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Abstract

Purpose: Convolutional neural network (CNN) methods have been proposed to quantify lesions
in medical imaging. Commonly, more than one imaging examination is available for a patient,
but the serial information in these images often remains unused. CNN-based methods have the
potential to extract valuable information from previously acquired imaging to better quantify
lesions on current imaging of the same patient.

Approach: A pretrained CNN can be updated with a patient’s previously acquired imaging:
patient-specific fine-tuning (FT). In this work, we studied the improvement in performance
of lesion quantification methods on magnetic resonance images after FT compared to a pre-
trained base CNN. We applied the method to two different approaches: the detection of liver
metastases and the segmentation of brain white matter hyperintensities (WMH).

Results: The patient-specific fine-tuned CNN has a better performance than the base CNN. For
the liver metastases, the median true positive rate increases from 0.67 to 0.85. For the WMH
segmentation, the mean Dice similarity coefficient increases from 0.82 to 0.87.

Conclusions: We showed that patient-specific FT has the potential to improve the lesion quan-
tification performance of general CNNs by exploiting a patient’s previously acquired imaging.
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1 Introduction

Lesion quantification is an important step in medical image analysis. Over the past few years,
convolutional neural network (CNN)-based lesion quantification methods have been proposed
for use in medical image analysis1–5 to aid radiologists in the detection and segmentation of
lesions. For some diseases or treatments, there is a clinical need to perform multiple scans over
time, for example, to monitor disease progression or treatment response. For these patients, more
than one imaging examination is available. The previously acquired scan, i.e., the baseline scan,
contains patient-specific information that could be exploited by the CNN-based method to better
quantify the current scan of the same patient, i.e., the follow-up scan.

The conventional way to train a CNN is to provide a (large) example dataset in which the
lesion of interest has been identified or segmented. The trained CNN can then be applied in
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comparable data sets. However, CNN-based methods do not always provide a satisfying per-
formance for clinical practice. Differences in image quality and variations among patients are
often not fully covered within the method and can cause unsatisfactory results. As a result of
training a CNN on a general population, the CNN is not fully adapted to the specific details of an
individual patient.

Updating a CNN toward the specific features of a patient could improve the performance of
the CNN for that patient.6,7 A previously acquired scan of the same patient can be used for this
purpose since it is already available and can serve as a reference during examination of the
follow-up scan. We, therefore, propose a method to enhance the performance of lesion quanti-
fication in a follow-up scan with a patient-specific fine-tuning (FT) approach. To illustrate our
envisioned workflow: at first visit, a patient’s medical images are processed by the base CNN
and the results are visually inspected and corrected where needed. At a follow-up visit, the base
CNN can be updated with the corrected results from the first visit of the same patient to improve
the performance of the method on the new scan.

FT a pretrained CNN has the benefit of obtaining good results using only a small data set
during the FT step, and has successfully been applied in previous studies. For example, medical
image domain knowledge has been transferred to a CNN pretrained on natural images by FT the
CNN with medical images.8,9 Pretrained CNNs have been fine-tuned toward the features of one
specific image, resulting in better segmentations of that image.10,11

A patient-specific fine-tuned CNN has learned the specific features of abnormalities and the
surrounding healthy tissue of a patient to improve the detection or segmentation in a follow-up
scan. This approach is based on the assumption that the baseline and follow-up scan of a patient
share the features of healthy tissue and abnormalities.

We present and evaluate the patient-specific FT approach on two applications; the detection
of liver metastases on magnetic resonance imaging (MRI) and the segmentation of brain white
matter hyperintensities (WMH) on MRI.

The detection of (new) liver metastases is important to monitor disease progression and for
treatment planning. Treatment selection is based on the detection findings, i.e., the location and
the number of metastases. Disease progression is monitored by follow-up scans. Detection of
these metastases is the primary goal.

WMH is a common radiological finding in the elderly population, and is generally consid-
ered to reflect cerebral small vessel disease.12 The presence and extent of WMH are associated
with cognitive decline and dementia.12–14 In particular, progression of WMH over time has been
linked to cognitive decline and risk of dementia.15,16 Quantification of WMH volume changes
over time could contribute to the monitoring of disease progression and provide clinicians with
relevant prognostic information. WMH segmentation for the purpose of volume measurements is
the primary goal.

Furthermore, different aspects of patient-specific FT are studied using the two applications.

