.01) 556 (38.29) 238 (37.36) 0.687 
Outcomes 
28-Day Mortality (%) 457 (21.88) 314 (21.63) 143 (22.45) 0.675 
ICU Mortality (%) 269 (12.88) 192 (13.22) 77 (12.09) 0.476 
Hospital Mortality (%) 378 (18.09) 261 (17.98) 117 (18.37) 0.830 
AKI Incidence (%) 1342 (64.24) 930 (64.05) 412 (64.68) 0.783 
AKI Stage 
AKI Stage 0 (%) 747 (35.76) 522 (35.95) 225 (35.32) 0.950 
AKI Stage 1 (%) 267 (12.78) 187 (12.88) 80 (12.56) 
AKI Stage 2 (%) 699 (33.46) 480 (33.06) 219 (34.38) 
AKI Stage 3 (%) 376 (18.00) 263 (18.11) 113 (17.74) 

AKI, acute kidney injury; ICU, Intensive Care Unit; IQR, Interquartile Range; GCS, Glasgow Coma Scale; APS III, Acute Physiology Score III; SOFA, 
Sequential Organ Failure Assessment; LODS, Logistic Organ Dysfunction System; SAPS II, Simplified Acute Physiology Score II; OASIS, Oxford Acute 
Severity of Illness Score; MBP, Mean Blood Pressure; a: the min value of indicators on the firstday of ICU stay; b: the max value of indicators on the 
firstday of ICU stay; c: the mean value of indicators on the firstday of ICU stay. The administration of vasoactive agents was characterized by the use of 
specific medications such as norepinephrine, epinephrine, phenylephrine, dopamine, dobutamine, vasopressin, or milrinone within the initial 24 h 
after admission to the ICU. Within the same timeframe, disease severity scoring systems, vital signs, laboratory markers, and interventions were 
evaluated. Notably, during the random assignment process, a seed value of 222 was utilized. 
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Course, receiving certification (Certification Number: 46141344), and has obtained official authorization to access this database. 

2.2. Population selection criteria 

The study cohort encompassed individuals who had a length of stay exceeding one day when admitted to ICU for the primary 
admission. We identified ischemic stroke patients using international classification of disease (ICD) codes, similar to our previous 
research [12]. It is noteworthy that patient data for those aged 89 years or older were excluded, as the database categorized them as 91 
years old. Ultimately, a total of 2089 cases of ischemic stroke patients were selected and randomly allocated in a 7:3 ratio to the 
developing dataset or the verification dataset (Fig. 1). The randomization seed for this study was set as 222, which differs from our 
previous research [12], thus resulting in different randomization outcomes. 

3. Outcome and predictions 

Our aim was to develop a user-friendly and clinically applicable nomogram to predict the risk of AKI during ICU hospitalization in 
individuals with ischemic stroke. The primary outcome was the occurrence of AKI during the ICU stay. We extracted AKI stage in-
formation using the MIMIC-IV concept. AKI was characterized based on the Kidney Disease Improving Global Outcomes (KDIGO) 
criteria [3], which encompassed the following indicators: a rise in serum creatinine (sCr) levels by ≥ 50 % within one week, an increase 
in sCr of ≥26.5 μmol/l within 2 days, or a sustained decrease in urine output below 0.5 ml/kg/hr for a duration exceeding 6 h. AKI 
status was determined each time a measurement of creatinine or urine output was recorded. The baseline creatinine level was defined 
as the lowest sCr value within the previous one week. 

All predictive variables were extracted from the database using the PostgreSQL tool (version 14.2.1). The study encompassed a 
cohort of ICU-admitted individuals, and their demographic attributes were documented. Additionally, on the initial day of ICU 
admission, a comprehensive assessment of pertinent factors was conducted utilizing the database concept, including the evaluation of 
underlying comorbidities, the calculation of the Charlson Comorbidity Index (CCI), vital signs, oxygen saturation, blood glucose, urine 
output, complete blood count, biochemical markers, electrolytes, coagulation function, medication or non-medication interventions, 
common severity scores, and were consistent with our previous research [12]. 

