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Abstract

Activation studies with positron emission tomography (PET) in auditory implant users explained

some of the mechanisms underlying the variability of achieved speech comprehension. Since

future developments of auditory implants will include studies in rodents, we aimed to inversely

translate functional PET imaging to rats. In normal hearing rats, activity in auditory and non-

auditory regions was studied using 18F-fluorodeoxyglucose (18F-FDG) PET with 3 different

acoustic conditions: sound attenuated laboratory background, continuous white noise and rip-

pled noise. Additionally, bilateral cochlea ablated animals were scanned. 3D image data were

transferred into a stereotaxic standard space and evaluated using volume of interest (VOI)

analyses and statistical parametric mapping (SPM). In normal hearing rats alongside the audi-

tory pathway consistent activations of the nucleus cochlearis (NC), olivary complex (OC) and

inferior colliculus (IC) were seen comparing stimuli with background. In this respect, no

increased activation could be detected in the auditory cortex (AC), which even showed deacti-

vation with white noise stimulation. Nevertheless, higher activity in the AC in normal hearing

rats was observed for all 3 auditory conditions against the cochlea ablated status. Vice versa,

in ablated status activity in the olfactory nucleus (ON) was higher compared to all auditory con-

ditions in normal hearing rats. Our results indicate that activations can be demonstrated in nor-

mal hearing animals based on 18F-FDG PET in nuclei along the central auditory pathway with

different types of noise stimuli. However, in the AC missing activation with respect to the back-

ground advises the need for more rigorous background noise attenuation for non-invasive ref-

erence conditions. Finally, our data suggest cross-modal activation of the olfactory system

following cochlea ablation–underlining, that 18F-FDG PET appears to be well suited to study

plasticity in rat models for cochlear implantation.
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Introduction

Since their first clinical application in the early 1960s cochlear implants (CI) enabled a remark-

able success story in the treatment of inner ear deafness [1]. Nevertheless, the variability of

individual performance in speech comprehension after CI implantation is not fully under-

stood. In 30% of the cases, despite early implantation in childhood, the expected hearing per-

formance is not achieved–without explanation in 78% of these [2–4]. In this context,

functional neuroimaging after implantation using positron emission tomography (PET)

improved already the pathophysiologic understanding of underlying plasticity in specialized

auditory regions as well as at the level of neuronal circuits required for a successful outcome

[5–7]. Nevertheless, since it is complicated to address some of the basic factors related to the

success of cochlear implantation in patients, like it is done e.g. in molecular biological / proteo-

mics research, animal models and related diagnostic approaches are required. Specifically,

cochlear implantation has been implemented in rats–chosen due to their low mortality rate

following surgical intervention and the extensive auditory research already performed in this

species [8, 9]. With respect to diagnostic approaches for rat brain imaging, PET achieved suffi-

cient spatial resolution with the development of dedicated small animal scanners about 15

years ago [10]. Subsequently, specific tools e.g. stereotaxic VOI atlases for spatial assignment of

specific effects have been developed [11, 12]. For auditory research, this technique has mostly

been used employing 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) as a marker of neuronal

activity. Auditory and visual stimuli as well as cochlea ablation and tinnitus condition have

been investigated [8, 13–15]. However, these were pioneering studies, demonstrating the gen-

eral potential of the methodology, but including shortcomings with respect to the development

of 18F-FDG PET as a standardized quantitative diagnostic method to serve in the further devel-

opment of treatment options for hearing loss in particular via rat models of cochlear implanta-

tion. Shortcomings include for example: (i) no consideration of adaptation to stimulation

paradigms, (ii) lack of standardization of environment with background or reference condi-

tions, (iii) lack of comparison to bilateral complete hearing loss as absolute reference in order

to estimate observed effects sizes and (iv) no exclusion / proof of effects due to auditory stimu-

lation in non-auditory regions (including potential cross-modal activations).

To address these questions, we (i) used refined stimuli designed to avoid adaptation which

were previously employed in electrophysiology [16], (ii) utilized a sound attenuating box as

environmental standardization and tested with 2 possible auditory baseline conditions, (iii)

added longitudinal tests after bilateral cochlea ablation as physiological baseline for a subset of

animals and (iv) implemented a volume of interest (VOI) template for automated spatial

assignment and relative quantification of effects in 5 essential brain structures of the auditory

system and additionally 3 reference brain regions.