2 Materials and Methods

The proposed lesion quantification framework is shown in Fig. 1. First, a CNN is trained using
the training set, referred to as the base CNN model. Next, this base CNN is refined for each
individual patient in the patient-specific FT step. A previous MRI scan of a patient, referred
to as the baseline scan, is used to fine-tune the network to the specific features of that patient
and its lesions. During the testing step, this patient-specific CNN model is used to detect or
segment lesions in a follow-up MRI scan of the same patient. Two different MRI sequences
are used to train and test the CNN model.

2.1 Data

The patient-specific FT approach is demonstrated on two different data sets: abdominal MRI for
liver metastasis detection and brain MRI for WMH segmentation. The University Medical
Center Utrecht (UMCU) Medical Ethical Committee has reviewed and approved this study and
has waived informed consent due to the study’s retrospective nature.
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2.1.1 Liver metastases detection

In this study, abdominal MRI of 47 patients with liver metastases from the UMCU, the Netherlands,
were included. Around 16 of them had at least two consecutive MRI examinations within three
months to a year. All patients underwent a clinical MRI examination, including dynamic contrast-
enhanced (DCE) MRI series and diffusion weighted (DW) MRI, acquired on a 1.5T scanner
(Philips, Best, the Netherlands). These two MRI sequences were used to train the CNN.

The DCE-MRI series was acquired in six breath holds with one to five three-dimensional (3D)
images per breath hold, with a total of 16 3D images. The DW-MRI was acquired with three
b-values: 10, 150, and 1000 s∕mm2. The DCE-MRI was corrected for motion using a principle
component analysis-based groupwise registration.17 Intensity normalization was applied to both
MRI sequences and the DW-MRI was registered to the DCE-MRI by a rigid transformation, fol-
lowed by a b-spline transformation (the parameter files used are available at elastix.bigr.nl/wiki/
index.php/Par0057). The resulting images have 100 slices and matrix sizes of 256 × 256. The oxel
size is 1.543 × 1.543 × 2 mm3.

The liver metastases were manually segmented on the DCE-MRI by a radiologist in training
and verified by a radiologist with more than ten years of experience. The data set included mainly
colorectal metastases, neuroendocrine metastases, and some other metastasis types (i.e., other
gastrointestinal metastases and breast metastases). On average, 30% of the liver slices contained
liver metastases. Liver masks were automatically obtained using our previously developed
segmentation method.18

MRI data from 31 patients of which only one MRI examination was available were used to
train the base CNN. The slices for training were limited to only the slices containing liver meta-
stases for a more balanced data set. Slices without liver metastases were not included in the
training set. This resulted in a total number of 798 two-dimensional (2D) slices; 85% of the
slices were used for training and 15% for validation. The remaining 16 patients, with available
baseline and follow-up scans, were used for testing. The scans had an average of six metastases
per patient, ranging from 1 to 31 metastases.

2.1.2 WMH segmentation

The brain MRI data of 80 memory clinic patients with WMHwere included in the study. Around
20 of the patients were from the Dutch Parelsnoer Institute—neurodegenerative diseases study,19

Fig. 1 Proposed lesion quantification framework, shown with the liver MRI as an example. First a
base CNN is trained with a training set consisting of multiple patients. Next, the base CNN is refined
in the patient-specific FT step using a previous MRI exam of a patient (the baseline scan). The fine-
tuned CNN is used to detect or segment lesions in a follow-up MRI scan of the same patient. The
images are cropped to focus of the organ of interest. The cropped image size is 128 × 128 pixels.
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from the UMC Utrecht, the Netherlands, and the remaining 60 were from the WMH challenge
training set.20 The 20 patients from UMC Utrecht had two MRI examinations, with two years
between the two examinations.

All MRI exams were acquired with a similar protocol, with a T2-weighted-fluid-attenuated
inversion recovery (FLAIR) MRI and a T1-weighted MRI, acquired on a 3T scanner.21 These
two MRI sequences were used to train the CNN. Both MRI sequences were bias field corrected,
and the T1-weighted MRI were registered to the FLAIR images; more details can be found in
Kuijf et al.20 All images were resized to a matrix size of 240 × 240 and 48 axial slices. Voxel size
was 0.958 × 0.958 × 3.00 mm3.