3.1. Statistical analysis 

A thorough examination of potential outliers was conducted using Stata software (version 17.0) through the application of his-
togram analysis, and Winsorization (replacing values beyond the 0.5th and 99.5th percentiles) was applied to address the outliers. 
Multiple imputation techniques were utilized to handle missing data. Initially, a LASSO regression was employed to identify potential 
variables from the development cohort. Logistic regression analysis was then conducted with AKI occurrence during ICU hospitali-
zation as the dependent variable, aiming to determine independent risk factors for AKI among individuals with ischemic stroke. To 
evaluate the presence of multicollinearity among the variables, an analysis of variance inflation factor was conducted. This statistical 
technique was employed to examine the degree of correlation between predictor variables in the model. By assessing the variance 
inflation factor, we were able to ascertain the extent to which multicollinearity could potentially affect the reliability and interpret-
ability of the regression results. Subsequently, a nomogram was constructed to predict the probability of AKI occurrence among in-
dividuals with ischemic stroke. The discriminatory performance of the predictive model was assessed using several statistical 
measures, including the net reclassification improvement (NRI), integrated discrimination improvement (IDI), and concordance index 
(C-index). To evaluate the calibration and clinical utility of the model, calibration curve analysis was performed to assess the 
agreement between observed and predicted probabilities. Furthermore, decision curve analysis (DCA) was employed to assess the 
clinical net benefit of the model by examining the balance between potential harms and benefits. 

The following procedures were primarily implemented using R software (version 4.2.1): LASSO regression was performed using the 
“glmnet” package, “car” package was libraried to test variance inflation factor, and the nomogram for predicting AKI in patients with 
ischemic stroke was constructed using the “rms” package. The C-index for the development and validation cohorts was obtained using 
the “pROC” package. The predictive performance improvement of different models was evaluated using IDI and NRI through the 
“PredictABEL” package. Following the inclusion of the “rms” package, the calibration curves were constructed utilizing the “val.prob” 
function. The clinical value of the developed nomogram was assessed through DCA using the “rmda” package. 

4. Results 

4.1. Participants 

Table 1 provides an overview of the demographic and clinical features among the whole individuals. There were no significantly 
statistical differences (P > 0.050) observed in the baseline characteristics, including demographic factors, clinical features, and 
available predictive factors, between the development and validation cohorts. This finding indicates that the random allocation of 
study participants into the respective cohorts was scientifically sound. 
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4.2. Model development 

The clinical factors associated with the occurrence of AKI in ischemic stroke individuals were identified, as shown in Fig. 2a and b. 
A total of 18 relevant features were selected, including weight, history of congestive heart failure, history of renal disease, CCI, average 
heart rate, minimum diastolic blood pressure, minimum mean arterial pressure, highest blood glucose level, first-day urine output, 
maximum white blood cell count (WBC), minimum calcium ion level, maximum creatinine level, maximum potassium level, use of 
vasoactive medications, use of furosemide, initiation of mechanical ventilation, administration of supplemental oxygen, and minimum 
Glasgow Coma Scale (GCS) score on the first day. Furthermore, these features underwent additional binary multivariable logistic 
regression analysis, resulting in the identification of 12 independent risk factors (P < 0.05) for AKI occurrence in ischemic stroke 
patients, as presented in Table 2. Based on these findings, we developed the nomogram (Fig. 3). 

4.3. Model performance and specification 

The nomogram demonstrated high predictive performance for AKI occurrence in ischemic stroke patients, as indicated by the C- 
index of 0.837 (95 % Confidence Interval, 95 % CI: 0.817–0.858) in the development cohort and 0.848 (95 % CI: 0.818–0.878) in the 
validation cohort. These values suggest that our model outperforms commonly used clinical scoring systems (Table 3). 

The results of IDI and NRI revealed significant improvements in predictive performance compared to models based on other 
commonly used scores (P < 0.001) (Table 4). The actual incidence of AKI in ischemic stroke patients corresponded closely to the 
predicted probabilities generated by our nomogram in both datasets (Fig. 4a and b). Furthermore, DCA demonstrated superior clinical 
net benefit compared to commonly employed severity scoring systems in both the validation and development cohorts (Fig. 5a and b). 

5. Discussion 

This study pioneers the development of a user-friendly nomogram for clinical use, utilizing easily accessible clinical features 
collected within one day after ICU admission from ischemic stroke population in the MIMIC-IV database. LASSO regression and logistic 
regression identified independent risk factors, including weight, prior congestive heart failure, GCS score, urine output, heart rate, 
blood glucose level, WBC, blood calcium concentration, use of vasoactive drugs, furosemide, invasive mechanical ventilation, and 
supplemental oxygen. The nomogram demonstrates superior predictive performance, as evidenced by C-index, NRI, and IDI analyses. 
The model aligns well with the actual occurrence of AKI. DCA assessment confirms its significant clinical value in both validation and 
development cohorts. The nomogram accurately predicts the occurrence of AKI during ICU stay. There is a constructed model to 
predict the risk of stroke recurrence among young individuals after ischemic stroke [13], demonstrating the remarkable predictive 

