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Abstract
Background and Objectives  Levodopa concentration in patients with Parkinson’s disease is frequently modelled with ordi-
nary differential equations (ODEs). Here, we investigate a pharmacokinetic model of plasma levodopa concentration in 
patients with Parkinson’s disease by introducing stochasticity to separate the intra-individual variability into measurement 
and system noise, and to account for auto-correlated errors. We also investigate whether the induced stochasticity provides 
a better fit than the ODE approach.
Methods  In this study, a system noise variable is added to the pharmacokinetic model for duodenal levodopa/carbidopa gel 
(LCIG) infusion described by three ODEs through a standard Wiener process, leading to a stochastic differential equations 
(SDE) model. The R package population stochastic modelling (PSM) was used for model fitting with data from previous 
studies for modelling plasma levodopa concentration and parameter estimation. First, the diffusion scale parameter (σw), 
measurement noise variance, and bioavailability are estimated with the SDE model. Second, σw is fixed to certain values 
from 0 to 1 and bioavailability is estimated. Cross-validation was performed to compare the average root mean square errors 
(RMSE) of predicted plasma levodopa concentration.
Results  Both the ODE and the SDE models estimated bioavailability to be approximately 75%. The SDE model converged at 
different values of σw that were significantly different from zero. The average RMSE for the ODE model was 0.313, and the 
lowest average RMSE for the SDE model was 0.297 when σw was fixed to 0.9, and these two values are significantly different.
Conclusions  The SDE model provided a better fit for LCIG plasma levodopa concentration by approximately 5.5% in terms 
of mean percentage change of RMSE.
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Key Points 

Stochastic differential equations modelling can provide 
better predictions for plasma levodopa concentration in 
patients with Parkinson’s disease.

Cross-validation can be used to investigate the value of 
the diffusion scale parameter that provides the best fit in 
a stochastic differential equations model.

1  Introduction

Parkinson’s disease is the second most common neurode-
generative disease after Alzheimer’s disease [1]. While there 
is no cure for Parkinson’s disease, levodopa medication is 
widely used as the ‘gold standard’ for treatment [2]. Treat-
ment in advanced stages can be provided by oral tablets or 
intestinal administration of levodopa/carbidopa gel (LCIG) 
through an adjustable pump. LCIG administration reduces 
the variation in levodopa concentration [3, 4].

Chan et al. [5] suggested a two-compartment pharmacoki-
netic model for levodopa concentration over a one-compart-
ment model, as the two-compartment model best described 
their intravenous data. Westin et al. [6] further developed 
this model to include the pharmacodynamic part for duode-
nal LCIG infusion and described it by four ordinary differen-
tial equations (ODEs) and a sigmoid effect equation. Simon 
et al. [7] developed a one-compartment combined pharma-
cokinetic/pharmacodynamic model in patients receiving 
levodopa orally. Othman and Dutta [8] also found that the 
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two-compartment model fits data better for both oral and 
infusion administration.

In this study, the two-compartment model for infusion 
developed by Westin et al. [6] is considered, where the first 
three equations comprise the pharmacokinetic part, which 
describes the plasma levodopa concentration of LCIG in the 
system after dose and/or infusion. In the study by Westin 
et al. [6], the absorption parameters were estimated from 
dose LCIG plasma levodopa concentration, and the phar-
macodynamic parameters from concentration–time profile 
and effect data.

The model developed by Westin et al. [6] does not include 
covariates other than weight that could affect LCIG levodopa 
pharmacokinetics, so they are included in the inter-individ-
ual and intra-individual variability. A dynamic system such 
as this is driven both by our own control inputs and distur-
bances which is out of our control and cannot be modelled 
deterministically [9]. Furthermore, measurement tools intro-
duce their own system dynamics and distortions. These fac-
tors necessitate the separation of the sources of variability.

Furthermore, pharmacokinetic/pharmacodynamic models 
such as the one developed by Westin et al. [6] have gener-
ally been based on ordinary differential equations (ODEs) 
by making assumptions of independence or non-correlation 
between the residuals. Correlation between residuals is not 
that uncommon, however, and may lead to inaccurate esti-
mates of the parameters, as demonstrated by Karlsson et al. 
[10]. According to Overgaard et al. [11], models accounting 
for correlated residuals also produce better estimates of the 
inter-individual variation and the structural parameters.

