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between amoeboid and mesenchymal shapes in
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ABSTRACT Melanoma cells can adopt two functionally distinct forms, amoeboid and mesen-
chymal, which facilitates their ability to invade and colonize diverse environments during the
metastatic process. Using quantitative imaging of single living tumor cells invading three-
dimensional collagen matrices, in tandem with unsupervised computational analysis, we
found that melanoma cells can switch between amoeboid and mesenchymal forms via two
different routes in shape space—an apolar and polar route. We show that whereas particular
Rho-family GTPases are required for the morphogenesis of amoeboid and mesenchymal
forms, others are required for transitions via the apolar or polar route and not amoeboid or
mesenchymal morphogenesis per se. Altering the transition rates between particular routes
by depleting Rho-family GTPases can change the morphological heterogeneity of cell popula-
tions. The apolar and polar routes may have evolved in order to facilitate conversion between
amoeboid and mesenchymal forms, as cells are either searching for, or attracted to, particular
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migratory cues, respectively.

INTRODUCTION

Melanoma metastasis is driven by changes in tumor cell shape that
allow cells to invade adjacent tissues, disseminate through the cir-
culatory system, and colonize distant organs (Friedl and Alexander,
2011). Although the acquisition of a metastatic phenotype had
long been considered to involve a single-phase transition from a
nonmigratory to a migratory shape, such as epithelial to mesenchy-
mal (Nieto, 2013), it is now clear that migratory modes are highly
diverse in nature. For example, in three-dimensional (3D) environ-
ments, individual metastatic melanoma cells appear to adopt a
"mesenchymal” or “amoeboid” shape, depending on cell-extrinsic
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(e.g., elasticity of the extracellular environment) and cell-intrinsic
(e.g., gene expression) factors (Friedl and Wolf, 2003; Sahai and
Marshall, 2003; Sanz-Moreno et al., 2008, 2011). In contrast, mela-
noma cells cultured on two-dimensional (2D) plastic surfaces typi-
cally adopt a spread/flattened shape that bears little resemblance
to the forms adopted in vivo (Yin et al., 2013). Amoeboid and mes-
enchymal forms migrate in 3D environments using distinct mecha-
nisms. In general, mesenchymal forms migrate through cycles of
protrusion, adhesion, and retraction (Parsons et al., 2010). In con-
trast, amoeboid forms migrate in three dimensions by squeezing
through gaps in the extracellular matrix (ECM), using different
forms of membrane blebbing, in an adhesion-independent manner
(Friedl and Wolf, 2003; Sahai and Marshall, 2003; Tozluoglu et al.,
2013; Liu et al., 2015). Signaling pathways promoting amoeboid or
mesenchymal shapes have been elucidated in melanoma cells. The
GTPase Rac1, activated by a NEDD9-DOCK3 complex, promotes
mesenchymal morphogenesis via WAVE2-mediated actin polymer-
ization. In contrast, Rho-associated protein kinases 1 and 2 (ROCK1
and ROCK2), which likely act downstream of RhoA and/or RhoC
(Sanz-Moreno et al., 2008; Acton et al., 2014), up-regulate acto-
myosin contractility and promote amoeboid morphogenesis.
ROCK signaling can antagonize Racl activity via ARHGAP22, a
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Rac1 inhibitor, and Rac1-WAVE can antagonize ROCK signaling
(Sanz-Moreno et al., 2008). |dentification of the amoeboid and
mesenchymal shapes and signaling pathways that promote these
shapes has led to the attractive notion that suppression of these
pathways may inhibit metastasis.

The amoeboid-mesenchymal model of morphogenesis pro-
vides an important starting point for gaining insights into melanoma
metastasis, but the question of whether melanoma cells have only
two forms in 3D matrices remains open. Moreover, although there
have been recent advances in describing how changes in environ-
mental conditions, or cell-extrinsic factors, cause amoeboid and
mesenchymal transitions (Tozluoglu et al., 2013; Liu et al., 2015),
much remains to be understood regarding transitions between
amoeboid and mesenchymal forms in relatively constant environ-
ments and how cell-intrinsic factors drive transitions. For example,
we showed that, when cultured in 3D environments, in the absence
of stimulation, melanoma cells reversibly switch between amoeboid
and mesenchymal forms. Our work implicated PTEN as a regulator
of the transition rates between mesenchymal and amoeboid forms,
but how signal transduction regulates transition dynamics and not
amoeboid or mesenchymal morphogenesis per se is not clear (Yin
et al., 2013). Moreover, because previous studies mainly performed
imaging of fixed cells in three dimensions using qualitative assign-
ment of shape, melanoma shape space has not been quantitatively
described, let alone how this space is explored over time. Because
the ability of melanoma cells to transition between forms underpins
the morphological heterogeneity of populations, which can itself be
a driver of disease (Almendro et al., 2013), gaining insight into tran-
sition dynamics may be clinically relevant.

