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With the development of the times, cardiovascular diseases have become the biggest cause of death in the global aging society,
causing a serious social burden. Atherosclerosis is a chronic inflammatory disease, which can occur in large and medium-sized
blood vessels in the whole body. It takes atherosclerotic plaque as the typical pathological change and endothelial injury as the
core pathophysiological mechanism. It is the pathological basis of coronary heart disease, peripheral artery disease,
cerebrovascular disease, and other diseases. Recent studies have shown that chronic stress plays an important role in the
occurrence and development of atherosclerosis, endothelial injury, lipid metabolism, and chronic inflammation. This process
involves a large number of molecular targets. It is usually the cause of atherosclerotic cardiovascular and cerebrovascular
diseases. If chronic stress factors exist for a long time, patients have genetic susceptibility, and the combination of
environmental factors triggers the pathogenesis, which may eventually lead to complete blockage of the blood vessels, unstable
rupture of plaques, and serious adverse cardiovascular events. This paper reviews the role of chronic stress in the occurrence
and development of atherosclerosis, focusing on the pathophysiological mechanism.

1. Introduction

With the development of economy, the total prevalence of
cardiovascular disease in the world is increasing year by year.
At present, the total number of cardiovascular diseases
exceeds 587 million. In 2019 alone, 18.6 million people died
and 34.4 million were disabled, with an upward trend year

by year [1]. Among them, atherosclerosis is the pathological
basis of a variety of cardiovascular and cerebrovascular dis-
eases, which is easy to appear in various diameter arteries,
common in the coronary artery, aorta, carotid artery, etc.
[2]. It is generally believed that atherosclerosis originates
from various stimulating factors, including mechanical fac-
tors, LDL particle deposition, toxins, and viruses, which lead
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to the destruction of endothelial cells on the arterial intima.
The damaged endothelial cells secrete cytokines and growth
factors, attract monocytes gathering, migrate to endothelial
cells, and transform into macrophages, These macrophages
swallow cholesterol-rich oxidized low-density lipoprotein
(ox LDL) through TLRs to form foam cells [3]. The persis-
tence of proinflammatory factors leads to the accumulation
of more macrophages, mast cells, and activated T cells and
B cells into foam cells, showing a lipid streak [4]. At the same
time, growth factor activates smooth muscle cells in the arte-
rial membrane, enters the intima and secretes extracellular
matrix, makes the endothelium thickening, fibrosis, and
hardening, and absorbs lipids through LPL receptors to form
foam cells [5, 6]. The two types of foam cells are progressed
and eventually become atherosclerotic.

Chronic stress refers to the nonspecific pathophysiologi-
cal response caused by the change of the body’s steady state
under the long-term stimulation of various adverse factors
in vivo and abroad. Generally speaking, it is the emotional
experience of people under the pressure that they are difficult
to adapt [7, 8]. The source of this stress is often psychological
stress. It is generally believed that there will be feelings of ten-
sion, depression, and sadness under psychological stress; the
sources of this stress are often four categories: work, family,
finance, and major life events. A large cohort study of more
than 10000 people found that one or more levels of psycho-
logical stress in patients with myocardial infarction were sig-
nificantly elevated [9]. For the animal model of chronic
stress, the commonly used chronic stressors include fasting,
closed environment, long-term forced swimming, or electri-
cal stimulation. Chronic stress is one of the promoting fac-
tors of many peripheral vascular diseases. Studies have
shown that chronic stress can cause a variety of cardiovascu-
lar diseases, such as dysfunction of vascular smooth muscle
cells, even leading to rupture of aortic aneurysm [10, 11].
The most important thing is that chronic stress can cause
the occurrence and development of atherosclerosis. Studies
have shown that chronic stress is an independent risk factor
for carotid atherosclerosis in Mexican women [12]. For the
rat model of atherosclerotic intimal hyperplasia, most carotid
arteries are blocked by atherosclerotic lesions after two weeks
under chronic stress [13]. The possible pathophysiological
mechanism of promoting the progression of atherosclerosis
involves many aspects. Chronic stress reduces the activity
of hypothalamic pituitary adrenal axis, leads to the decline
of anti-inflammatory ability, stimulates the sympathetic
adrenal medulla, and increases the content of blood catechol-
amine. Catecholamine binds to the β-adrenal receptor on the
surface of macrophages, stimulates macrophages to produce
more cytokine catecholamine, induces the expression of
related inflammatory cytokines, and promotes the progress
of inflammation [14–16]. Chronic stress can also promote
oxidative stress and vascular sensitivity by increasing blood
triglycerides and low-density lipoprotein. It can also reduce
the content of NO synthase and NO, which can produce con-
tractile effect on the aortic vessels and promote the develop-
ment of atherosclerosis [17, 18]. Chronic stress can also lead
to changes in plaque stability and poor prognosis of
atherosclerosis.