Fig. 2. Schematic representation depicting the selection of clinical features. a Plot demonstrating the association between feature coefficients and 
lambda values. The coefficients for each feature exhibited a gradual convergence towards zero with increasing lambda values. b The graph presents 
the 10-fold cross-validation curve of the LASSO regression. The left dotted vertical line represents the number of features and the optimal logarithm 
(lambda) value associated with the smallest mean squared error (λ = 0.009380591). Using the one standard error criterion for determining the 
optimal logarithm (lambda), the right dotted vertical line indicates that the model, consisting of 18 variables, achieved a satisfactory balance 
between accuracy and simplicity (λ = 0.02864697). λ, lambda. 
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Table 2 
Multivariable logistic regression analysis of independent predictors associated with AKI occurrence among ischemic stroke patients.  

Variables OR 95 % CI P-value VIF 

Weight 1.024 1.017–1.031 <0.001 1.100 
Underlying Congestive Heart Failure (Yes) 2.034 1.423–2.936 <0.001 1.074 
Heart Rate (beats/min)c 1.017 1.007–1.026 <0.001 1.095 
Blood Glucose (mmol/L)b 1.058 1.020–1.099 <0.001 1.065 
Firstday Urine Output (mL) 0.9995 0.9994–0.9996 <0.001 1.120 
White Blood Cells (K/uL)b 1.027 1.002–1.053 0.003 1.114 
Blood Calcium (mmol/L)a 0.320 0.156–0.643 <0.001 1.136 
Vasoactive agents administration (Yes) 2.765 1.837–4.229 <0.001 1.171 
Use of Furosemide (Yes) 2.700 1.172–7.067 0.003 1.033 
Invasive Mechanical Ventilation (Yes) 2.815 1.979–4.031 <0.001 1.300 
Supplemental Oxygen (Yes) 1.570 1.188–2.077 <0.001 1.107 
Firstday GCSa 0.844 0.809–0.880 <0.001 1.114 

AKI, acute kidney injury; OR, odd ratio; CI, confidence interval; GCS, Glasgow Coma Scale; VIF, variance inflation factor. a: the min value of indicators 
on the firstday of ICU stay; b: the max value of indicators on the firstday of ICU stay; c: the mean value of indicators on the firstday of ICU stay. The 
administration of vasoactive agents was characterized by the use of specific medications such as norepinephrine, epinephrine, phenylephrine, 
dopamine, dobutamine, vasopressin, or milrinone within the initial 24 h after admission to the ICU. 

Fig. 3. Nomogram developed for the prediction of AKI incidence in patients with ischemic stroke. The nomogram assigns scores to each variable, 
enabling the assessment of AKI probability by summing the scores associated with the patient’s specific values. The red dot denotes a selected 
patient within the cohort, with a cumulative score of 685 (P = 0.932), signifying a 93.2 % probability of AKI occurrence. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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performance of the nomogram. Furthermore, other researchers have successfully established nomograms for predicting ischemic 
stroke long-term prognosis [12,14], providing valuable guidance for related clinical practices. 

Certain demographic characteristics and medical history variables are fundamental components within predictive models. Weight 
has emerged as a notable contributor to the development of ischemic stroke, exhibiting a direct association with its occurrence [15]. 
The presence of the “obesity paradox” further substantiates obesity as an independent risk factor for ischemic stroke [16], wherein 

Table 3 
Comparison of C-index between models for prediction of AKI occurrence in patients with ischemic stroke.  

Models Developing cohort Verification cohort 

C-index 95 % CI C-index 95 % CI 

Nomogram 0.837 0.817–0.858 0.848 0.818–0.878 
GCS 0.695 0.668–0.723 0.723 0.684–0.761 
SOFA 0.780 0.756–0.804 0.789 0.754–0.824 
APS III 0.765 0.741–0.790 0.796 0.762–0.831 
LODS 0.776 0.752–0.800 0.798 0.764–0.832 
SAPS II 0.701 0.676–0.7303 0.746 0.707–0.786 
OASIS 0.754 0.7282–0.779 0.775 0.739–0.812 

AKI, acute kidney injury; C-index, concordance index; CI, confidence interval; GCS, Glasgow coma score; SOFA, sequential organ failure assessment; 
APS III, acute physiology score III; LODS, logistic organ dysfunction system; SAPS II, simplified acute physiology score II; OASIS, oxford acute severity 
of illness score. 

Table 4 
Comparison of NRI and IDI among models for the prediction of AKI among ischemic stroke.  