To quantify systematically the shape space of melanoma cells
and characterize the regulation of their morphogenesis, we ana-
lyzed single-cell shape dynamics of live cells cultured in 3D collagen
matrices using an unsupervised approach. Unsupervised methods
free the analysis of any prior bias regarding the number of mor-
phologies that may be present in any population. That is, we did not
wish to presume the existence of even well-characterized amoeboid
and mesenchymal shapes before we began this analysis. Using un-
supervised methods, we show that melanoma cells in three dimen-
sions do exist primarily in amoeboid or mesenchymal shapes as sug-
gested by qualitative studies, but we also observe additional shapes
that are adopted as cells transition between mesenchymal and
amoeboid forms using two distinct routes. We term these the apolar
and polar routes. Melanoma cells transition between amoeboid and
mesenchymal shapes and vice versa using both routes. We propose
that the routes evolved to ensure that transitions between pheno-
typically distinct states are robust to environmental and genetic flux,
especially changes in ECM stiffness and geometry. After gene de-
pletion of Rho-family GTPases, cells can be biased to transition via
one route versus another. Critically, in these studies, we did not seek
to provide specific mechanistic insights into how different GTPases
regulate specific morphologies, but instead aimed at determining
previously undefined constraints that have to be satisfied in func-
tional studies regarding the role of individual Rho-family members.

RESULTS

To describe the shape space explored by melanoma cells, we cul-
tured WM266.4 melanoma cells on top of thick 3D fibrillar bovine
collagen | matrices that mimic the elasticity and geometry of soft
tissues in vivo (Sanz-Moreno et al., 2008). We chose WM266.4 cells
because on soft matrices these cells exist in ~50:50 mixtures of
amoeboid and mesenchymal forms (Sahai and Marshall, 2003; Yin
et al.,, 2013) and exhibit frequent transitions that occur on minute
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time scales between amoeboid and mesenchymal shapes (Yin et al.,
2013). Thus WM266.4 cells are an excellent cell type with which to
study the morphological heterogeneity and interconversion be-
tween shapes in three dimensions. In contrast, other melanoma
lines, such as A375m2, appear to switch between rounded and mes-
enchymal forms at much slower (hours) frequency (Sanz-Moreno
et al., 2008) and are often mostly amoeboid in soft collagen (Sahai
and Marshall, 2003).

Cells were plated on top of 300-700 uM matrices of 1.7 mg/ml
collagen I. We estimated the elastic modulus of the matrix on the
top of the gel to be ~200 Pa (Paszek et al., 2005); this is considered
a "soft” matrix, with stiffness similar to lung tissue (Butcher et al.,
2009). To quantify the largest possible morphological space ex-
plored by melanoma cells in three dimensions in the minimal num-
ber of experiments, we generated a data set in which we depleted
Rho-family GTPases using RNA interference (RNAI). Our previous
work demonstrated that gene depletion rarely results in new shapes
but instead enriches for shapes that are present in small numbers in
wild-type cells; thus we reasoned that the shape space wild-type
melanoma cells explore in three dimensions can be defined by le-
veraging this enrichment (Yin et al., 2013; Sailem et al., 2014). Be-
cause Rho-family GTPases are well-known cell shape regulators
(Jaffe and Hall, 2005), we predicted that their depletion would result
in us observing the majority of shapes that a melanoma cell might
assume. We emphasize that systematic RNAi depletion is used pri-
marily to generate morphological diversity rather than as a means
by which to identify “hits,” as in classical genetic screens. After live
high-throughput 2D confocal imaging (Supplemental Movie S1), au-
tomated cell segmentation and filtering was performed (see
Materials and Methods), and 15 features describing cell shape were
recorded, forming the data set used for analysis. Cells were imaged
soon (8-20 h) after being cultured on top of the matrix. There is no
chemoattractant to promote invasion “downward” along the z-axis
into the matrix, and thus most cells explore shape space primarily
along the x-and y-axes, and we believe that the 3D morphology of
cells is well approximated by 2D confocal imaging. Across all time
points, 62,000 cell segments were recorded, with 423 being the
minimum number recorded for a well. Static analysis was also per-
formed on random samples of 400 cells/well taken from live-cell
imaging.