The WMH were manually segmented on the axial slices of FLAIR images by an experienced
researcher in accordance with the STRIVE criteria.13 WMH segmentation was performed with
in-house developed software on MeVisLab (MeVis Medical Solutions AG, Bremen, Germany).
On average, 63% of the brain slices contained WMH. Brain masks were obtained using the SPM
software.22

The MRI data of 60 patients with a single MRI examination from the WMH challenge
were used for training. The slices for training were limited to only the slices with WMH lesions
present for a more balanced data set. Slices without WMH lesions were not included in the
training set. This resulted in a total of 1383 2D slices; about 85% of the slices were used for
training and 15% for validation. The remaining 20 patients, with a baseline and follow-up scan,
were used for testing. These scans had an average of 65 WMH per patient (range 21 to 117).

2.2 Base CNN Model

The overall architecture of the CNN was inspired by our earlier work on liver metastasis
detection.18 This fully convolutional architecture includes elements from the P-net architecture,
which has proven to be efficient for FT.10 As most MRI exams usually consist of multiple MRI
sequences, we modified the original P-net to include a dual pathway that can process two MRI
sequences, each in a separate pathway to extract specific feature maps for those sequences. The
input image for each pathway was one MRI sequence. If the MRI sequence had multiple
instances, such as the phases of the abdominal DCE-MRI, the 2D images were combined into
one input image with the instances as channels. Variations on the network architecture have been
tested in our earlier work.18 From Fig. 2, we can see an overview of the fully convolutional
network architecture.

Fig. 2 Fully convolutional network architecture for lesion quantification. The blue blocks represent
the convolutional layers, BN, and ReLU, or Softmax activation. The size of the kernel of each
convolutional layer is given in the block, followed by the number of kernels and the dilation rate
of the kernel. The dashed line indicates the trainable layers during the patient-specific FT step.
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Each pathway had 13 convolutional layers (two convolutional layers and 11 dilated convolu-
tional layers23 with varying dilation rates), each having 3 × 3 convolution and 64 kernels, split
into five blocks. The feature maps at the end of each block of each pathway were concatenated
in the third dimension, resulting in a feature map with 640 kernels, and were passed to two
convolutional layers with a 1 × 1 convolution with 128 and two kernels, respectively. This
resulted in a receptive field of 123 × 123 pixels.

During training, categorical cross-entropy was used as the loss function. This loss function
was calculated on a pixel-level resulting in detection by segmentation. Rectified linear unit
(ReLU) activation and batch normalization (BN) were used in all the convolutional layers, except
for the final layer, which had a Softmax activation. Two dropout layers were applied before and
after the second to last layer. The dropout rate was set to 0.2. The classes were weighted based
on class frequencies using a weighted loss function. The class weights were set to 1 for the back-
ground class and to 5 for the lesion class. He uniform was used as initializer and Adam as
optimizer with a learning rate of 0.0001. The network was trained for 10,000 iterations, with
four images per minibatch. The network with the lowest validation loss was used as the final
network.

Around 25 patches of 128 × 128 pixels were taken from each slice for data augmen-
tation. The patches originated from the organ of interest and have overlapping areas. Online
data augmentation was applied by random rotation of the patches, with rotation angles of
�45 deg.

2.3 Patient-Specific Fine-Tuning

In the patient-specific FT step, the last two layers of the base CNN were further trained with the
baseline scan of a patient to improve the lesion quantification results in the follow-up scan of
the same patient. Only the last two layers were updated, as these combine the feature maps of the
previous blocks of the two pathways and to ensure a fast FT step.

The CNN was refined by continuing training of the base CNN with the batch norm and the
weights of all layers frozen, i.e., untrainable, except for those of the last two layers. The last two
layers combine the feature maps of the previous layers to classify each pixel. FT of only these
two layers decreases the computational complexity while effectively improving the CNN model.
The two trainable layers are indicated with the dashed line box in Fig. 2.

The same loss function, optimizer, and learning rate were used as the ones during the training
of the base CNN. The CNN was refined with four images per minibatch and the number of
iterations was optimized during the experiments, see the experiments section. The images used
for FT were MRI slices of the patient’s baseline scan. The baseline scan was annotated earlier
by an expert and only slices with at least one lesion present were included in the FT step. Five
patches of 128 × 128 pixels were taken within the organ of interest region from each slice, four
patches from the corners of the region and one center patch, removing air and tissues not of
interest from the input images. The patches were randomly rotated, with rotation angles of
�45 deg. Rotation of the patches included the variance in the positioning of the body during
the MRI examination.

2.4 Lesion Quantification on Follow-Up Scan

The follow-up data were processed by the individual patient-specific CNN, i.e., the base CNN
fine-tuned with the baseline scan of that patient. The probability output of the network was
masked by the liver or brain mask.