The intra-individual variations may be more precisely mod-
elled and the residual correlation could be accounted for by 
using stochastic differential equations (SDEs) [11, 12]. SDEs 
can be used to explain the discrepancies between individual pre-
dictions and observations by separating the noise into dynamic 
system noise and measurement noise [11]. The dynamic system 
noise comes from the dynamics of the system itself and could 
arise from model deficiencies or true random fluctuations in 
the system. The measurement noise, on the other hand, comes 
from the uncorrelated part of the residual variability. The sys-
tem noise allows the modeller to compensate for unknown phe-
nomena such as modelling errors, approximations, and over-
simplifications [11, 13]. However, there is a complication when 
fitting SDE models because optimisation algorithms often fail 
to find the global optima, because “the stochastic volatility term 
roughens the likelihood surface and thereby inflates the fit of 
many different parameter sets that would otherwise not have 
adequately accounted for the data” [14].

Stochastic pharmacokinetic/pharmacodynamic models 
have been demonstrated in other areas. Donnet and Sam-
son [15] reviewed estimation methods of SDEs for vari-
ous pharmacokinetic/pharmacodynamic models. Leander 
et al. [13] performed a simulation study of a stochastic 

pharmacokinetic model and studied the application on 
nicotinic acid disposition in obese Zucker rats with a one-
compartment model. Klim et al. [16] developed the R pack-
age population stochastic modelling (PSM) for mixed-effects 
models based on SDEs, and demonstrated an example with 
insulin secretion rates on a two-compartment model.

It is important to individualise the pharmacokinetic pro-
file of patients and obtain precise predictions of the distri-
bution of levodopa in their body, which in turn allows more 
refined predictions of the effect. Therefore, the purpose of 
this study is to investigate a two-compartment pharmacoki-
netic model of levodopa in patients with Parkinson’s disease 
by introducing stochasticity to account for correlated resid-
ual errors and check whether the SDE model fits better with 
the data than its ODE counterpart through cross-validation.

2 � Theory

In this section the stochastic mixed-effects theory is briefly 
introduced. First the ODE model is presented followed by 
the SDE model, where a stochastic Wiener process is added 
(in the mathematical expressions, boldface letters indicate 
vectors throughout).

2.1 � ODE Model

Non-linear mixed-effects models, with ODE, are used to 
describe data with the following general structure:

where yij is a vector of measurements or observations at time 
tij for individual i, N is the number of individuals and ni is the 
number of measurements for individual i. In such a model the 
variation is separated into intra-individual and inter-individ-
ual variations. For more details please refer to Refs. [11, 17].

The intra-individual variation is given by:

where t is the continuous time variable, xi(t) is the state 
of the model at time t (such as amount or concentration 
of drug), ui(t) is a vector of optional inputs (such as dose 
administered or infusion), tij is the jth time measurement, 
and eij is the measurement error, where eij ~ N (0, �2

e
 ). The 

distributions of the residuals for each subject were visu-
ally inspected and found to be normally distributed for the 
majority of the subjects, so an additive error model (3) was 
chosen. Furthermore, φi is a vector of parameters for each 
individual i including both population level fixed effects θ 
and individual-specific random effects ηi. Hence, φi captures 
the inter-individual variation.

(1)yij, i = 1,… ,N, j = 1,… , ni,

(2)dxi = f (xi, ui, t,�i)dt

(3)yij = h(xi, ui, tij,�i) + eij
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2.2 � SDE Model

The ODE model may be extended to an SDE by including 
an additional source of variation in the first-stage model, 
the system noise. This separates the intra-individual varia-
tion into two sources of noise—(1) measurement noise and 
(2) system noise, driven by a newly introduced parameter 
matrix σ. The system noise, which is a continuous stochas-
tic process, is added to the differential equations to allow 
for random variations in the evolution of the states. The 
measurement noise, on the other hand, enters the model at 
discrete time intervals and is included in the measurement 
equation [13]. The extended first-stage model then becomes:

where σwdw  is the stochastic part of the model and is 
referred to as the system noise. It should be noted that if 
the magnitude of the system noise σw is assumed to be zero, 
then the SDE (4) simply reduces to the ODE (2). The com-
ponent dw refers to the infinitesimal increments in the noise 
process (w). This individual system noise w is a standard 
vector Wiener process, which is a continuous time Gaussian 
process such that the mean and variance between any two 
time points are:

where I is the identity matrix. The dw Wiener increments are 
assumed to be independent across individuals and independ-
ent of the measurement error.