Materials and methods

This study was approved by the Lower Saxony State Office for Consumer Protection and Food

Safety (LAVES, ID: 33.14-42502-04-14/1625) in accordance with German and European regu-

lations for animal experiments. Part of this approval was validation by an ethics committee of

the LAVES. This study was designed and is reported in accordance with the ARRIVE guide-

lines [17].

Animals

In this study 12 healthy, normal hearing, young adult, female Sprague-Dawley rats (Charles

River, Sulzfeld, Germany) in 2 groups of 6 animals were included. The animals were 16 weeks

old when bought and were habituated to the laboratory environment for 1 week and trained
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for 3 additional weeks for habituation to the acoustic stimulation setup. All animals were

housed in pairs in individually ventilated cages with (50±5) % humidity at (22±1) ˚C with 14–

10 hours day-night cycle. They had ad libitum access to autoclaved tap water and a standard

laboratory diet (1324 TPF, Altromin, Lage, Germany). The rats (weight 289 g ± 19 g) were

scanned at ages 20–39 weeks.

Experimental procedure

Fig 1A) illustrates the general experimental setup in a timeline. Fig 1B) shows the timing of the

applied acoustic conditions, tracer injection and subsequent 18F-FDG PET imaging. The ani-

mals were shortly anesthetized with an isoflurane (FORENE, AbbVie, Wiesbaden, Germany)

in humidified oxygen for placement of an intravenous (i.v.) catheter into a tail vein and after-

wards placed into the restriction tube into the sound attenuation box. The anesthesia was ini-

tialized with 3% isoflurane concentration and a flow of 3 l/min. After a wake-up period of 10

min, the box (Fig 2) was fully closed and the sound level reduced to unavoidable background

noises for 14 min. Subsequently, an auditory condition was started lasting for 41 min. 60 sec

after the start, 18F-FDG was applied as bolus injection with a closed box into the tail vein via a

catheter. After the condition ended, the animals were anesthetized again with isoflurane and

scanned 1 h post injection. In continuous anesthesia, the concentration of isoflurane was

reduced to 1–2% and the flow to 0.8–1.0 l/min according to a target respiratory rate of 30–40

rpm. The animals were warmed during anesthesia. All animals were placed into their home

cages when fully awake. Between imaging sessions, a resting period of at least 2 days was kept

for each individual animal. All 12 animals were exposed to all auditory conditions. Since we

could scan on average 3 animals per day, 4 subgroups were built for pseudo-randomization of

the order of animals (A, B and C) and stimulation conditions (1, 2 and 3) on three scan days.

On these days the order of animals and conditions complied with the following rules: (1) each

animal was scanned at first, second and third position on different scanning days, (2) at each

scanning day all stimulation conditions were presented at a different position. A typical

sequence of animals and conditions would be: Scanning day 1: A1 B2 C3; day 2: C2 A3 B1 and

day 3: B3 C1 A2. After completion of the entire study we confirmed in a statistical analysis

(ANCOVA) the independence of the PET uptake values from the order of stimulus presenta-

tion (p>F: 0.5670) and order of animals (p>F: 0.5716). With respect to the status of cochlear

ablation–since auditory stimulation conditions are only possible before ablation, this status

had always to be performed last. After the completion of all experiments, animals were sacri-

ficed by cervical dislocation in isoflurane anesthesia.

Fig 1. Timelines for a) general experimental setup and b) a single scan procedure. The scan procedure includes (A) placement of the tail vein

catheter and insertion of the rat in the restriction tube into the box, (B) wake-up period, (C) adaption period to sound deprivation, (D) acoustic

conditions, (E) preparation for scan, (F) PET scan, (G) CT scan and (H) the return to the home cage.

https://doi.org/10.1371/journal.pone.0205044.g001
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Conditions