For the evaluation, the masked probability output was postprocessed to a binary image. A
threshold of 0.5 was applied to the Softmax output of the network and morphological closing
with a structuring element of 3 × 3 × 3 was applied to fill holes. For the liver data set, the mor-
phological closing was followed by a morphological opening with a plus-shaped structuring
element of 3 × 3 to remove noise pixels. This was not applied to the brain data set, because
WMHs of 1 pixel occur frequently. For the liver data set, the resulting binary image was divided
into separate objects representing individual lesions, using voxel clustering with 26-neighbor-
hood connection.
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3 Experiments

The set up for the base CNN model and the process of FT the CNN, as explained above, are
similar for both the liver metastases detection and the WMH segmentation. This means that the
detection is done pixelwise instead of on an object-level during training and FT. The same
experiments are conducted. Only the evaluation is specified to the task that is most relevant
in clinical routine: liver metastases detection and WMH segmentation.

3.1 Liver Metastases Detection

The liver metastases detection efficacy was evaluated on object level using the true positive rate
(TPR), the number of false positives per case (FPC), and the F1 score. As the values of the TPR,
FPC, and F1 score do not have a normal distribution, the median and interquartile range (IQR)
were reported and the Wilcoxon signed-rank test was used to test for significant differences.

The TPR was calculated as the number of true positive objects divided by the total number of
true lesion objects. The true lesion objects were true positive objects (detected lesions) and false
negative objects (missed lesions). A lesion was considered detected, and thus a true positive
object, when the manual annotation and the predicted segmentations had an overlap >0.
The FPC was calculated as the number of detected objects not overlapping with any true lesion

object. The F1 score was calculated as 2�recall�precision
recallþprecision

, where recall was the TPR as defined above

and precision was the number of true positive objects divided by the total number of detected
objects (both true positive and false positive objects).

3.2 WMH Segmentation

WMH segmentation on brain MRIs was evaluated per MRI exam using the overall Dice sim-
ilarity coefficient (DSC) and the absolute volume difference (AVD). The Dice score was calcu-
lated as 2�X∩Y

XþY , where X is the automatic segmentation and Y is the manual annotation. The AVD

was calculated as abs½VðXÞ−VðYÞ�
VðYÞ � 100%, where VðXÞ is the automatic segmentation volume and

VðYÞ the manual annotation volume. The mean and standard deviation (SD) are reported and the
paired Student’s t-test is used to test for significant differences.

The following experiments analyzed different elements of patient-specific FT; the number of
iterations, the number of slices presented during FT, and a weighting scheme.

3.3 Number of Iterations

The duration of the FT should be adapted to the similarity between the baseline and the follow-up
scan, as the baseline scan can have a different appearance to the follow-up scan. For example, liver
metastases show changes in shape and size after treatment, and WMH is known to progress from
punctuate to confluent lesions over time. If the CNN is fine-tuned for too few iterations, the CNN
will not be patient specific enough. If the number of iterations is too high, the risk of overfitting
toward the baseline scan increases. The number of iterations was studied to provide the optimal
number of iterations for general use of patient-specific FT. This optimal number of iterations will
be used in further experiments. The number of iterations explored ranges from 50 to 1000.

3.4 Number of Slices

The possibility of FT with only one or two slices—instead of an entire scan—is studied to inves-
tigate the option of limiting human efforts. For the dataset used in the current study, the full manual
annotation was available, but this is not common in clinical routine. Annotating or correcting the
annotation of the baseline scan on one or two slices would be a smaller effort than annotating a full
image in case a good annotation does not yet exist. In these experiments, the number of slices that
is offered to the CNN is one, two, or all slices with lesions or the full organ of interest.

Two options were explored for the slice selection procedure. The first includes all slices for
slice selection and the second option only includes slices with lesions present for slice selection.
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The slice selection is based on the Softmax probability outcome of the base CNN on the baseline
scan. The slices with an average Softmax probability closest to 0.5 are selected, assuming that
these slices contain the most valuable information for FT the CNN.

3.5 Weighting

Weighting false negatives, false positives, and true positives, obtained after performing the lesion
quantification with the base CNN on the baseline scan, will redefine what we wanted the CNN to
learn during FT. The weights depended on which task was performed.

For the detection task, the objective was to detect the metastases on liver MRI. The weights
of the missed metastases are set to the highest value (five). The weights of the true positive pixels
in detected metastases were set to two, with the weights of false negatives and the false positive
pixels connected to the detected metastases set to 0. The background and false positive objects
weights were set to 1. In this manner, the fine-tuned CNN would be more inclined to label pixels
as liver metastasis. Over- or under-segmentation of detected metastases was not considered incor-
rect labeling, and false positive objects were considered less problematic than a missed metastasis.