The SDE approach offers more flexibility by introduc-
ing an error in the differential equations, as opposed to the 
ODE framework where the error is only in the measurement 
equation. It may also account for auto-correlated residuals 
and allow for modelling different residual error correlation 
patterns [11].

With the updated model, variability is now separated into 
three sources—measurement noise, system noise, and inter-
individual variability. To fit this model, the R package PSM 
[16] was applied, which uses a Kalman filter to solve the system 
of SDEs. For more information, please refer to the Mathemat-
ics Guide to CTSM [17] or the original work by Kalman [18].

3 � Methods

3.1 � Studies and Subjects

The data used in this study were pooled from two of the three 
studies investigated by Westin et al. [6] (referred to as study 

(4)dxi = f (xi, ui, t,�i)dt + �wdw

(5)yij = h(xi, ui, tij,�i) + eij

(6)E[wt2−wt1] = 0

(7)V[wt2−wt1] =
||t2 − t1

||I,

1 and study 2 throughout). Data from their first study showed 
LCIG plasma levodopa concentrations that were generally 
stable, so were not used for our study. Some of the model 
parameters had been fixed to values found in the literature 
[5]. In our study, the parameters are fixed according to the 
aforementioned literature [5, 6]. The baseline characteristics 
for the patients in the studies used are given in Table 1.

Study 1 included three patients who had advanced Par-
kinson’s disease, were already on Duodopa®, and had no 
concomitant diseases (the data were from 2 nonconsecu-
tive days for each patient) [6]. As one of the patients did 
not attend the second day, the data are from five different 
occasions. During Study 1, the patients were given a bolus 
dose in the morning with the LCIG. When the patient’s clini-
cal effect had reached baseline again, the patient’s normal 
infusion rate was started and data were collected for 2 h. 
Blood samples and effect measurements were collected 
every 5–10 min. The plasma samples were analysed by high-
performance chromatography as described by Nyholm et al. 
[3]. No interacting drugs were administered to the patients 
during the study. This study protocol was accepted by the 
ethics committee of the Karolinska Institute, Sweden, and 
the patients had given informed consent in accordance with 
the Helsinki declaration.

Study 2 included five patients with idiopathic Parkin-
son’s disease who were difficult to keep in ‘on’ state with-
out dyskinesia (the data were from three occasions for each 
patient) [19]. Data were collected from the patients for five 
4 h-periods with five different infusion rates over 2.5 days. 
On day 1, doses that were used in the first half-day were 
well-adjusted and optimised for each individual. For day 2, 
120% of the optimised dose was used for the first half-day 
and 90% of the optimised dose on the second half-day. For 
day 3, 80% of the optimised dose was used for the first half-
day, and 110% of the optimised dose on the second half-day. 
The doses were blinded on days 2 and 3. Data were collected 
every 20–30 min. The total number of occasions for study 
2 was 15, and no interacting drugs were administered to the 

Table 1   Baseline characteristics for the patients in the reference study 
by Chan et  al. [5] and two other studies [6, 19] used for modelling 
(mean ± standard deviation)

a Stage assessed at worst
b Stage assessed during ‘on’

 Characteristic Chan et al. [5] Study 1 [6] Study 2 [19]

No. patients (male/
female)

20 (12:8) 3 (3:0) 5 (3:2)

Weight, kg 78.7 ± 12.4 69.7 ± 14.2 62 ± 8.4
Age, year 59.8 ± 10.7 62.3 ± 2.5 60.8 ± 6.1
Age at onset, year 56.1 ± 10.9 44.3 ± 5.7 48.8 ± 7.9
Duration of disease, year 3.8 ± 1.7 18.0 ± 4.6 12.0 ± 2.9
Hoehn and Yahr stage 2.5 ± 0.6 2.7 ± 0.6b 4.4 ± 0.9a
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patients during the study. The study was approved by the 
local ethics committee and the Swedish Medical Products 
Agency.