Characterizing melanoma shape space
Supervised methods have proven useful to identify distinct cell mor-
phologies (Boland and Murphy, 2001; Bakal et al., 2007; Jones
et al., 2009; Ramo et al., 2009). However, such methods require hu-
man intervention and thus are prone to bias. Recently we devel-
oped an unsupervised method (Sailem et al., 2014) to characterize
shape space based on the mean silhouette statistic (Rousseeuw,
1987). In this previous study, we initially performed principal compo-
nent analysis (PCA). After performance of clustering of the first three
principal components using Gaussian mixture models (GMMs), cal-
culation of the maximum silhouette score defined the number of
shapes adopted by Drosophila BG-2 cells (Sailem et al., 2014).
Here we sought to describe the shape space explored by mela-
noma cells by identifying clusters of similarly shaped cells, termed
“shape clusters” (SCs). We first attempted to use PCA followed by
GMM clustering, as we did previously (Sailem et al., 2014). However,
PCA followed by GMM resulted in no clear maximum silhouette
value, and we could not unambiguously identify the number of
shapes in the data set. This could be a result of the transformation
(PCA) and clustering (GMM) method or the cells themselves (i.e., the
cells might not assume quantitatively different shapes). To explore
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FIGURE 1: Melanoma cells adopt six shapes in 3D soft collagen matrices. (A) The stability score over cluster numbers
2-10, calculated as the silhouette value applied to k-means clustering of centroids. Centroids are from 100 resamples of
initial k-means clustering to identify shape clusters (SCs) from a sample of 2000 cells. This measure is designed to
identify a cluster number that gives reproducible clustering of the data set. (B) Heat maps of normalized feature values
were averaged for each SC. Below the heat maps are images of cells summarizing each cluster. Round shapes
correspond to low symmetry and high roundness/width:length scores. The teardrop shape scores stronger for odd
symmetry measures, whereas the spindle/mesenchymal shape is stronger for even symmetry measures and the large
star shape scores high for all measures, except roundness/width:length. (C) PCA was applied to a pooled sample of
2000 cells; the mean and SD for the first two PCs (77% of variance) are then plotted as a normal distribution scaled to

cluster membership for wild-type cells.

the former possibility, we sought to develop an alternate unsuper-
vised method based on cluster stability (Shamir and Tishby, 2008;
von Luxburg, 2010; Bubeck et al., 2012).

We first sought to identify the best method to transform and
cluster our data that did not involve any assumptions regarding the
result, that is, assuming that there are a limited number of distinct
shapes present in the population. To measure how well an unsuper-
vised method is performing, we use the Davies—Bouldin index (DBI;
Davies and Bouldin, 1979) to quantify how similar shape distribu-
tions are between experimental repeats (where the same small in-
terfering RNA [siRNA] is used to target the same gene in different
transfections) and how different they are between knockdowns.
Methods with a low DBI value identify shapes that maximize the dif-
ferences in cell shape distribution across gene knockdowns and
minimize differences within experimental repeats of a knockdown.
This use of the DBI is similar to a separation statistic used to deter-
mine how effectively methods identified shapes in Caulobacter,
Madin-Darby canine kidney cells, and keratocytes (Pincus and
Theriot, 2007).