For the segmentation task, the objective was to segment the WMHs on brain MRIs and get
a reliable lesion volume estimation. The weights of the false positive and false negative pixels
are set to the highest value (five), as the main goal was to reduce the incorrectly labeled pixels.
The weights of the true positive pixels were set to 2, and the true negative pixels were set to 1, to
handle class imbalance.

The range of values of the weights was based on the class weights during training of the base
CNN, which were five and one for lesions and background, respectively.

3.6 Uncertainty of CNN

The uncertainty of the CNN in detecting or segmenting the lesions was assessed by the SD in
probability outcome of the S layer. We implemented Monte Carlo dropout during test time,24,25

repeating the test phase 25 times. The SD of the probabilities over the 25 repetitions was calcu-
lated for every voxel. For the detection task, the mean SD of the detected metastases was calcu-
lated as an uncertainty metric to study the change in network uncertainty for detecting
metastases. For the segmentation task, the maximum SD of all voxels in an image was taken
as uncertainty metric to study the change in network uncertainty for the entire image.

4 Results

4.1 Liver Metastases Detection

4.1.1 Number of iterations

In Table 1, the TPR, FPC, and the F1 score are reported for different numbers of iterations during
the FT step. For 50 iterations, the TPR was similar to the TPR of the base CNN, but for 100

Table 1 Median (IQR) of the TPR, FPC, and F1 score of the liver metastases detection for a
varying number of iterations of learning for the CNN for FT. The best results are printed in bold.

TPR FPC F1 score

Base CNN 0.67 [0.32 to 1.00] 3 [0 to 7] 0.49 [0.21 to 0.67]

50 iterations 0.67 [0.20 to 1.00] 1 [0 to 3] 0.40 [0.25 to 0.80]

100 iterations 0.85 [0.44 to 1.00] 2 [0 to 3] 0.57 [0.40 to 0.67]

500 iterations 0.92 [0.33 to 1.00] 2 [0 to 4] 0.50 [0.25 to 0.71]

1000 iterations 0.85 [0.50 to 1.00] 1 [0 to 4] 0.50 [0.40 to 0.75]
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iterations and higher, the TPR improves. However, for more than 50 iterations, the FPC increased
slightly. No significant differences (Wilcoxon signed-rank test with p < 0.01) were found
between the base CNN and the fine-tuned CNN for different numbers of iterations. Based
on these results, the CNN was fine-tuned for 100 iterations for subsequent experiments.

4.1.2 Number of slices

The median (IQR) of the TPR, FPC, and the F1 score for analyses based on different numbers of
slices are given in Table 2. The slice selection considered either all liver slices or all slices con-
taining metastases. The slices with an average Softmax probability closest to 0.5 were selected.

Including all the slices with liver metastases for CNN FT gave the best results for liver meta-
stasis detection. FT the CNN with only one or two selected slices of the liver did not improve the
results.

4.1.3 Weighting

The median (IQR) of the TPR, FPC, and F1 score for the base CNN, fine-tuned CNN without
weights, and fine-tuned CNN with weights are given in Table 3. The FT was done for 100 iter-
ations and included all metastases slices. Putting more weight on the missed liver metastases led
to more detected metastases, but at the cost of more false positive objects.

4.1.4 Qualitative results

Some visual examples of lesion detection by the base CNN and by the patient-specific CNN are
shown in Fig. 3. The patient-specific CNN was fine-tuned in 100 iterations, including all slices

Table 2 Median (IQR) of the TPR, FPC, and F1 score for a ranging number of slices presented to
the CNN for FT. The best results are printed in bold. No significant differences were found between
the Base CNN and all options.

TPR FPC F1 score

Base CNN 0.67 [0.32 to 1.00] 3 [0 to 7] 0.49 [0.21 to 0.67]

1 slice liver 0.50 [0.11 to 1.00] 4 [1 to 8] 0.33 [0.12 to 0.64]

2 slices liver 0.42 [0.11 to 1.00] 1 [0 to 5] 0.33 [0.15 to 0.67]

1 slice metastases 0.67 [0.08 to 1.00] 4 [2 to 6] 0.31 [0.00 to 0.50]

2 slices metastases 0.67 [0.08 to 1.00] 3 [1 to 5] 0.31 [0.00 to 0.44]

All metastases slices 0.85 [0.44 to 1.00] 2 [0 to 3] 0.57 [0.40 to 0.67]

All liver slices 0.67 [0.20 to 1.00] 0 [0 to 3] 0.56 [0.33 to 0.80]

Table 3 Median (IQR) of the TPR, the FPC and the F1 score of the liver metastases detection,
for weighting the true positives, false negatives, and false positives during the patient-specific FT.
The best results are printed in bold.