3.2 � Modelling

The pharmacokinetic model of levodopa is a system of three 
differential equations (Eqs. 8–10) as described by Westin 
et al. [6]. Initially, the ODE-based pharmacokinetic model 
was fitted with all 20 occasions and the residuals were visu-
ally checked for correlation for each patient.

It is assumed that three sources of variability (measure-
ment noise, system noise, and inter-individual variability) 
may be separated. A system noise σwdw is introduced in 
the second equation (Eq. 9), which is for the second com-
partment and where the observation is made, to extend the 
model into stochastic partial differential equations. This 
choice is made because observation is taken from the second 
compartment, where we expect a disturbance to be created 
in the system and thus introduce system noise. In this model, 
the system noise accounts for the uncertainty in the dynam-
ics that may arise from true fluctuations of the system, or any 
oversimplification of the model:

where Inf represents levododa infusion (mg/min), ai is the 
amount (mg) in compartment i, Vi is apparent volume (L) in 
compartment i, Q is inter-compartmental clearance, BIO is 
the bioavailability (fraction absorbed), and σwdw represents 
system noise. The absorption time constant (min) pharma-
cokinetic parameter is defined as TABS = 1/ka . The struc-
tural pharmacokinetic model is shown in Fig. 1.

The variability in the parameters is modelled by 
Eqs. (11–15), where Pindividual represents a random variable 
with a normal, zero-mean distribution for parameter P. The 
covariate used here is weight (WT) in kg and is included 
in Eqs. 11, 13, and 14 according to theory-based allometry 
models [20]:

(8)da0 = (Inf − kaao)dt

(9)

da1 =

(

BIO ⋅ kaa0 −

(
Q

V1

+
CL

V1

)

a1 +

(
Q

V2

)

a2

)

dt + �wdw

(10)da2 =

((
Q

V1

)

a1 −

(
Q

V2

)

a2

)

dt

(11)Vi = Vi population ⋅ e
Vi individual

⋅WT∕70

(12)BIO = BIOpopulation ⋅ e
BIOindividual ,

(13)CL = CLpopulation ⋅ e
CLindividual

⋅

(
WT

70

)0.75

Individual random effects have been added as parameters 
to be estimated in PSM, so that each individual may have 
individualised parameters. These random effects are esti-
mated by PSM using the PSM.smooth function. Estimation 
of the parameters was based on the dose provided to the 
patients and their measured LCIG plasma levodopa concen-
tration data. The default optimiser, optim, which is included 
in the PSM package was used.

The model is specified by fixing most of the parameters to 
the population mean values and variance estimated by Wes-
tin et al. [6], while allowing for individual variation (random 
effect), which is estimated. The parameter values that have 
been fixed are shown in Table 2.

The bioavailability population parameter along with its 
variability are estimated as a first step by specifying the σw 
component to be zero (ODE model), fixing measurement 
noise variance to 1, and using all 20 occasions. Bioavail-
ability is the fraction of levodopa that enters circulation after 
being introduced into the body.

In the second step, the σw component and measurement 
noise variance are estimated along with the bioavailability 
population parameter by using all 20 occasions, while fixing 
the variability of bioavailability to 0, as it was found to be 
too small in the first step. It is checked whether the stochastic 
component is significantly different from 0.

Next, to investigate whether the model with the non-
zero stochastic component provides a better fit, cross-val-
idation is performed on both ODE and SDE models. The 
data were divided into training sets and test sets for each 
patient. For the ODE model without stochasticity, the σw 
component is set to zero and bioavailability is estimated. 
For the SDE model, the σw component is set to values 
from 0.1 to 1 (1 being the upper bound as measurement 
noise variance is fixed to 1), and the bioavailability param-
eter is estimated. The random effects are estimated and 

(14)Q = Qpopulation ⋅ e
Qindividual

⋅

(
WT

70

)0.75

(15)TABS = TABSpopulation ⋅ e
TABSindividual

a0
a1
V1

a2
V2

Inf
ka Q

CL

Fig. 1   Structural pharmacokinetic model adopted from Westin et  al 
[6]. Inf levodopa infusion (mg/min); ai amount (mg) in compartment 
i; Vi apparent volume (L) in compartment i; Q inter-compartmental 
clearance (L/min); CL clearance (L/min)
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extracted, which are fixed in the test set to individualise 
the parameters.