The purpose of this paper is to comprehensively review
the effects of chronic stress on the occurrence and develop-
ment of atherosclerosis, pay special attention to the patho-
physiological mechanism of chronic stress in the
occurrence and development of atherosclerosis, and espe-
cially explore how chronic stress accelerates the progress of
atherosclerosis from the aspects of chronic inflammation,
hemodynamics, lipid metabolism, adipose tissue interaction,
and the progress of atherosclerotic plaque, so as to provide
some ideas for clinical intervention and basic research
(Figure 1).

1.1. Inflammation: The Core Cause Induced by Chronic
Stress. It has been elucidated that atherosclerosis is essen-
tially a chronic inflammatory disease. Inflammation plays a
role in all stages of atherosclerosis, including accumulation
of foam cells, formation of fatty streaks and fibrous plaques,
rupture of acute plaques, and formation of thrombus
[19–23], eventually leading to atherosclerosis and throm-
botic complications. A large number of studies have con-
firmed that for chronic stress, it is currently considered
that it may lead to chronic low-grade inflammation through
a variety of ways and is related to atherosclerosis. Inflamma-
tion is even further developed by activating platelets and
endothelial dysfunction, which is reviewed in detail in the
part of endothelial dysfunction.

Clinical and animal experiments have shown that for
inflammatory factors, long-term chronic stress can increase
the concentration of blood cortisol through HPA axis on
the one hand and change the steady-state balance of auto-
nomic nervous system and increase the content of catechol-
amine by stimulating sympathetic adrenal system and
reducing the vagus nerve tension on the other hand. Both
cause the decrease of anti-inflammatory ability; the continu-
ous progress of inflammation; the increase of the concentra-
tion of inflammatory cytokines, serum IL-6, and TNF; the
increase of the expression of IL-6 and TNF in the liver and
spleen; and the increase of CRP can also cause the change
of inflammatory cytokines [24–26]. In addition, norepineph-
rine (NE) and neuropeptide Y (NPY) released by activated
sympathetic activity can also promote the phosphorylation
of mitogen-activated protein kinase (MAPK) or the release
of high-mobility group protein B1 (HMGB1), thus inducing
systemic inflammation and accelerating the development of
cardiovascular diseases [27]. In addition, chronic stress can
also enhance the activity of dipeptidyl peptidase-4 (DPP4)
in plasma and reduce the concentration of plasma
glucagon-like peptide (GLP-1) and adiponectin (APN), so
as to promote the development of inflammation [28, 29].
However, it is still unclear whether it is possible to reduce
the promoting effect of chronic stress on atherosclerosis by
targeted inhibition of cellular inflammatory factors. For
inflammatory cells, chronic stress can cause bone marrow
cells to enter a highly reactive inflammatory state, cause leu-
kocyte proliferation, and increase the number of circulating
inflammatory monocytes [30, 31]. In addition, inflammatory
cells and inflammatory cytokines are not isolated from each
other. The activated sympathetic adrenal system can
increase the number of immune response cells expressing
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M receptor and inflammatory cytokines [32, 33] and pro-
duce a large number of cytokines. After HPA axis changes
caused by chronic stress, TLR4/NF-κB pathway activates
proinflammatory cytokines such as MCP-1 and IL-1αand
IL-6 and, at the same time, leads to the increase of intimal
macrophage/monocyte ratio [17, 34], so that under the
interaction of inflammatory factors and cells, endothelial
homeostasis changes and inflammation further progresses
and forms a vicious circle [35]. Interestingly, recent studies
have also demonstrated that TLR4/NF-κB pathway also
downregulates HMGB1 protein-mediated PPARγ/LXRα.
The expression of ABCA1 pathway reduces the antiathero-
sclerotic effect of ATP binding cassette transporter 1
(ABCA-1) [36]. Therefore, the progression of atherosclerotic
inflammation caused by chronic stress is a complex system,
and the specific mechanism needs to be further studied.