Stimulation environment. All auditory conditions were applied in a standardized acous-

tic environment consisting of a transparent motion restriction tube placed in an unlit custom

made sound-attenuating box as shown in Fig 2. Opening on the top and the front of the

restriction tube enable acoustic stimulation and a notch in the hatch enables access to the tail

for i.v. administration. The length and diameter of the tube were designed to ensure maximal

comfort for the animals after habituation training, but to avoid turning around or considerable

backward of forward movement. The box reduced default laboratory background noises by 10

dB to 55 dB SPL (decibel sound pressure level) as measured with Brüel & Kjær 2636 amplifier

(Brüel & Kjær, Bremen, Germany) and condenser microphone 4135 (Brüel & Kjær, Bremen,

Germany) on a representative position in the restriction tube. This ensured similar acoustic

conditions across all conditions via a closable opening directly above the tube indicated in

Fig 2. Schematic view of the custom-made sound-attenuating box. The speaker is placed in the cover lid. Holes in the front,

top and end of the animal restriction tube allowed respectively for sufficient ventilation, sound permeability and access to the tail

of the animals.

https://doi.org/10.1371/journal.pone.0205044.g002
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Fig 2. In the lid a Wavemaster Mobi 2 speaker (Wavemaster, Bremen, Germany) was placed.

The animals were observed in the closed box via an infrared camera (Syngonix 43176Y, Nürn-

berg, Germany) to ensure their well-being and complication-free application. The box was

always placed in the same room with controlled climatic environment. All procedures were

done by the same staff creating per se constant acoustic, climatic and olfactory conditions.

Training. As stress would affect the performance of the animals during awake acoustic

stimulation, all animals were trained to this environment over 3 weeks. To familiarize the rat

with the setup, they were placed in the motion restriction tube and box three times awake on

subsequent days. Further habituation to waking up in the setup was performed twice under

initial isoflurane anesthesia. In each training session, the animals were in the box in the tube

for a 10 min wake-up period and 20 min of training conditions were applied. No catheters

were applied or sham injections performed during training sessions as this was seen as unnec-

essary burden. Additionally, both way open tubes made of the same material with similar

diameters and lengths were placed into the home cages for enrichment and habituation.

Auditory conditions. Three auditory conditions were selected in this study to provide dif-

ferent effects with respect to (i) adaptation to the stimulus and (ii) degree of activation

achieved in auditory brain regions. Conditions are identified by the type of noise (two letters)

and the sound pressure level in brackets.

Condition 1: Background noise—BG(55dB)
Condition 2: Continuous white noise—WN(65dB)
Condition 3: Pulsed rippled noise—RN(95dB), consisting of broadband randomized fre-

quency depending phase and amplitude modulations for 500 ms followed by 200 ms silence

[16]

Proceeding from these conditions, an additional condition was constructed with slight

modifications for training purposes in order to avoid adaptation effects to the auditory condi-

tions. In order to avoid habituation to specific frequency pattern or loudness, a white noise

stimulus with intermediate loudness was used in the training sessions. The purpose was to

train the animals to a noisy environment without adapting to the specific stimulus. The labora-

tory background was used in order to train a stimulus-free environment. We alternately

exposed the animals during the training to the respective conditions for a very limited duration

(5 min) in comparison to the much longer exposure during FDG uptake phase for prevention

of adaptation to the stimuli.

Training condition: 4 min BG(55dB) + 5 min WN(75dB) + 5 min BG(55dB) + 5 min WN
(75dB) + 1 min BG(55dB)

All auditory stimuli were prepared using the open-source-software Audacity 2.0.5. The

sound levels in dB SPL were measured using Brüel & Kjær 2636 amplifier (Brüel & Kjær, Bre-

men, Germany) and a condenser microphone 4135 (Brüel & Kjær, Bremen, Germany) placed

within the restriction tube at an ear-representative location.

Cochlea ablation

Bilateral cochlea ablations (ABL) were included as a reference of complete deprivation of the

auditory system and therefore better assessment of differences in normal hearing animals due

to different auditory conditions. The cochlea ablations were performed on 6 animals after

their completion PET scans of the auditory conditions as described in Deutscher et al. [18]. 1

animal died after surgery resulting in 5 animals for which pairwise analysis was possible.