A flow chart of the cross-validation process is shown in 
Fig. 2. For study 1, as the patients had two occasions only, 
step 3 (Fig. 2) was not needed for them, and the steps were 
not performed on the patient with only one occasion. For 
the test sets, using the dose information for that occasion 
and the individual parameters obtained from the training 

set, smoothed values are calculated by using the PSM.
smooth function; to obtain smoothed estimates at time t, 
measurements from both before and after time t are used 
by the PSM.smooth function [16].

The root mean square error (RMSE) is calculated for each 
test set and the average of all the RMSEs was calculated for 
both ODE and SDE models. The average estimate and the 
standard error (SE) of the bioavailability were also calcu-
lated at each σw value.

To check whether there was a significant difference 
between the highest and lowest average RMSEs, a binomial 
test was performed. The difference in RMSE in each trial 
(at the two σw values where the highest and lowest aver-
age RMSEs are observed) was calculated and the number 
of positive differences are counted as successes. The total 
number of trials in each cross-validation routine is 34. The 
null hypothesis is that the probability of a success is 0.50, 
and the alternate hypothesis is that the probability of a suc-
cess is not 0.50.

The percentage difference of the RMSE at each trial 
(at the two σw values where the highest and lowest aver-
age RMSEs are observed) was calculated, and the mean 

Table 2   Parameters fixed from Chan et al. [5] and Westin et al. [6]

TABS absorption time constant, BIO bioavailability, Vi apparent vol-
ume in compartment i, CL clearance, Q inter-compartmental clear-
ance 

 Parameter Population mean Variability

TABS (min) 28.5 0.42
BIO Estimated Estimated
V1 (L) 11 0.1936
V2 (L) 27 0.0625
CL (L/min) 0.52 0.0729
Q (L/min) 0.58 0.2304

Fig. 2   Steps in the cross-vali-
dation process. Study 1 has two 
patients with 2 occasions each, 
so Step 3 is not needed for those 
patients; Study 1 has one patient 
with only one occasion, so the 
steps are not performed for that 
patient. Study 2 has five patients 
with 3 occasions each, so all 
the steps are performed for each 
patient in this study. σw diffu-
sion scale parameter, RMSE 
root mean square error

Data

Test Set 1: 
Occasion 2 of Patient

Training Set: 
Occasion 1 of Patient

+ All occasions from other
patients

Obtain Smoothed
Estimates

Calculate RMSE

Extract Random Effects

Test Set 2: 
Occasion 3 of Patient

Obtain Smoothed
Estimates

Calculate RMSE

STEP 1

STEP 2: Repeat Step 1 by swapping Occasions of the Patient so that Occasion 1 goes to 
Test Set 1 and Occasion 2 goes to Training Set.

STEP 3: Repeat Step 1 by swapping Occasions of the Patient so that Occasion 1 goes to 
Test Set 2 and Occasion 3 goes to Training Set.

STEP 4: Repeat Steps 1-3 for all Patients from the study.

STEP 5: Calculate Average RMSE.

Perform Steps 1-5 for σw = 0, 0.1, 0.2, … , 1 
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percentage difference was found to give a measure of differ-
ence in the predictive ability of the two models.

The R scripts used during the current study are available 
from the corresponding author on reasonable request.

4 � Results

The residuals from the ODE model for each subject over 
time are shown in Fig. 3. Most of the subjects show some 
correlation in their residuals.

The bioavailability parameters in the ODE- and SDE-
based models, and the σw parameter and measurement noise 
variance in the SDE model are estimated by the PSM.esti-
mate function by using all 20 occasions in the dataset. The 
maximum likelihood estimates of the parameters and their 
95% confidence intervals are shown in Table 3.