Index Developing cohort Verification cohort 

Estimate 95 % CI P value Estimate 95 % CI P value 

NRI (vs. GCS) 0.410 0.364–0.457 <0.001 0.412 0.342–0.483 <0.001 
NRI (vs. SOFA) 0.216 0.159–0.274 <0.001 0.229 0.144–0.314 <0.001 
NRI (vs. APS III) 0.269 0.214–0.325 <0.001 0.219 0.131–0.308 <0.001 
NRI (vs. LODS) 0.234 0.178–0.291 <0.001 0.237 0.147–0.327 <0.001 
NRI (vs. SAPS II) 0.3611 0.309–0.413 <0.001 0.256 0.170–0.342 <0.001 
NRI (vs. OASIS) 0.283 0.228–0.338 <0.001 0.278 0.185–0.370 <0.001 
IDI (vs. GCS) 0.213 0.192–0.234 <0.001 0.1894 0.156–0.223 <0.001 
IDI (vs. SOFA) 0.108 0.089–0.128 <0.001 0.101 0.068–0.133 <0.001 
IDI (vs. APS III) 0.129 0.109–0.150 <0.001 0.092 0.058–0.125 <0.001 
IDI (vs. LODS) 0.112 0.092–0.131 <0.001 0.086 0.052–0.119 <0.001 
IDI (vs. SAPS II) 0.205 0.184–0.227 <0.001 0.167 0.132–0.202 <0.001 
IDI (vs. OASIS) 0.144 0.124–0.163 <0.001 0.124 0.092–0.156 <0.001 

AKI, acute kidney injury; NRI, net reclassification index; IDI, integrated discrimination improvement; CI, confidence interval; GCS, Glasgow coma 
score; SOFA, sequential organ failure assessment; APS III, acute physiology score III; LODS, logistic organ dysfunction system; SAPS II, simplified 
acute physiology score II; OASIS, oxford acute severity of illness score. Cutoff: 0, 0.2, 0.4, 1. 

Fig. 4. Calibration curves were constructed for the nomogram in the development cohort (a) and validation cohort (b), depicting the concordance 
between the observed and predicted rates of AKI occurrence in both groups (P > 0.050). 
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obese individuals demonstrate heightened rates and severity of AKI compared to their leaner counterparts [17]. The pathophysiology 
underlying obesity-related AKI is likely multifaceted, involving intricate interplay among various factors, including glomerular pa-
thology, metabolic syndrome, hypertension, cardiovascular disorders, endothelial dysfunction and so on [18]. Heart failure patients 
are frequently predisposed to an increased susceptibility to ischemic stroke, and a reciprocal cause-and-effect relationship exists be-
tween these two conditions [19]. Within the heart failure population, a decline in glomerular filtration rate commonly manifests as an 
inevitable consequence, and the occurrence of AKI functions as an autonomous predictive indicator for mortality estimation in this 
patient population [20]. The principal underlying pathophysiological mechanisms entail perturbations in hemodynamics arising from 
diminished cardiac output and/or venous return, and so on [21]. 

Clinical presentations are frequently incorporated as predictive variables in clinical prediction models. Acute-phase heart rate in 
stroke patients predicts significant clinical events [22]and targeting heart rate control may prevent subsequent cardiovascular events, 
as demonstrated in a prospective study [23]. Heart rate is associated with AKI and serves as a reliable biomarker, as evidenced by 
reduced AKI occurrence in mice with focal cerebral ischemia treated with metoprolol [24]. While GCS has garnered substantial 
recognition as a significant and independent prognostic indicator among acute stroke [25], it is unfortunate that no literature has been 
found to elucidate the association between GCS or the extent of impaired consciousness and the incidence of AKI among ischemic 
stroke. 

Multiple ancillary examination outcomes function as surrogate markers within the prognostic model. A meta-analysis involving 
9766 patients indicates the reliability of the neutrophil-to-lymphocyte ratio as a biomarker for detecting AKI [26], with retrospective 
studies providing support for its correlation with the risk of postoperative AKI [27]. However, the relationship between WBC and AKI 
occurrence in ischemic stroke remains insufficiently understood. In patients with AKI, elevated inflammatory markers may be 
attributed to mechanisms mediated by neurohormones or inflammation [28]. The relationship between blood calcium levels and the 
occurrence of AKI in ischemic stroke has received limited research attention. Prior investigations have examined the influence of 
elevated calcium levels on the glomerular filtration rate in rats with normal physiological conditions, revealing a reversible decrease in 
renal filtration rate in response to elevated blood calcium levels [29], potentially due to the direct vasoconstrictive effects of increased 
calcium ions on renal blood vessels [30]. However, the specific association between blood calcium levels and AKI in ischemic stroke 
remains incompletely understood. Patients with inadequate glycemic control are at increased risk of both stroke and AKI [31,32]. 
Notably, among individuals with ischemic stroke, the presence of diabetes is independently associated with the occurrence of AKI 
subsequent to endovascular therapy [33]. 