2. Results and Discussion

2.1. Dyslipidemia: An Important Risk Factor of Chronic Stress
Promoting the Progression of AS. Dyslipidemia is the first
recognized independent risk factor for intima and media
thickening of atherosclerosis [4]. Higher levels of serum
low-density lipoprotein and total cholesterol can induce ath-
erosclerotic precipitation, while low-density lipoprotein oxi-
dation modified product (ox LDL) can be recognized and
ingested by monocyte macrophage TLR and finally form
lipid plaque [37]. However, simple dyslipidemia cannot fully
explain the progress of atherosclerosis. Some studies have
conducted large-scale clinical trials with statins that can
reduce low-density lipoprotein, and cardiovascular events
have been significantly reduced. However, even with inten-
sive statin therapy, the ability to prevent cardiovascular
events is still limited to 30% to 40% of treated patients
[38], indicating that hyperlipidemia is not the only cause
of atherosclerosis. Therefore, chronic stress comes into our
sight. It has been reported that it can induce hyperlipidemia
and lipid oxidation, cause lipid deposition to form plaque,
may also lead to hypercoagulable state of arterial thrombo-
sis, accelerate the progress of atherosclerosis, and produce
adverse results [39, 40].On the one hand, it has been
reported that in the control study of stressed mice and ordi-
nary mice, high concentrations of serum total cholesterol,
triglycerides, low-density lipoprotein, and very low-density
lipoprotein can increase the atherosclerosis index of the
chronic stress group, while the change of mice in the control
group is not obvious [37]. In turn, chronic stress will change
the blood lipid profile. In the study of hyperlipidemia rabbit
model, with the extension of chronic stress exposure, the cir-
culating concentrations of cholesterol, LDL, VLDL, and TG
will significantly increase with time, while high-density lipo-
protein will remain unchanged or decrease, and the athero-
sclerosis index will increase [18, 40, 41].

Hyperlipidemia and chronic stress interact to form a
vicious circle, which together leads to the progress of athero-
sclerosis. Some researchers stimulated mice with chronic
mild unpredictable stress (CMS), which also proved that
CMS can increase the plasma concentration of corticoste-
rone and lipids, increase the atherosclerosis index, and lead

to the impairment of thoracic aortic function [42]. In addi-
tion, some studies stimulated atherosclerotic mice with cold
stress, and the blood lipid of stressed rats was significantly
higher than that of the control mice. Pathologically, it was
found that cardiac oxidative stress was aggravated, macro-
phage infiltration and proinflammatory gene expression
were found in the left ventricle and visceral adipose tissue,
and the incidence of cardiac-related adverse events was fur-
ther increased [43]. From the perspective of mechanism,
chronic stress for more than 4 weeks can cause adrenal cor-
tical stress hyperplasia; increase GC synthase, citrate syn-
thase, and ketoglutarate dehydrogenase; increase
glucocorticoid; promote ATP synthesis and energy metabo-
lism [40, 44]; appear insulin resistant; promote hepatic tri-
glyceride synthesis; and delay the binding and degradation
of LDL by hepatocytes. Finally, it promotes circulating
hyperlipidemia, which will continue after the removal of
chronic stressors [45–47]. Chronic stress can also induce
adrenoceptor desensitization and receptor downregulation
in adipocytes, resulting in reduced catecholamine-induced
lipolysis capacity and lipid accumulation [48]. In addition,
it has been studied that the fatty acids released by lipolysis
of adipose tissue under chronic stress can be used as sub-
strates for cholesterol synthesis, causing the increase of
blood cholesterol and aggravating the progress of atheroscle-
rosis [49]. In addition, chronic stress beyond the threshold
will stimulate the sympathetic nerve to directly upregulate
the expression of neuropeptide Y or indirectly upregulate
the expression of neuropeptide Y and its receptor Y2R by
increasing glucocorticoid, resulting in abnormal lipid metab-
olism [50]. It can also regulate ABCG1 gene by upregulating
TLR4, mediating inflammation and intracellular lipid accu-
mulation are also necessary ways for macrophages to trans-
form into foam cells [51–53]. In addition, the expression of
aortic matrix metalloproteinase -9 (MMP-9) and MMP-2
gene will also increase, reduce the expression of adiponectin
in preadipocytes, promote LDL-induced monocyte uptake of
lipids, and promote the formation of foam cells [28].