TPR FPC F1 score

Base CNN 0.67 [0.32 to 1.00] 3 [0 to 7] 0.49 [0.21 to 0.67]

FT CNN 0.85 [0.44 to 1.00] 2 [0 to 3] 0.57 [0.40 to 0.67]

Weighted FT CNN 1.00 [0.62 to 1.00] 6 [3 to 14]* 0.42 [0.29 to 0.57]

*Indicates a significant difference with results of the “base CNN” (Wilcoxon signed rank test with p < 0.01).
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with metastases present and without weights. After patient-specific FT the median TPR
increased from 0.67 to 0.85, the median FPC decreased from 3 to 2, and the F1 score increased
from 0.49 to 0.57.

Metastases smaller than 1 cm3 were more often missed by the base CNN than larger meta-
stases. An example is shown in the first column of Fig. 3. The TPR for the small metastases
increased from 0.13 to 0.26 after patient-specific FT, while the TPR of the large metastases only
increased slightly from 0.81 to 0.83. The increase in TPR was thus mainly due to the higher TPR
of small metastases.

4.1.5 Uncertainty of CNN

The Softmax probabilities of the detected metastases by the base CNN have a mean SD of 0.203
(�0.078). The mean SD can be considered a measure of the uncertainty of detection. The
patient-specific CNN has a mean of 0.158 (�0.070), which is significantly lower than the mean
SDs of the base CNN (p ¼ 0.003, paired Student’s t-test). The patient-specific CNN not only
detects more metastases, it is also more certain about the detected metastases.

4.2 WMH Segmentation

4.2.1 Number of iterations

All four options (50, 100, 500, or 1000 iterations) for the duration of the FT gave similar results.
The Dice score significantly increased (paired Student’s t-test with p < 0.01), and the AVD
decreases after FT in comparison with the results of the base CNN. The base CNN had a mean
DSC of 0.82 and a mean AVD of 20.7%. The fine-tuned CNNs had a mean DSC around 0.87 and
a mean AVD around 10%. Using only 50 iterations gives a slightly lower Dice score (0.85) than
the higher number of iterations. Based on these results, the number of iterations was set to 100
for the rest of the experiments.

4.2.2 Number of slices

The mean (�SD) of the Dice score and the AVD for different numbers of slices are given in
Table 4. The slice selection method selected the same slices when either all brain slices or all
WMH slices were considered for selection. The selected slices originated mostly from slices
covering the lateral ventricles and other regions with large WMH.

Fig. 3 Examples of the detection results on the follow-up scan of the base CNN and the patient-
specific CNN for three different patients. White outline = manual annotation, red outline = false
positive object, green check = detected metastasis, red cross = missed metastasis.
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Including one slice already improved the Dice score and the AVD significantly, while adding
more brain slices on top of the first one or two slices only gave a slightly better result. It is,
therefore, possible to only annotate the one or two selected slices and improve the segmentation
using these slices in the FT process.

4.2.3 Weighting

The mean (�SD) of the Dice score and the AVD for the base CNN, fine-tuned CNN without
weights, and fine-tuned CNN with weights are given in Table 5. Visual inspection of the results
showed that weighting the true positive, false positive, and false negative pixels made the CNN
more prone to label a pixel as a lesion, resulting in oversegmentation. For the WMH lesion
segmentation task, weighting the pixels did not result in a better segmentation.

4.2.4 Qualitative results

Some visual examples of the lesion segmentation on the follow-up scan by the base CNN and the
patient-specific CNN are shown in Fig. 4. The patient-specific CNN is fine-tuned using 100
iterations, including all slices with WMH lesions present and without weights. After patient-
specific FT, the average Dice score increased from 0.82 to 0.87 and the AVD decreased from
20.7% to 10.7%.

Other metrics of evaluation in theWMH challenge are the modified Hausdorff distance, TPR,
and F1 score.20 After patient-specific FT, the Hausdorff distance decreases from 2.40 to
2.01 mm, the TPR decreases from 0.84 to 0.63, and the F1 score remained 0.72. The TPR
decreased because the fine-tuned CNN missed lesions with a size of only a few pixels.
However, the other metrics improved due to the decrease in false positives and better volume
segmentation.