The data transformation that results in the lowest DBI (see
Materials and Methods and Supplemental Information) bins feature
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values into binary values based on the mean feature value (1 for
above and O for below) of a 2000-cell sample stratified across all
wells. After this transformation, k-means, fuzzy C-means, and hierar-
chical clustering all perform equally well at identifying distinct
shapes, or clusters, within the population (Supplemental Figure S2).
We found that k-means was the fastest computationally, and there-
fore we subsequently used this procedure. To determine the num-
ber of shapes/clusters that best describes the data set as a whole in
an unsupervised manner, we again calculated the silhouette value
across a range of cluster numbers on the transformed data, but still
no maximum silhouette score emerged (Supplemental Figure S3A).
However, by using the silhouette index to measure how stable clus-
tering is over resampling (Shamir and Tishby, 2008; von Luxburg,
2010), calculating what we term here the “stability score,” we found
clear maxima at two or six shapes (Figure 1A and Supplemental In-
formation), corresponding to stable cluster centroids (Figure 1B). By
looking at the feature values of each SC's centroid (Figure 1C) and
images enriched for an SC, an understanding of the shapes present
in that SC emerges. When clustered as two shapes, SCq is com-
prised of mesenchymal shapes defined by “high-symmetry” and
“low-length-to-width” features. SC is typified by protrusive bipolar
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cells with long protrusions that are symmetrical about all axes. SC,
comprises cells with amoeboid shapes and is identified by “high-
roundness” and “low-symmetry” features (Figure 1C). The low sym-
metry of these cells is due to the fact that most cells in this category,
although rounded, are not perfectly round, likely due to the pres-
ence of small protrusions and blebs. These two SCs support the
well-established idea that melanoma cells in three dimensions exist
in amoeboid and mesenchymal shapes (Sahai and Marshall, 2003;
Sanz-Moreno et al., 2008; Friedl and Wolf, 2009; Yin et al., 2013).
Considering six shapes, we see three forms that, although quan-
titatively distinct, would normally be qualitatively classed as amoe-
boid (“large round,” “small round,” and "ellipse” shapes) and an-
other three that would be considered mesenchymal (“teardrop,”
“spindle,” and “star” shapes; Figure 1B). By plotting the frequency
distributions of the six shapes in wild-type populations in 2D PC
space, we observe that the small round and ellipse shapes are
closely related and together represent the predominant shapes ad-
opted in three dimensions by wild-type melanoma cells (Figure 1C).
Together, we consider the small round and ellipse shapes to be the
classically defined amoeboid form (Sahai and Marshall, 2003). Al-
though qualitatively similar to amoeboid shapes, large round cells
are quantitatively distinct, and it is likely that these cells have been
misclassified in previous studies in which shape classification was
performed by human observers. Of note, these cells do not appear
to forms blebs, suggesting that they are round but not contractile.
The second-most-predominant shape is the spindle shape, which
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would classically be defined as mesenchymal (Figure 1C). The star-
shaped and teardrop-shaped cells appear to be rare forms that exist
between amoeboid and mesenchymal in shape space. Previous
studies classified multiprotrusive, star-like shapes as mesenchymal
(Sanz-Moreno et al., 2008). Thus our unsupervised analysis charac-
terized the shape space explored by melanoma cells in 3D soft col-
lagen. In agreement with previous qualitative studies, rounded and
spindle shapes are the dominant shapes in populations, but we see
that additional shapes are indeed present in both wild-type cells
and are enriched in populations in which Rho-family GTPases have
been systematically depleted.

Effects of gene depletion on the exploration of shape space
By analyzing how gene depletion alters the distribution of single-
cell shapes, we assign gene depletions a “shape cluster profile”
(SCP; a generalization of the Treatment Condition Heterogeneity
Profile in Sailem et al. [2014])—specifically, a unit vector with ele-
ments (one for each SC) giving the fraction of cells classified into an
SC. An SCP describes the morphological heterogeneity present in a
population.