The inclusion of specific intervention measures as predictive variables in clinical prediction models is also a valuable consideration. 
In the latest KDIGO Conference findings [34], oliguria remains a diagnostic criterion for AKI, and decreased urine output is a sig-
nificant factor linked to the 28-day mortality in AKI patients [35]. A multicenter study revealed that furosemide solely enhances urine 
output without substantial prognostic improvement in AKI patients [36]. Furthermore, a comprehensive meta-analysis encompassing 
over 800 studies indicated the absence of any clinical benefits associated with furosemide administration for the treatment of AKI 
among adult individuals [37]. Sympathetic nervous system activation and subsequent catecholamine release in ischemic stroke pa-
tients induce excessive vasoconstriction of renal blood vessels upon vasoactive drug administration, resulting in inadequate renal 
perfusion and an elevated risk of AKI [38]. Chiu et al. [39], in a multicenter study, demonstrated a significant association between the 
use of vasopressor agents and increased AKI occurrence. Moreover, the KDIGO summary discourages early administration of vaso-
active drugs like dopamine in the initial stages of AKI [31]. Supplemental oxygen, specifically high-pressure oxygen therapy [40], 
shows potential neuroprotective benefits for stroke patients. Timely administration of oxygen therapy can effectively prevent 

Fig. 5. DCA was performed in the development (a) and validation (b) cohorts. The red line represents our developed nomogram, demonstrating 
superior performance compared to the conventional scoring systems. DCA, decision curve analysis GCS, Glasgow coma score; SOFA, sequential 
organ failure assessment; APS III, acute physiology score III; LODS, logistic organ dysfunction system; SAPS II, simplified acute physiology score II; 
OASIS, oxford acute severity of illness score. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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contrast-induced AKI in certain individuals [41], and preclinical studies have indicated potential advantages of high-pressure oxygen 
therapy in mice with AKI [42]. Nevertheless, stroke patients undergoing mechanical ventilation are susceptible to infections such as 
pneumonia and sepsis, which can exacerbate renal dysfunction and contribute to the development of AKI [43,44]. 

To illustrate the clinical application of the nomogram, a specific case was presented from the development cohort, as depicted in 
Fig. 3. The red dot represents an individual patient. This patient exhibited certain characteristics, including a weight of 100.9 kg, 
absence of congestive heart failure history, a GCS score of 13, an average heart rate of 87.59 beats per minute, a urine output of 1719 
ml, a maximum white blood cell count of 18.4 K/μL, a peak blood glucose level of 12.33 mmol/L, a minimum blood calcium level of 
2.03 mmol/L, no use of furosemide or supplemental oxygen, and the administration of vasoactive agents and invasive mechanical 
ventilation. Each variable contributed to a corresponding score. The cumulative score of these variables (685) was located on the total 
points line, and a solid red line was drawn downward to the axis to determine the risk probability of AKI incidence (93.2 %). 

This study has several inherent limitations. Firstly, despite the vast clinical data available in the MIMIC-IV database, its suscep-
tibility to data errors and biases cannot be overlooked. Hence, meticulous data cleansing procedures were diligently implemented, 
encompassing thorough detection and appropriate management of outliers and missing values. Secondly, the retrospective design of 
this study underscores the need for future prospective investigations to establish the clinical applicability and validity of our developed 
nomogram. Thirdly, our study did not systematically address the variation in AKI incidence following stroke among patients from 
diverse geographic regions. The reported rates of AKI subsequent to stroke exhibit considerable disparities, attributed to the inherent 
heterogeneity of patient populations and the divergence in defining AKI through the use of distinct diagnostic criteria and ICD codes 
[45]. Lastly, it is important to note that the nomogram’s validation was confined to internal assessment, emphasizing the necessity for 
external validation to ascertain its performance and reliability. 

6. Conclusion 

In conclusion, this study identified independent risk factors associated with AKI occurrence in ischemic stroke patients admitted to 
the ICU. These factors included weight, prior congestive heart failure, GCS score, urine output, heart rate, blood glucose level, WBC, 
blood calcium concentration, vasoactive drugs injection, furosemide administration, invasive mechanical ventilation, and supple-
mental oxygen. The developed nomogram, based on these variables, showed promising predictive performance and clinical utility for 
assessing AKI risk in ICU-admitted ischemic stroke patients. However, external validation and prospective investigations are crucial to 
further validate the effectiveness of the nomogram. 
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