It is seen that the bioavailability population parameter 
was estimated to be approximately 75.6% with an SE of 
0.043 in the ODE model, and about 75.3% with an SE of 
0.040 in the SDE model, which means that, on average, 
75.6% and 75.3% of the dose will be absorbed, based on 
the ODE and SDE model, respectively. The variability of 

bioavailability was found to be 0.001 with a 95% confi-
dence interval of (− 0.001, 0.002); as it is too small, the 
variability of bioavailability was fixed to 0 for the subse-
quent analyses. The σw component was estimated to be 
approximately 0.099 with a 95% confidence interval of 
(0.081, 0.118), which is significantly different from 0 at 
5% level of significance, implying that the variance in the 
model has been split with a Wiener noise component. The 
measurement noise variance was estimated to be 1.000 
with a 95% confidence interval of (0.746, 1.254). Thus, 
for the cross-validation routines, the measurement noise 
variance was fixed to 1 to reduce computation time.

As a visual check of how well the two models fit, the 
smoothed estimates are plotted against the actual measure-
ments in the same plot for each occasion. As the model 
fits are not distinguishable visually, they are not presented 
here.

Table 4 shows the average of RMSEs, bioavailability esti-
mates, and SE of bioavailability for each cross-validation. A 
plot of the average RMSE from the cross-validations against 
the respective σw values is shown in Fig. 4. It can be seen in 
Table 4 that the mean of the bioavailability estimates from 
all cross-validations at each σw value is generally estimated 
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Fig. 3   Residual plots over time along with best fit line for ODE 
model of LCIG plasma levodopa concentrations for the 3 patients 
in study 1 (panels 1011–1031) and the 5 patients in study 2 (panels 

2011–2053). In the panel number, the second last digit represents the 
subject and the last digit the occasion (day)
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to be around 75%. The average SE of the bioavailability 
estimates seems to have an increasing trend with increasing 
σw values. The largest average RMSE is 0.313 when σw is 
fixed to 0 (ODE model). The lowest average RMSE is 0.297 
when σw is fixed to 0.9 (SDE model).

Comparing the RMSEs at each trial for these two σw 
values, it was found that 33 of the 34 trials yielded a lower 
RMSE for the SDE model compared to the ODE model. 
The p value for the binomial test is almost 0, therefore at 
the 95% confidence level, these two average RMSE values 
are significantly different. The average change in RMSE 
between these two σw values was found to be 5.5%.

5 � Discussion

The residual plots over time for the fitted ODE model 
shown in Fig. 3 suggest that there is correlation among the 
residuals for most of the occasions and that the errors are 
not arising due to randomness. These correlated residuals 
should be accounted for by modelling with SDEs.

Thus, we used an SDE pharmacokinetic model of LCIG 
for patients with Parkinson’s disease in our study. The 
parameter estimated in this study is bioavailability, which is 
the proportion of levodopa that enters the circulation when 
introduced into the body. When all 20 occasions are used, 
both models estimated similar values for bioavailability 
at around 75%, but there are too few patients for reliable 
population parameter estimation. In the study by Westin 
et al. [6], there was an additional 36 occasions with gener-
ally stable LCIG concentrations – that would increase the 

Table 3   Maximum likelihood estimate (MLE), standard error (SE), 
and 95% confidence interval (CI) using all 20 occasions

BIO bioavailability, ODE ordinary differential equations, SDE sto-
chastic differential equations, σw diffusion scale parameter

 Parameter MLE SE CI

BIO (ODE model) 0.756 0.043 (0.671, 0.841)
Variability of BIO (ODE model) 0.001 0.000 (− 0.001, 0.002)
BIO (SDE model) 0.753 0.040 (0.674, 0.833)
σw (SDE model) 0.099 0.009 (0.081, 0.118)
Measurement noise variance (SDE 

model)
1.000 0.130 (0.746, 1.254)

Table 4   Averages of root mean square error (RMSE), bioavailability 
(BIO), and standard error (SE) of bioavailability from cross-valida-
tions at different diffusion scale parameter (σw) values

σw Average RMSE Average BIO Average 
SE of 
BIO

0.0 0.313 0.757 0.043
0.1 0.311 0.752 0.037
0.2 0.310 0.758 0.046
0.3 0.308 0.748 0.036
0.4 0.309 0.759 0.038
0.5 0.308 0.758 0.042
0.6 0.303 0.749 0.037
0.7 0.299 0.747 0.045
0.8 0.298 0.757 0.049
0.9 0.297 0.759 0.042
1.0 0.307 0.761 0.048

Fig. 4   Average root mean 
square error (RMSE) from 
cross-validation study for each 
diffusion scale parameter (σw) 
value
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computation time significantly for the cross-validation per-
formed, which is a key objective of our study to compare 
model fits. The variability of bioavailability is estimated 
to be too small and close to 0, which is in accordance with 
Westin et al. [6], i.e., that a fixed bioavailability parameter 
is sufficient to fit individual models. This parameter was 
also fixed to 0 in a study by Thomas et al. [21], where they 
studied individual dose–response models for levodopa infu-
sion dose optimisation.