Hierarchical clustering of SCPs results in four groups with differ-
ent shapes at the population level (Figure 2A). Images of represen-
tative knockdowns for these groups are shown in Figure 2B. In all
cases, depletion results in heterogeneous populations, although
populations and clusters are often enriched for one or two shapes.
The largest group of SCPs, which we term “transitional,” is enriched
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FIGURE 2: Rho-family GTPases regulate the exploration of shape space in 3D matrices. (A) Hierarchical clustering of
genes based on shape cluster profiles (SCPs), which define the fraction of cells in a shape cluster (SC) averaged over
repeats. Wards linkage was used for clustering, with a cut-off value of 0.3 (maximum distance 1). Validations with
individual OTP siRNAs was performed and p values for the best validating siRNA against a null distribution are
displayed. (B) Images of representative knockdowns for the four groups. Scale bars, 50 pm. (C) Frequency distribution
of Rnd1-depleted cells (left) and Rac3-depleted cells (right). Rnd1-depleted cells are enriched in large round cells, and
Rac3 is enriched in spindle-shaped cells. The distribution of wild-type cells is shown in Figure 1B.
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for ellipse and teardrop shapes while having very few star shapes.
Rac1 or RhoG depletion results in a transitional phenotype consis-
tent with previous studies showing that Rac1 is required for protru-
sion and inhibition induces rounding in HT1080 cells in a 3D colla-
gen matrix (Sanz-Moreno et al., 2008; Yamazaki et al., 2009) and
that RhoG can promote Rac1 activity and polarized protrusions
(Damoulakis et al., 2014). Like Rac1 depletion, RhoA depletion also
results in a transitional phenotype, but RhoA is part of a subcluster
that is phenotypically distinct from the Racl- or RhoG-depleted
cells. RhoA depletion results in a weakly penetrant phenotype in
which there is a small increase in spindle, teardrop, and ellipse
shapes compared with wild-type cells (Figure 2A).

The second group has increased numbers of large round cells.
Of note, Rnd2 (Figure 2C), Rnd3, and RhoB fall into this group,
agreeing with evidence that Rnd2 and Rnd3 activate RhoB in endo-
thelial cells (Gottesbuhren et al., 2013). Because the Rnd2/3-RhoB
axis promotes contractility (Gottesbuhren et al., 2013), this supports
the idea that loss of contractility may lead to the large round shape
and an inability to generate blebs similar to highly contractile small
round cells. This is in contrast to small round and ellipse-shaped
cells, in which contractility is high. The third group is enriched for
star and spindle shapes. Rac3, RhoH, and RhoD depletions are in
this group, suggesting a role for these GTPases in suppressing pro-
trusions and/or adhesion, thereby promoting amoeboid morpho-
genesis. In fact Rac3 promotes rounding, weakens adhesions, and
blocks neurite outgrowth in neuronal cells (Hajdo-Milasinovic et al.,
2007, 2009). The final group is enriched in spindle shapes, but no
shape is notably reduced. The wild-type cell population features in
this group; this agrees with our findings that wild-type populations
generally contain the full range of shapes that cells adopt, although
often at low levels.

Of note, our analysis reveals that depletion of RhoA, RhoB, or
RhoC leads to distinct single-cell and population-level phenotypes.
Thus, although RhoA, RhoB, and RhoC are structurally very similar
and share activators and effectors, they are not functionally redun-
dant regarding their regulation of cell shape. Our findings are in line
with several studies showing diverse roles for these proteins (Ridley,
2013). Similarly, Rac1, Rac2, and Rac3 have very diverse functions
based on our analysis, despite their similarity and shared activators/
effectors, consistent with the idea they have unique functions (Gu
et al., 2003; Wheeler et al., 2006).

To validate the sSiIGENOME RNAI pool data set, we depleted all
Rho GTPases using four individual OnTargetPlus (OTP) siRNAs (full
results in the Supplemental Information). All six shapes present in
the siGENOME data set were also in the OTP data set, supporting
that we have well characterized the shape space explored by mela-
noma cells. We saw significant reproducibility in the phenotypes
resulting from siIGENOME and OTP siRNAs (Figure 2A and Supple-
mental Figure S4D).

Quantifying shape dynamically

To understand how melanoma cells explore shape space over
time, we recorded the number of transitions cells make from one
shape (as defined by membership in an SC) to another between
5-min time points in a matrix of all possible transitions, including
shapes staying the same (transition to self). We divided the matrix
of all transitions by the total number of transitions made for a
gene knockdown; each matrix element is therefore the percent-
age of all transitions being made between two shapes defined by
the row and column. We are likely not missing forms that would be
seen by imaging at shorter time points, since after averaging over
all transition matrices, we observe that transitions are much more
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frequently made between closely versus distantly related shapes
(Figure 3A).

This analysis reveals the existence of two different routes be-
tween the amoeboid (here the small round and elliptical forms) and
mesenchymal (spindle) forms. In one route, transitions between
amoeboid and mesenchymal forms occur by polarized ellipse and
teardrop intermediates—here termed the “polar” route. In contrast,
cells also transition via the large round and star-shaped intermedi-
ates, which we term the “apolar” route. Although other transitions
occur, these happen at a much lower frequency (Figure 3B). Of note,
we see no directionality to shape transitions; the matrices are largely
symmetrical about the diagonal, meaning that transitions between
shapes are highly reversible (Figure 3A). Quantitatively, the sum of
upper triangular elements divided by the sum of lower triangular
elements (excluding diagonal) averaged over all gene depletions
gives a ratio of 1.0028, with SD of 0.0098.