2.2. NO: The Core Molecule Causing Endothelial Dysfunction
Under Chronic Stress. Normal endothelium maintains vascu-
lar tension and structure by regulating the balance between
vasodilators (such as NO and prostacyclin) and vasocon-
strictors (such as endothelin-1 and norepinephrine)
[54].The result of endothelial dysfunction is to cause the
progress of atherosclerosis, hypertension, and other changes.
Among them, NO is an important vasodilator molecule,
which cooperates with other endothelial-derived factors to
participate in endothelium-dependent relaxation [55, 56].
NO is produced by the precursor L-arginine, which is
affected by NO synthase, and at least three functional forms
of NO synthase (endothelial (eNOS), neuronal (nNOS), and
inducible (iNOS)) are known [57]. In terms of function, NO
is related to various endothelial functions, including regulat-
ing vascular tension, platelet aggregation, and vascular
smooth muscle cell proliferation [58].

The response of vascular endothelium to chronic stress is
the adaptation to its harmful effects. This adaptation is NO
dependent [59, 60]. In early chronic stress, chronic stress

3Oxidative Medicine and Cellular Longevity



hormone reduces endothelial injury by stimulating the
release of ET-1 and maintaining a high level of NO [61].
In the study of different types of chronic stress mouse
models, it was found that the level of NOx increased signif-
icantly and the time-dependent iNOS activity increased [57].
This increased activity of NO system will weaken the vaso-
constrictive effect of catecholamine and ANGII [62, 63]
and platelet aggregation caused by increased sympathetic
activity and resist the vascular system disorder caused by
chronic stress [64, 65].It was also confirmed in another
study. Early chronic stress will have vascular relaxation
changes and reach the peak eight weeks after the administra-
tion of chronic stressor and decrease twelve weeks. However,
the analysis of blood components found that this is related
to the reduction of relaxation components independent of
NO, and NO will not decrease in the early stage [28]. At
the same time, early chronic stress can also improve the
response of endothelium to NO, weaken the vasoconstric-
tion caused by calcium ion, and play a certain role in vasodi-
lation [66].

However, long-term chronic stress may lead to endothe-
lial dysfunction, vascular remodeling, and systolic hyperten-
sion through vascular oxidative stress. The decrease of
endothelium-dependent relaxation was observed in this pro-
cess, which may be related to the decrease of endothelial NO
synthase activity and the decrease of NO bioavailability [67,
68]. In terms of mechanism, excessive ROS is produced
under chronic stress, which changes the balance of oxidants
and antioxidants and leads to the development of various
pathological states, dysfunction of intracellular mitochon-
dria, interruption of energy pathway, and induction of apo-

ptosis [69]. More importantly, it causes the reduction of NO
production and disorder of vasoconstriction and relaxation
and induces MMP-2 and MMP-9 to decompose fiber caps
containing collagen, elastin, and proteoglycan. The removal
of ROS can reduce blood pressure, which can also explain
the harm of chronic stress [69–72], and these injuries are
controlled by the differential regulation of NO [73]. Studies
have shown that Salvia miltiorrhiza can restore endothelial
function to a certain extent by increasing the amount of
NO and the level of eNOS [72]. Similarly, the role of chronic
stress may also involve NO-dependent endothelial dysfunc-
tion [28]. Studies have shown that there is a compensatory
vasodilation mechanism in chronic stress mice with
impaired NO bioavailability. This mechanism may be
related to hydrogen peroxide as a compensatory dilation
metabolite, which ensures vascular reactivity to a certain
extent [68]. Similarly, after long-term chronic stress, the
effect of related hormones can no longer be antagonized by
vasodilators such as NO. For example, glucocorticoid and
proinflammatory cytokines, norepinephrine, and
endothelin-1 may aggravate endothelial dysfunction by
reducing eNOS expression, increasing eNOS inactivation,
and promoting NO degradation and antagonism of NO-
induced vasodilation [74]. On the other hand, the elevation
of aldosterone and sodium and water retention of glucocor-
ticoid can hardly get NO against [75–77]. Therefore, many
factors work together to cause hemodynamic decompensa-
tion after long-term chronic stress.