Table 4 Mean (�SD) of the Dice score and AVD of the
WMH segmentation for a varying number of slices for FT.
The best results are printed in bold.

Dice score AVD (%)

Base CNN 0.82� 0.05 20.7� 13.5

1 slice 0.86� 0.04* 11.2� 8.2

2 slices 0.86� 0.04* 10.7� 7.9

All lesion slices 0.87� 0.04* 10.7� 7.3

All brain slices 0.87� 0.04* 10.2� 6.9*

*Indicates a significant difference with results of the base CNN
(paired Student’s t -test with p < 0.01).

Table 5 Mean (�SD) of the Dice score and AVD of the
WMH segmentation for weighting the true positives, false
negatives, and false positives during the patient-specific
FT. The best results are printed in bold.

Dice score AVD (%)

Base CNN 0.82� 0.05 20.7� 13.5

FT CNN 0.87� 0.04* 10.7� 7.3

Weighted FT CNN 0.86� 0.05* 11.8� 10.5

*Indicates a significant difference with results of the base CNN
(paired Student’s t -test with p < 0.01).
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The majority of the incorrectly labeled pixels by the base CNN were either small false pos-
itive regions (e.g., see Fig. 4, second column) or false negative pixels as part of larger lesions
(e.g., see Fig. 4, first column). The patient-specific CNN learned to label these pixels correctly,
resulting in a higher Dice score and lower AVD and thus providing a better WMH segmentation.

Smaller lesions were harder to correctly segment than larger lesions20 and we noticed that
the patient-specific CNN missed more smaller lesions (<0.01 cm3) than the base CNN in the
segmentation, but at the same time also segmented fewer false positive pixels. The lesions and
(noisy) false positive pixels labeled by the base CNN have a similar appearance, resulting in
either labeling them all as lesions or all as background. The FT procedure seemed to put more
emphasis on reducing the smallest false positives at the cost of small false negatives. The third
column of Fig. 4 shows an example of these mislabeled pixels representing small lesions.

4.2.5 Uncertainty of CNN

The Softmax probabilities of the base CNN had a mean maximum SD of 0.398 (�0.025). The
patient-specific CNN had a mean maximum SD of 0.328 (�0.038), which is significantly lower
than the maximum SDs of the base CNN (p < 0.001, paired Student’s t-test). The voxel with the
maximum SD was always a lesion voxel. Both CNNs are thus more certain about nonlesion
voxels than lesion voxels. In Fig. 5, an example is given of the mapped SD of the probabilities.
The patient-specific CNN is more certain about the labels given, especially within large WMH.

5 Discussion

Patient-specific FT of a CNN based on previously acquired MRI yields improvements for
quantification of lesions on subsequent MRI examinations. The TPR for the detection of liver
metastases and the Dice score for the WMH segmentation both increased after patient-specific
FT. Additionally, the certainty of the patient-specific CNN was higher than the certainty of the
base CNN.

This study shows the potential of this patient-specific FT approach to improve lesion quan-
tification results on follow-up imaging. Previously acquired scans of a patient seem to hold
valuable information to refine a CNN accordingly, resulting in a better overall performance.

Fig. 4 Examples of the follow-up scan with the segmentation results of the base CNN and the
patient-specific CNN for three different patients. Green = true positive pixels, red = false negative
pixels, and blue = false positive pixels.
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The patient-specific FT step increased the lesion quantification effectiveness for two independent
clinical applications (i.e., liver metastasis detection and brain WMH volume measurement), and
we expect that this FT approach can also be applied in other clinical settings.

Some methodological considerations are important to note. The loss function calculated the
errors on pixel level rather than object level. It was, therefore, more tailored toward the segmen-
tation of liver metastases rather than the detection of the metastases. In case of large over- or
undersegmentation on the baseline scan, it is most cost-effective for the CNN to correct for those
areas. Large false positive regions are caused by tissue appearances that are not familiar to the
base CNN, such as radiofrequency ablation regions in the liver resulting from earlier treatments.
The patient-specific CNN will learn to correctly label the majority of the pixels in these regions.
However, after patient-specific FT, pixels with a similar appearance but with a different under-
lying nature can be labeled incorrectly. This is an overshoot on the follow-up scan, where the
patient-specific CNN corrects its results too much. False negatives on the baseline then might
cause some false positives on the follow-up due to a similar appearance and vice versa. As a
consequence, either more objects are detected incorrectly or more are missed. This might be
overcome by tailoring the loss function toward the detection task, i.e., calculate the loss function
on an object-level instead of on pixel level.