We find that gene depletion has specific effects on shape dy-
namics, as shown in the array of transition matrices (Figure 3D). To
emphasize the effect of depletion on transitions, we calculate a “dy-
namic score” describing the number of transitions between shapes
compared with shapes staying the same (Figure 3E). This is calcu-
lated as the sum of off-diagonal elements divided by the sum of
diagonal elements; higher values mean that a population is more
dynamic. The average value of this score is 0.5, that is, a single
shape transition occurs in three frames (15 min). By hierarchical clus-
tering of the transition matrices, gene depletions can be grouped
into five major groups: 1) cells in which the polar route is enriched
and mesenchymal morphogenesis is weakly compromised (Rnd1
RNAI); 2) cells in which mesenchymal morphogenesis is compro-
mised (Rnd2 RNAI); 3) cells in which the apolar route is enriched and
amoeboid morphogenesis is weakly compromised (RhoD RNAI);
4) cells with transition dynamics that are similar to wild type; and
5) cells in which amoeboid morphogenesis is compromised and
the dynamic score is notably lower (Rac 3 RNAI). In cases in which
gene depletion results in an enrichment of either polar or apolar
transitions, we do not see a block in transitions via the other route,
and the overall dynamic score is therefore higher (groups 1 and 3
generally have a higher dynamic score than groups 2, 4, and 5). A
parsimonious explanation of how gene depletion can alter transition
dynamics without greatly affecting amoeboid or mesenchymal mor-
phogenesis is that these genes regulate the dynamics of cycling/
oscillatory processes required for conversion between forms, such
as adhesion turnover, microtubule dynamics, and actin flow, but are
not essential for any particular process. Taken together, these data
show that the depletion of Rho-family GTPases can either prevent
mesenchymal or amoeboid morphogenesis (groups 3 and 5) or alter
transition rates through the apolar or polar routes with less effect on
the adoption of the mesenchymal or amoeboid morphogenesis per
se (groups 1 and 3).

DISCUSSION
Describing the shape space explored by any cell type in a given
environment is both a biological and data analysis challenge, but
this is particularly so when describing the space explored in 3D en-
vironments, where the potential shape space that cells can explore
expands and in which cells are difficult to image. However, because
historically most studies have been done using cells cultured on 2D
plastic tissue culture dishes, it is important to find means to under-
stand cell morphogenesis in 3D systems that more closely resemble
the environment that cells would encounter in vivo.

With regard to the analytical challenge of describing shape
space, we find that binning continuous features into binary values
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FIGURE 3: Melanoma cells transition between amoeboid and mesenchymal shapes using two distinct routes. (A) Heat
map showing the percentage of transitions between shapes including to self (diagonal) averaged across all gene
knockdowns; log-scale coloring. (B) Alternative visualization of the matrix shown in A. Weighted edges show the mean
percentage of transitions made between shapes; the majority of transitions are made between “neighboring” shapes.
The total joint probability (shown as percentage) of a cell going from small round to spindle via either route is given for
a sense of the overall flux along each route; this is calculated as the sum of joint probabilities for the three possible ways
of transitioning along either the polar or apolar route (see Supplemental Table S5 for individual joint probabilities).

(C) Percentage of cells in a given shape staying in that shape. (D) Effect of depletion on the number of transitions being
made; color as in A. In addition, off-diagonal values divided by diagonal values are given beside the gene name as a
statistic of how dynamic a knockdown is, termed the “dynamic score.” (E) Weighted graphs of four representative gene
depletions, which emphasize how gene depletion affects dynamics. The dynamic score and route percentages based on

joint probability are also shown for the example depletions.

beneficially transforms the data before identification of SCs; this is
independent of SC number. By using measures of cluster stability to
determine the number of SCs present in the data set in an unsuper-
vised manner, we then minimize the bias in our quantification of the
shape space explored by melanoma cells. This method is generaliz-
able to quantification of cell shape in other studies, and we believe
that it is also particularly amenable to noisy data sets, where clear
clusters do not emerge. Here we find that melanoma cells exist as
six different shapes. Of note, we cannot consider all these shapes as
discrete forms, since no clear maximum emerged from measuring
cluster membership.