Under anesthesia using a mix of 80 mg/kg ketamine (Ketamin, WDT, Garbsen, Germany) and

5 mg/kg xylazine (Sedaxylan, WDT, Garbsen, Germany) the skin was opened over the bulla

tympanica and muscles were moved to reveal the bulla. Via a small, drill the bulla was opened
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and the organ of Corti destroyed with a sterile needle. An antibacterial salve (Tyrosur, Engel-

hard Arzneimittel, Niederdorfelden, Germany) was inserted into the bulla to avoid infections.

The bulla opening was closed by applying composite glue (Tetric EvoFlow, Ivoclar Vivadent

AG, Schaan, Liechtenstein), suture material (Ethicon, Johnson & Johnsen Medical GmbH,

Norderstedt, Germany) and Histoacryl (B.Braun, Melsungen, Germany). To provide analgesic

care, metamizole (Novaminsulfon 500mg Lichtenstein, Zentiva, Prague, Czechia) was added

to the drinking water 2 days preoperative for max. 2 weeks and given subcutaneously after the

operation (200 mg/kg metamizole). PET imaging was performed 3–4 weeks after ablation.

PET/CT imaging

All rats were imaged using a hybrid Inveon PET/CT system (Siemens AG, Berlin, Germany). A

dose of 18.2±0.7 MBq of the radiotracer 18F-FDG was injected i.v. via the lateral tail vein catheter.

A 30 min PET list mode scan was started 1 h post injection and reconstructed using an OSEM3D

follow by FastMAP iterative reconstruction algorithm. After two OSEM3D iterations, FastMAP

generated an image of 128x128x159 voxels with a voxel size of 0.776 mm x 0.776 mm x 0.796 mm

using 18 iterations and 16 subsets. A 57Co-transmission based attenuation correction was applied

during reconstruction. PET acquisitions were followed by CT imaging using a tube voltage of 80

kV, a current of 500 μA and 120 ms exposure time of the head acquired in continuous rotation

(full rotation with 180 projections) and reconstructed as filtered back projection using a Feldkamp

algorithm and Shepp-Logan filter with 0.5 cutoff. The resulting CTs had a size of 512x512x512

voxels with a resolution of [0.096 mm]3 and were used to validate coregistration.

Data analysis

For a regional statistical analysis on group level, brain regions were extracted using a VOI atlas for

rats [12] adapted to a rat 18F-FDG image template [11] via corresponding MR images. Additional

VOIs were drawn according to the Paxinos and Watson rat brain atlas [19]. The images were pro-

cessed using PMOD3.6 software (PMOD Technologies, Zurich, Switzerland). Individual images

were manually pre-aligned and followed by rigid-matching to the FDG. These spatially normal-

ized images were then cropped to include the brain within a matrix of 93x93x120 voxels with a

voxel size of [0.2 mm]3 as given by the template. In line with clinical methods, the image values

were normalized to the observed average whole brain activity for further analysis.

We evaluated the activities in VOIs of the nucleus cochlearis (NC), the olivary complex

(OC), the inferior colliculus (IC), the medial geniculate body (MGB) and the auditory cortex

(AC) as auditory target regions. The somatosensory cortex (SC), cerebellum (CB) and olfac-

tory nucleus (ON) were used as non-auditory control regions. All VOIs were analyzed in indi-

vidually paired t-tests of two respective auditory conditions for all animals. All positions of

coronal slides are given with reference to the 18F-FDG templates bregma coordinates [11].

Additionally, statistical parametric maps (SPM) including significantly activated or deactivated

voxels at a threshold of p<0.001 without correction for multiple comparisons were generated

based on normalized images by comparing conditions using pairwise t-testing in SPM8.0

(Wellcome Department of Cognitive Neurology, London, UK). These analyses were chosen as

in preliminary analysis with p<0.05 and FEW corrections no supra-threshold voxels were

found in the target region of the auditory cortex. A minimum fraction of activated voxels of

1% of the VOI was selected as extent threshold to account for random effects. The actual per-

centage of activated voxels in a VOI was called coverage and listed for each comparison of con-

ditions alongside with the Tmax-values and the ratio of Tmax to T-value at p<0.001 for

assessment of extent and peak height of differences between different auditory conditions.