When a stochastic term is introduced in Eq. 9, the dif-
fusion scaling term, σw, is estimated to be 0.099. This is 
significantly different from zero, implying that the intra-
individual variability has been separated into measurement 
and system noises.

A cross-validation study was also performed for 
both ODE and SDE models to check how well models 
predict data, which had not been performed previously. 
From Fig. 4, it is seen that introducing stochasticity does 
decrease the average RMSE. When σw is fixed to 0 (which 
is the ODE model), the average RMSE (0.313) is found to 
be the highest; when σw is fixed to 0.9 (which is an SDE 
model), the average RMSE (0.297) is found to be lowest. 
The binomial test suggests that these RMSEs are signifi-
cantly different, so the SDE model does fit the data better.

Both the ODE and SDE models are reasonably effec-
tive at fitting observed data. It was found that the mean 
percentage change in RMSE was 5.5% between the two 
aforementioned σw values. Even though visual checks 
do not provide a distinguishable difference between the 
ODE and SDE models, the cross-validation study suggests 
that the SDE model is 5.5% better at predicting the LCIG 
plasma levodopa concentration in the system, based on 
dose information and individualised parameters.

The maximum likelihood estimate for σw was estimated 
to be 0.099, however, where the average RMSE was not 
the lowest according to the cross-validation study. This 
could be because the true value of the global minimum has 
not been found, as suggested by Miller et al. [14]. A cross-
validation study may therefore be useful in investigating an 
appropriate value for σw in an SDE model. Other options 
include using different optimisation algorithms, or using a 
Bayesian approach for pharmacokinetic/pharmacodynamic 
modelling, which were not explored in our study.

The cross-validation method that we used in the present 
study could be applied in other mixed-effects models, not 
limited to clinical studies, where there are time series data 
from multiple occasions for each subject. By leaving out all 
but one occasion for a subject in the training set, random-
effect estimates can be extracted for that particular subject, 
which are then fixed in the test set (the occasions left out).

A limitation of our study is that almost all the param-
eters were fixed to population values found in the literature 
(while allowing for individual variations which have been 

estimated). This was done to reduce the computation time 
for the overall analysis, as cross-validation was performed 
for 11 different values of σw, and there were 34 parameter 
estimation computations at each of those values.

A model was tested where the σw term was included in 
all three equations (8–10) and they were estimated. The 
estimations yielded equal values for σw, but the computa-
tion demands for this model were rather intensive. Further 
analyses were performed to investigate the necessity of 
adding a σw term in Eq. 8 by simulating stochastic noise in 
the first compartment. This gave very similar predictions 
of the concentration in the second compartment, regardless 
of whether the stochastic noise was assumed to be in Eq. 8 
or 9. An additional parameter, TABS, was also estimated 
along with bioavailability to compare their estimates with 
the ODE model and to investigate the value of the σw term. 
The parameter estimates were similar and the results were 
identical to the simpler model shown in this study.

It is to be noted, however, that infusion data are generally 
stable and therefore may not show much volatility. A differ-
ent dataset, such as one with oral dosage information, could 
yield different results. It would also be interesting to study 
whether stochasticity may be included in the pharmacody-
namic effect equation, where the observations are more vola-
tile, i.e., the Wiener component could be introduced into the 
effect equation of the pharmacokinetic/pharmacodynamic 
model of LCIG levodopa as described by Westin et al. [6]. It 
could also be investigated whether an effect prediction may 
be fitted directly from dose information in an SDE setting.

In conclusion, we investigated the pharmacokinetic model 
of levodopa infusion using SDEs. Correlation between the 
residuals was observed, so a stochastic Wiener component 
was added to the system to account for auto-correlated 
errors. The SDE model provided better fits and was 5.5% 
better, in terms of lower RMSE, at predicting LCIG levo-
dopa pharmacokinetics based on dose information.
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