The patient-specific FT method assumes that the baseline and follow-up scan share features
that describe the lesions and healthy tissue. However, there can be differences between the base-
line scan and the follow-up scan due to (ongoing) treatment and variations in image acquisition.
The patients from the brain WMH data set did not undergo any treatment that would be expected
to influence WMH features, while most patients in the liver data set did. Therefore, the liver data
set indeed shows more differences between the baseline and follow-up MRI scans than the brain
data set. Variation in consecutive images increases the risk of overfitting on the baseline scan
when the CNN is fine-tuned for many iterations. Fortunately, having more than 100 iterations for
FT did not gain extra improvement compared to 100 iterations. The number of iterations should,
therefore, be limited to reduce the risk of overfitting.

Fig. 5 An example of the uncertainty (SD of Softmax probability) of the base CNN and the patient-
specific CNN. A high SD means the CNN is uncertain about its decision.
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Patient-specific FTof the CNN may be prone to overfitting. However, in our experiments, no
signs of overfitting were noticed, even when the baseline scan was visually very different from
the follow-up scan. In such cases, the patient-specific CNN was still able to detect new lesions in
the follow-up scan that were not initially detected by the base CNN. In addition, growing or
shrinking lesions were also more reliably segmented in the follow-up scan.

Regarding the number of slices to include in the FT step, both applications (i.e., liver MRI
and brain MRI) yielded the best results when all slices with lesions were included. However, for
the WMH segmentation, the inclusion of only one or two slices gave similar results. WMH has
similar features throughout the slices and the consecutiveMRI exams. This resemblance makes it
possible to fine-tune the CNN with only one or two slices, reducing the time and effort invested
in annotating the slices. The liver metastases have different features throughout the slices and
MRI exams, requiring to fine-tune the CNN with all metastases slices.

Inclusion of all slices of the organ is only beneficial if there is a balance between the lesion
and nonlesion classes. An imbalanced data set arose for the liver metastasis detection when all
the liver slices are included in the FT step. That is, on average, only 30% of the liver slices
contain liver metastases, while 63% of the brain slices contain WMH. The CNN will then learn
to distinguish different types of background (i.e., nonlesioned tissue) instead of the appearance
of liver metastases, leading to fewer false positives and unfortunately also fewer true positives. In
case of an imbalanced data set, a full lesion annotation is necessary to select the slices with
lesions and subsequently gain improvement with patient-specific FT.

Moreover, the difference in the percentage of slices containing lesions leads to a considerable
difference in the chance that a slice with lesions is selected. This resulted in the selection of slices
without liver metastases and the unsuccessful FT of the CNN. Since brain MRI contains more
slices with WMH, the chance to automatically select slices with WMH present is higher, result-
ing in a more successful FT of the CNN.

Weighting the true positives and false positives makes the detection CNN more inclined to
label a pixel as a lesion. This results in more detected lesions, but also more false positives in
comparison with the nonweighted patient-specific CNN. Considering that this approach is pri-
marily aimed at lesion detection, one might accept more false positive objects. However, for the
WMH segmentation, the weighting of the false positives, false negatives, and true positive pixels
did not result in a better segmentation.

Information on lesion location found in the baseline scan could be of additional value for the
detection method. In this study, we only considered the appearance of the lesion and nonlesion
tissue. Adding the spatial information of former lesions might improve the detection rate and
accuracy. Image registration could be used to allow for comparison between baseline and follow-
up scans. However, such a method should also take into account that more lesions can develop or
that lesions can disappear due to treatment.

This study shows the feasibility and power of patient-specific FT of a CNN. Experiments
were done using a dual-pathway CNN in this study, but this approach can also be applied to other
network architectures or loss functions.

6 Conclusion

In conclusion, patient-specific FT of a CNN for the quantification of lesions is a viable option
to enhance the performance of the method using previously acquired data of the same patient.
The CNN is fine-tuned toward that specific patient resulting in a better performance of the CNN.
It is important that slices with lesions that represent the features of all lesions are included in the
patient-specific FT step and to avoid imbalanced classes in these slices. In doing so, the patient-
specific CNN detected more liver metastases than the base CNN, with the TPR increasing from
0.67 to 0.85. The patient-specific CNN also improved WMH segmentation with the Dice score
increasing from 0.82 to 0.87.
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