Visualization of the auditory pathway in rats with 18F-FDG PET

PLOS ONE | https://doi.org/10.1371/journal.pone.0205044 October 2, 2018 6 / 16

https://doi.org/10.1371/journal.pone.0205044


Results

The used stimuli and applied reference condition determined which sub-regions of the audi-

tory system revealed activation respectively. For individually analyzed animals activations

were only observable in up to two regions, while group analyses revealed activations in up to 4

of 5 evaluated auditory regions.

Individual analysis

In individual images, higher normalized 18F-FDG uptake could be visually assessed for RN(95dB)

stimulation in IC and AC, while no distinct difference to other conditions was detected in MGB,

NC or OC. In individual difference images of RN(95dB) and BG(55dB) which had the largest

sound level difference in normal hearing animals in our experiment, visual activation evidences

were limited to the IC (images not shown). Therefore group analyses were required. Fig 3 shows

corresponding average images based on all individual images for each auditory condition.

VOI analyses

In Table 1, mean percent differences in normalized uptake between stimulated and reference

conditions are given for auditory and non-auditory VOIs. Significant differences in normal-

ized uptake between conditions (“activations” or “deactivations) are indicated with grey back-

ground in Table 1.

Using BG(55dB) as a reference, stimulation with either RN(95dB) or WN(65dB) resulted

into significant activation in IC, OC and NC. The highest activation by (15.6±3.6) % occurred

in the IC. No increase in activation could be seen with the BG(55dB) reference in the AC.

Instead, stimulation by WN(65dB) induced a low but significant deactivation compared to BG

(55dB) (-2.8±1.6) %, which formally introduced an increased activation, if RN(95dB) is com-

pared to WN(65dB). Moreover, MGB activation was only induced by RN(95dB) but not with

WN(65dB) stimulation. In normal hearing animals (i.e. without cochlea ablation) neither acti-

vation nor deactivation could be observed in non-auditory regions (SC, CB ON).

Employing ABL as reference condition, significant activations were observed with all other

conditions (RN(95dB), WN(65dB) and BG(55dB)) in IC, OC and AC. Activations were con-

siderably higher for all three regions–e.g. (35.0±3.8) % in the mean with RN(95dB) in IC–in

comparison to those obtained with BG(55dB) as reference (15.6±3.6) %. Moreover, no activa-

tion was seen consistently in MGB–and in NC activation was only observed with RN(95dB).

With respect to non-auditory regions, activity in ON was significantly higher in ABL condition

compared to all acoustic conditions in healthy rats (> 20% in the mean, see Table 1 –negative

algebraic sign there, for the comparison RN(95dB)—ABL indicate higher values for ABL con-

dition). For all other non-auditory regions no activation or deactivation was found.

SPM results

Corresponding to the comparisons carried out at a VOI level, pairwise voxel-based analyses

were performed using SPM8.0. The results are given in Table 2 and Fig 4. They resemble by

and large those obtained in VOI analyses. Maximum T-values are shown in Table 2. For

improved comparability of activation strength between condition-comparisons and between

anatomical regions, Table 2 contains additionally a Tmax-fraction with respect to the corre-

sponding T-threshold for p<0.001 and the percentage of voxels significantly activated in the

respective VOI (i.e. the coverage).

With BG(55dB) as a reference, SPM revealed in healthy animals like VOI analyses for RN

or WN as stimulation condition significant activations in IC, OC and NC. Up to 89% of the
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Fig 3. Mean normalized images for all conditions and in different coronal levels. Different activation can be visually

assessed in different regions (AC–auditory cortex, IC–inferior colliculus, MGB–mediate geniculate body, OC–olivary cortex,

NC–nucleus cochlearis, SC–somatosensory cortex, CB–cerebellum, ON–olfactory nucleus). The activation of the IC shown in

the first two rows is strongest for the rippled noise stimulus RN(95dB) and visible with white noise WN(65dB). It is reduced to

the brain mean with laboratory background BG(55dB) and below mean after ablation ABL.