We envision melanoma shape space as an energetic landscape
where amoeboid and mesenchymal shapes exist as stable minima
separated by barriers of potential. When cells overcome this barrier,
this results in a switch-like transition between amoeboid and mesen-
chymal cells. There are two different routes by which this barrier can
be overcome (Figure 4A). The first route is defined by “polar inter-
mediates” and is used when polarity is maintained during transi-
tions, for example, as cells are migrating toward chemoattractants
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and/or during “one-dimensional” migration, such as when migrat-
ing along collagen fibers (Doyle et al., 2009). We propose that
“group 1" genes such as Rnd1 promote switch-like transitions be-
tween the amoeboid and mesenchymal forms by acting as parts of
signaling networks whose emergent behavior leads to the adoption
of a single or multiple (e.g., bistable) shapes in the presence of po-
larizing cues. Thus loss of Rnd1 alters signaling network activity,
leading to both increased transitions between amoeboid and mes-
enchymal shapes and the accumulation of intermediate polar forms
as the transitions become less switch-like (Figure 4B). Of note, Rnd1
is a negative regulator of ERK signaling (Okada et al., 2015), and we
have demonstrated that ERK promotes rounding (Yin et al., 2013).
Increased ERK signaling in Rnd1-depleted cells could destabilize
protrusions and/or lead to rapid interconversion between amoe-
boid and mesenchymal shapes, resulting in the accumulation of po-
lar shapes. Of interest, Rnd1 depletion accelerates disease in mouse
models of breast cancer (Okada et al., 2015). Although the role of
Rnd1 as a tumor suppressor has largely been attributed to increases
in ERK signaling, it is tempting to speculate that the increased
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FIGURE 4: A model for shape transitions made by melanoma cells in
3D collagen matrix. (A) In this model, amoeboid (small round, ellipse)
and mesenchymal shapes (spindle) can be considered regions of low
potential in energetic space, whereas large round, star-shaped, and
teardrop shapes are transitional/unstable forms. (B) To convert
between amoeboid and mesenchymal shapes and maintain polarity,
cells transition through a teardrop intermediate. Rnd1 activity
promotes transitions through this route and thus is responsible for the
height of the energetic barrier between amoeboid and mesenchymal
shapes during the maintenance of polarity. Depletion of Rnd1 leads to
the accumulation of teardrop intermediates and more frequent
transitions because the energetic barrier is reduced. (C) In the apolar
route, polarity is not maintained. RhoD is required to establish the
height of the energetic barrier between amoeboid and mesenchymal
shapes as cells transition along the routes. Depletion of RhoD leads to
the accumulation of transitional forms and more frequent transitions.
Rac3 is required for amoeboid morphogenesis. Rnd2 is required for
mesenchymal morphogenesis. Rnd1 and RhoD may antagonize each
other (Zanata et al., 2002; Fansa et al., 2013).

morphological heterogeneity resulting from the accumulation of
polar intermediates could also drive disease.

In the apolar route, cells transition between a mesenchymal and
large round form via the star shape, likely the result of cells with less
polarity and contractility and increased adhesion (Figure 4C). We
propose that cells transition between shapes using this route when
polarity does not need to be maintained, such as in the absence of
any chemoattractant. Based on the phenotypes of cells that accu-
mulate in the apolar route (“group 3" genes), we propose that in
three dimensions, a mesenchymal-to-amoeboid transition involves
three processes: inhibition of protrusions, induction of contractility,
and turnover of adhesions. In particular, RhoD depletion enriches
for cells in this route as transitions become less switch-like. We pos-
tulate that this could be the result of reduced adhesion turnover
rates (Nehru et al., 2013). RhoD and Rnd1 can outcompete each
other for the same binding motif in plexin A1 (Zanata et al., 2002;
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Fansa et al., 2013), a mechanism that may serve as a basis for cross-
talk between the apolar and polar routes. Such cross-talk would be
required in order to suppress one transition mode as the other is
occurring.