2.3. Adipose Tissue: Correlates under Chronic Stress. Obesity
is associated with chronic stress and atherosclerosis. Chronic
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stress can cause excessive fat accumulation to a certain
extent [43]. Studies have shown that obesity can increase
the incidence rate of cardiovascular and cerebrovascular dis-
eases. Obesity may cause inflammation and atherosclerosis
by secreting a large number of adipokines and proinflamma-
tory cytokines [78, 79]. But interestingly, through big data
analysis, it can be found that there is no nonlinear relation-
ship between the degree of obesity and atherosclerosis. Stud-
ies have shown that when CPC is used as an index of
endogenous vascular proliferation to study this paradox,
the number of good outcomes of high regenerative capacity
(i.e., high CPC count) in obese people is more [80]. On the
other hand, the degree of visceral obesity and BMI index is
not linear [81]. Chronic stress promotes the accumulation
of visceral fat. Therefore, there are some deficiencies in using
BMI as a link between obesity, cardiovascular and cerebro-
vascular adverse events and chronic stress. Moreover, the
expansion of aorta, slowing down the shear force of blood
flow and playing the role of endothelial protection is also
one of the reasons for the obesity paradox [82].

At present, chronic stress is more closely related to
abdominal obesity. One view is that excessive glucocorticoid
secretion caused by chronic stress will affect fat distribution
and promote the selective accumulation of visceral fat [78],
accompanied by a series of metabolic disorders, including
dyslipidemia, impaired glucose tolerance and insulin resis-
tance, and unstable or elevated blood pressure [83–86]. In
addition, these factors are harmful to arteries and promote
the development of atherosclerosis. However, the current
research suggests that chronic stress has little to do with
aggravating the inflammatory response of abdominal obesity
and may increase the secretion of proinflammatory cyto-
kines to a certain extent [87, 88].Some research evidence
suggests that peripheral neuropeptide Y induced by chronic
stress may play an important role [89]. It may also promote
fat accumulation through a variety of stress behavior reac-
tions, resulting in stronger cardiac sympathetic tension after
obesity, exacerbate abnormal heart rate and metabolism, and
increase the risk of cardiovascular disease [90]. Interestingly,
the simultaneous occurrence of chronic stress and obesity is
not necessarily a vicious circle. Some studies on mice have
shown that high-fat diet can alleviate the anxiety caused by
chronic stress and improve the activity intensity of anxious
animals [91]. At the same time, the high-fat diet under
chronic stress may also reduce the level of corticosterone
and reduce the incidence of obesity to a certain extent [91,
92], but some studies have shown that various types of deli-
cious food can also increase body weight [93].Therefore,
understanding the lipid metabolism under stress is of great
significance to study the relationship between chronic stress
and atherosclerosis. In addition, a special type of adipose tis-
sue, perivascular adipose tissue, plays an important role in
the maintenance of vascular function. It secretes a large
number of paracrine signal molecules, which affect the func-
tion of vascular wall through direct diffusion, trophoblast, or
catheter [94]. However, chronic stress causes perivascular
adipose tissue to become an inflammatory phenotype, which
is characterized by changes in the spectrum of adipokines,
cytokines, and chemokines, resulting in activation of arterial

oxidative stress, reduction of NO bioavailability, reduction
of EDD, and increase of aortic stiffness. From the perspec-
tive of mechanism, it may be related to the overactivation
of sympathetic nervous system and the increase of aldoste-
rone production [95, 96].