https://doi.org/10.1371/journal.pone.0205044.g003
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IC-VOI were covered with Tmax being 2.66 times of the Tp = 0.001 threshold. The nearly total

coverage/activation of the IC due to RN(95dB) stimulation vs. BG(55dB) is illustrated in Fig 4

by representative slices of the SPM overlaid to CT and VOI outlines (1st column, 1st and 2nd

row). Moreover, as in VOI analyses, SPM showed a deactivation of the AC under WN(65dB)

stimulation compared to BG(55dB) (coverage 3%) and MGB activation induced by RN(95dB)

but not with WN(65dB) stimulation. Bilateral deactivation in the AC (due to WN(65dB) stim-

ulus against BG(55dB)) can also be spotted in Fig 4 (3rd column, 2nd row). Furthermore in line

with VOI analyses, neither activation nor deactivation could be in SPM analyses for non-audi-

tory regions (SC, CB and ON) of normal hearing animals.

Employing ABL as reference condition in SPM analyses nearly identically to VOI analyses

significant activations could be observed with all other conditions (RN(95dB), WN(65dB) and

BG(55dB)) in IC, OC and AC. The only exception was a lack of activation in OC due to BG

(55) condition. This can also be extracted from Fig 4, showing activations with all conditions

(RN(95dB), WN(65dB) and BG(55dB)) in IC and AC (column 4–6, row 1–2), and in OC only

Table 1. Mean and standard deviation (SD) of pairwise differences of average normalized VOI values shown for all comparisons of conditions.

RN–BG (n = 12) RN–WN (n = 12) WN–BG (n = 12) RN–ABL (n = 5) WN–ABL (n = 5) BG–ABL (n = 5)

Mean SD p-Value Mean SD p-Value Mean SD p-Value Mean SD p-Value Mean SD p-Value Mean SD p-Value

AC (0.0±2.4) % 0.9943 (2.8±3.1) % 0.0101 (-2.8±1.6) % 0.0001 (10.0±3.1) % 0.0018 (6.5±2.4) % 0.0036 (10.0±2.1) % 0.0004

IC (15.6±3.6) % 0.0001 (3.1±7.4) % 0.1817 (12.5±6.4) % 0.0001 (35.0±3.8) % 0.0001 (27.5±5.7) % 0.0004 (18.4±4.3) % 0.0007

MGB (6.1±3.4) % 0.0001 (5.6±3.5) % 0.0002 (0.6±2.6) % 0.4591 (8.0±7.1) % 0.0649 (2.6±6.9) % 0.4524 (1.8±6.4) % 0.5614

OC (6.3±9.7) % 0.0445 (-0.5±6.3) % 0.7829 (6.9±9.0) % 0.0223 (20.3±9.1) % 0.0075 (17.8±9.2) % 0.0125 (8.2±6.5) % 0.0485

NC (6.6±4.6) % 0.0004 (2.0±3.5) % 0.0761 (4.6±5.1) % 0.0091 (14.5±8.2) % 0.0168 (11.0±9.5) % 0.0600 (6.1±7.8) % 0.1572

SC (-1.5±3.2) % 0.1278 (-1.2±3.8) % 0.2934 (-0.3±2.0) % 0.5881 (-3.1±3.4) % 0.1115 (-3.1±3.7) % 0.1684 (-2.0±2.6) % 0.1369

CB (0.6±3.9) % 0.6053 (-0.8±4.1) % 0.5220 (1.4±2.9) % 0.1208 (1.3±3.1) % 0.4157 (1.5±2.3) % 0.2158 (-0.3±3.2) % 0.8448

ON (0.6±6.3) % 0.7598 (1.4±5.5) % 0.3835 (-0.9±2.7) % 0.2958 (-23.4±6.7) % 0.0014 (-21.9±8.0) % 0.0037 (-20.5±7.9) % 0.0044

The corresponding p-values are shown and significances of p<0.05 are highlighted by grey shading. In normal hearing animals (RN–rippled noise, WN–white noise, BG

—laboratory background), different auditory structures (AC–auditory cortex, IC–inferior colliculus, MGB–mediate geniculate body, OC–olivary cortex, NC–nucleus

cochlearis) are significantly activated for different comparisons. In non-auditory regions (regions (SC–somatosensory cortex, CB–cerebellum, ON–olfactory nucleus),

significant deactivation shown by the negative values are only detected comparing to ablation (ABL).

https://doi.org/10.1371/journal.pone.0205044.t001

Table 2. T-values and coverage of VOIs for each condition comparison with SPM.