Previous work suggested that there is antagonism between pro-
protrusion signaling mediated by Rac1 GTPase and procontractility
pathways mediated by RhoA-ROCK signaling in regulating the mor-
phogenesis of other melanoma cell lines (Sanz-Moreno et al., 2008).
Our work here does not contradict this model but suggests that in
WM266.4 cells the individual contributions of both RhoA and, to a
lesser degree, Racl contribute little to cell shape in three dimen-
sions. Instead, our results suggest a major role for RhoC, RhoB,
Rac3, and other less-studied Rho GTPases, such as RhoD and RhoH,
in the regulation of melanoma cell morphogenesis. RhoC is a likely
upstream regulator of ROCK kinases and contractility in WM266.4
cells (Acton et al., 2014; Julian and Olson, 2014), which is supported
by the observation that RhoC RNAi results in large round cells that
likely are poorly contractile (Figure 2), Our data suggest that Rac3
does not promote protrusions but instead promotes contractility
(Hajdo-Milasinovic et al., 2007, 2009). The role of other GTPases,
especially those responsible for protrusion, is less clear. Whether the
role of different GTPases in regulating melanoma cell shape in three
dimensions is cell-line dependent and/or matrix dependent still re-
quires investigation.

In conclusion, our work demonstrates that melanoma cells dy-
namically explore a more diverse shape space in 3D environments
than previously believed based on qualitative studies. It remains un-
clear how transitions with these routes play a role in migration and
ultimately metastasis of melanoma cells. In vivo the ability to use
these two different routes might allow greater plasticity and ulti-
mately increased disseminatory capability than either shape alone.

MATERIALS AND METHODS
Experimental procedures
PTEN-null WM266.4 melanoma cells from R. Marais (Paterson Insti-
tute, Manchester, United Kingdom) were maintained in DMEM plus
10% fetal bovine serum (FBS). siGENOME SMART pools (Dharma-
con, Denver, CO) were used for live-cell imaging experiments.
RNAI transfection was performed using RNAIMAX Lipofectamine
2000 reagent (Invitrogen, Waltham, MA) according to the manufac-
turer's protocol on cells cultured on plastic. Two days after transfec-
tion, cells were trypsinized and seeded on top of 50 pl of 1.7 mg/ml
fibrillar bovine collagen 1 in DMEM plus 10% fetal calf serum (FCS),
prepared as per manufacturer's protocol (PureCol; Advanced Bio-
Matrix, San Diego, CA), which was aliquoted into wells of a 96-well,
glass-bottomed, collagen-coated plate. Cells were allowed to ad-
here for 3 h, and then medium was then changed to 0% FCS. After
16 h, CellTracker orange was added as per manufacturer's protocol
and cells were imaged live at 37°C at 10% CO; using the Opera
QEHS (PerkinElmer, Waltham, MA) system, with a 20x air objective,
every 5 min. Movies of up to 40 min were analyzed. At least four
fields of view were captured per well, but curvature in the collagen
meniscus often prevented further fields from being captured. Well
repeat number also varied. The minimum repeat number was two,
but often obtaining higher numbers was difficult due to the diffi-
culty of imaging through thick collagen (Supplemental Figure S1).
During validation of phenotypes using OnTargetPlus siRNA
(Dharmacon), cells were prepared as before but fixed 24 h posttrans-
fection with 4% paraformaldehyde and stained for tubulin using anti-
tubulin antibody (1:1000; A11126; Invitrogen) and nuclei using Hoe-
scht (1:1000; H33258; Sigma-Aldrich, St. Louis, MO). Imaging was
performed as described but at a single time point capturing a
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30-plane zstack. Maximum intensity projections were taken and
used for image analysis.

Features and data preprocessing

Cells were segmented on thresholds using Acapella software
(PerkinElmer). Fifteen features were recorded for each cell (Sup-
plemental Information), many as described in Boland and Murphy
(2001). Cells touching the edge were removed, and a linear classi-
fier, manually trained, removed poorly focused/segmented cells.
Tracking was performed by searching for the closest centroid in
the next frame. A track would stop if a movement were greater
than the cell width. Cells tracked fewer than four frames were dis-
carded. This was carried out using in- house C++ code. In static
validation, features were standardized, and cells with a feature
outside five SDs were removed. All data and code are freely avail-
able at bitbucket.org/samocooper/wmpaper-data-and-code/src/
d35c7dc716ba?at=master.
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