2.4. Plaque Progression: The Culprit of Adverse Events
Caused by Chronic Stress. The latest research shows that
chronic stress can not only cause the progression of athero-
sclerotic plaque but also accelerate the change of plaque
instability. On the one hand, after 12 weeks of mild chronic
stress exposure, the area of main atherosclerotic plaque in
the ApoE-/-mice doubled compared with the unexposed
mice [97]. On the other hand, in many studies on coronary
artery, ascending aorta and abdominal aorta, histopathology
shows that in the animal model of atherosclerosis, chronic
stress can cause acute thrombosis and plaque instability. It
is characterized by accelerated apoptosis, thinning of fiber
cap, lipid deposition, increased macrophages and neovascu-
larization, and increased degree of perivascular fibrosis, but
the reduction of smooth muscle cells and intimal mediators
such as type I collagen and elastic fibers especially signifi-
cantly promotes the degeneration of the inner side of the
plaque, which generally aggravates the inflammatory pheno-
type of atherosclerosis and makes the plaque easy to fall off
from the vascular wall. Large-scale clinical cohort studies
have shown that there is a causal relationship between men-
tal changes caused by chronic stress and the progression of
atherosclerosis and the decrease of plaque stability in people
with coronary heart disease [98–101]. The reason can be
found that chronic stress can aggravate the level of inflam-
mation and oxidative stress through inflammatory cyto-
kines, oxidized low-density lipoprotein, mechanical damage
caused by elevated blood pressure and enhanced HPA axis
function, resulting in the imbalance of vascular smooth mus-
cle cell proliferation and apoptosis, and reduce the stability
of plaque [98, 102]. Some studies used a multisystem 18F-
FDG-PET/CT imaging. The results show that long-term ele-
vated stress-related neurobiological activities will promote
leukocyte production and inflammatory progression and
then increase the plaque load of ARI and noncalcified coro-
nary artery, resulting in reduced plaque stability [103]. Some
studies have studied the proapoptotic effect of chronic stress
at the molecular level. Chronic stress can increase the activ-
ity of DPP4 and decrease the expression of GLP-1 and cause
the progression of plaque inflammation and aggravation of
oxidative stress. At the same time, DPP4 inhibitor has cer-
tain therapeutic significance on endothelial injury and vas-
cular aging, while exenatide, a GLP-1 analogue, decreased
the expression of MMP-9 and MMP-2 genes in (ApoE-/-)
mice. Stimulation of adiponectin expression in preadipo-
cytes inhibited the formation of monocyte-derived foam
cells induced by LDL, thereby slowing plaque progression
[28, 29, 104]. High levels of cortisol induced by chronic
stress can induce low levels of miRNA 25, increase proapop-
totic proteins, induce apoptosis of smooth muscle cells, and
reduce plaque stability. This effect is significantly related to
the inhibition of targeting moap1 and P70S6K pathways
[105]. In addition, chronic stress can promote the expression
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of cysteinyl cathepsin S (Cat-S), directly affect TLR2/4, cause
the progression of inflammation and oxidative stress, prolif-
erate vascular smooth muscle cells, lead to neointimal hyper-
plasia, and reduce plaque stability [106]. The absence of
cysteinyl cathepsin K (Cat-K) prevents the development of
experimental neointimal hyperplasia by weakening the
excessive effect of inflammation, the production of oxidative
stress, and the proliferation of VSMC, which has a synergis-
tic effect with Cat-S [107]. It has been reported that chronic
stress induces rapid intimal hyperplasia in angioplasty
injured rats (i.e., animal model of intimal injury) through
neuropeptide Y (NPY), which may be related to intimal
hyperplasia and plaque progression of atherosclerotic nature
[108]. The unstable progression of atherosclerotic plaque is
also related to the immune environment. It has been
reported that chronic stress can significantly affect the local
immune environment of mouse aorta, cause the accumula-
tion of inflammatory cells in plaque, and reduce its stabil-
ity [109].

3. Conclusion and Prospect

With the change of life rhythm, the impact of chronic
stress on human health has attracted more and more
attention. We reviewed the effects of chronic stress on
the occurrence and development of atherosclerosis, focus-
ing on the pathophysiological mechanisms, including
chronic inflammation, hemodynamic changes, lipid metab-
olism changes, adipose tissue interaction, plaque progres-
sion, and so on. The related changes will eventually lead
to abnormal vascular structure and atherosclerotic cardio-
vascular disease. But due to a perfect self-regulation mech-
anism in the body, acute internal environment disorder
has a relatively weak impact on program genes. However,
under the condition of chronic stress, abnormal gene
expression can be induced continuously. Since chronic
stressors cannot be removed, gene-induced changes in
abnormal cell function are irreversible. At present, it has
been confirmed that atherosclerosis is a pathological state
in which the apoptosis of endothelial cells is excessive
and apoptosis of smooth muscle cells is insufficient. The
abnormal expression of these cells is closely related to
the disturbance of internal environment and endocrine
function under chronic stress. The anti-inflammatory
effect of statins is based on lipid regulation to reduce the
decline of inflammatory factors caused by chronic stress
in the body. Chronic diseases such as diabetes and hyper-
tension can be used as chronic stressors to increase the
corresponding inflammatory factors and promote the for-
mation of atherosclerosis. Drugs (including betas,
angiotensin-converting enzyme inhibitors, angiotensin
receptor antagonists, β-blockers, and antiplatelet drugs)
are essential in the treatment of these diseases and control
the presence of corresponding chronic stress factors. In
future studies, we will pay more attention to the influence
mechanism of chronic stress on atherosclerosis, and it is a
novel insight to develop targeted drugs for the prevention
and treatment of atherosclerosis against chronic stress in
the future.
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