RN—BG (n = 12) RN—WN (n = 12) WN—BG (n = 12) RN—ABL (n = 5) WN—ABL (n = 5) BG—ABL (n = 5)

Tmax
Tmax

Tp¼0:001
Cov. Tmax

Tmax
Tp¼0:001

Cov. Tmax
Tmax

Tp¼0:001
Cov. Tmax

Tmax
Tp¼0:001

Cov. Tmax
Tmax

Tp¼0:001
Cov. Tmax

Tmax
Tp¼0:001

Cov.

AC <1% <1% -5.47 -1.36 3% 17.06 2.38 6% 12.09 1.69 3% 14.73 2.05 7%

IC 10.70 2.66 89% 5.43 1.35 5% 8.23 2.04 55% 33.70 4.70 67% 22.99 3.20 32% 14.39 2.01 15%

MGB 5.49 1.36 16% 5.83 1.45 14% <1% <1% <1% <1%

OC 4.77 1.19 5% <1% 5.43 1.35 15% 13.24 1.85 12% 8.32 1.16 3% <1%

NC 5.71 1.42 5% <1% 5.53 1.37 2% <1% <1% <1%

SC <1% <1% <1% <1% -12.85 -1.79 1% <1%

CB <1% <1% <1% <1% <1% <1%

ON <1% <1% <1% -19.58 -2.73 39% -14.30 -1.99 26% -13.38 -1.86 20%

(Cov.) shows the coverage of the corresponding VOIs with significant activated voxel according to SPM for all auditory regions (AC–auditory cortex, IC–inferior

colliculus, MGB–mediate geniculate body, OC–olivary cortex, NC–nucleus cochlearis) and control regions (SC–somatosensory cortex, CB–cerebellum, ON–olfactory

nucleus). Negative T-values indicate higher activity in the second condition (RN–rippled noise, WN–white noise, BG—laboratory background, ABL–cochlea ablation).

An activation threshold of 1% of the corresponding VOI was assumed to account for random activations.

https://doi.org/10.1371/journal.pone.0205044.t002
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with RN(95dB) and WN(65dB) but not with BG(55dB) according to the VOI atlas (column

4–6, row 4). Significant activations in the above three regions were at a considerably higher

level (according to Tmax-fractions) with ABL compared to BG(55dB) reference–e.g. for the IC

and RN(95dB) stimulation 4.70 vs. 2.66.

Moreover, SPM analyses with ABL reference did not reveal any activation in MGB or NC.

With respect to non-auditory regions—again in line with VOI analyses—SPM detected signifi-

cantly higher activity in ON in ABL condition compared to all acoustic conditions in healthy

rats (Tmax-fractions -1.86 to -2.73). SPMs displayed in Fig 4 show, that these “activations” due

to ABL condition (recognizable in blue as “deactivations” during stimulation) considerably

exceed the ON into the frontal cortex (column 4–6, rows 1–3).

Discussion

Activation of the auditory system in normal hearing rats and differences to

humans

Using 18F-FDG PET, we were able to show activations in several anatomical structures along

the central auditory pathway of normal hearing rats. Likewise Jang et al. [13] employed
18F-FDG PET to study stimulus-related changes of activity in the same regions of the central

auditory pathway as we did. However in their study white noise stimuli at different sound

pressure levels between 40 dB (for reference) and 100 dB (strongest stimulus) were applied.

This type of stimulus is different compared to the pulsed rippled noise used as strongest stimu-

lus in our study. We chose a lesser sound pressure level (95 dB) as prolonged 100 dB stimula-

tion can induce noise trauma in rats [20, 21] and shows negative effects even with short

exposure [22, 23]. Nevertheless, considering results obtained with the strongest stimuli, both

studies demonstrate significant activations in the NC, the OC and the IC–reaching up to 15%

in the mean. Moreover, we detected a significant increase in MGB, which was reported only

not-significant by Jang et al. [13].

Different results with strongest stimuli were observed for AC with no change in our study

(±0%) and a significant decrease of more than -5% in the mean in Jang’s study [13]. Nonethe-

less, we observed a less pronounced but significant reduction of activity in the AC (-3%) with

the less strong 65dB white noise stimulus similar to Jang’s observation at 80dB [13]. These

findings of reduced activity in the AC due to white noise stimulation might be explained by

adaptation to this uniform stimulus presented in both studies for 30 min [24]. The lesser

reduction with our lower stimulus intensity fits the intensity related reduction observed by

Jang et al. [13]. The lack of reduced activity in AC due to stimulation with the more complex

pulsed rippled noise used by us is most likely due to the nature of this stimulus. It is character-

ized by temporal and spectral modulations varying randomly through time (representative for

a multi-component signal) in a way that matches aspects of animal vocalization. Therefore

adaptation effects are to be expected in a lesser amount [16]. Besides that, the observation of

activations in subcortical structures (NC, OC, IC) in contrast to AC (made in our and Jang’s

study) despite using white noise stimuli might be explained by the fact that synaptic depression

by habituation mostly occurs in cortical areas [25].

On the other side, the lack of AC activation in rats might, in addition, have species-specific

reasons. In humans, activation of the AC due to different and not specifically adaptation-

avoiding stimuli presented during 18F-FDG uptake phase has been demonstrated [26–28]. Fur-

thermore one might speculate that limitations in demonstrating AC activation in rats (and

subcortical structures in humans) can be related to the respective sizes of these structures in

relation to the spatial resolution of the respective PET equipment. The diameter of AC in

humans (� 50 mm) equals approximately 7-times the spatial resolution (FWHM� 7 mm)
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while in rats (AC� 3.2 mm) it is only 2-times (FWHM� 1.5 mm) [10, 12, 29, 30]. Therefore,

the expected loss of signal from AC due to partial volume effects is much higher in rats com-

pared to humans [31]. Vice versa, the diameter of subcortical structures like the MGB in rats

(� 1.5 mm) equals approximately at least the spatial resolution, while in humans (� 4.5 mm)

Fig 4. Results of voxel-wise pairwise comparison in SPM. The first 3 columns show all comparisons of auditory conditions in normal hearing animals (RN–rippled

noise, WN–white noise, BG—laboratory background) and the last 3 columns show all comparisons with respect to cochlea ablation (ABL). Red shows significantly

increased 18F-FDG uptake of the first condition versus the second, while blue shows respectively decreased uptake comparing first to second condition in the

corresponding regions (AC–auditory cortex, IC–inferior colliculus, MGB–mediate geniculate body, OC–olivary cortex, NC–nucleus cochlearis, SC–somatosensory

cortex, CB–cerebellum, ON–olfactory nucleus).

https://doi.org/10.1371/journal.pone.0205044.g004
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it corresponds to only 0.6-times the resolution [10, 12, 29, 30]. Consequently, the expected loss

of signal from MGB and/or other subcortical structures due to partial volume effects in

humans exceeds that in rats[31]. In fact, the recovery of signal from activation of subcortical

auditory structures in humans seems to be so low that it has only rarely been reported by now

[6], which is the strength of using animal models. Nevertheless, it should in general be possible

to detect activation in subcortical structures in humans much better using the most recent

PET technology with a spatial resolution approaching the diameter of these structures [32].

Findings after cochlea ablation in rats

Effects of cochlea ablation on activity in the central auditory pathway and cortex have been

previously studied using 14C-2-Deoxyglucose (2-DG) ex-vivo autoradiography [33] and
18F-FDG PET [8]. Ahn et al. [33] performed bilateral cochlea ablation in rats and injected

2-DG under ambient noise. They observed a significant reduction of 2-DG uptake (compared

to normal rats) in AC at 2 and 8 weeks post-ablation and IC at 2 and 4 weeks post-ablation–

more pronounced in the latter region–and no significant change at 1 and 28 weeks post-abla-

tion. Furthermore, in the MGB significant reduction was only found 2 weeks postoperatively.

Our finding of significantly lower 18F-FDG uptake in AC and IC together with no significant

change in MGB four weeks after ablation compared to measurements during background

noise condition preoperatively correspond to the changes observed in these regions by Ahn

et al. [33]. In our study uptake reductions were most pronounced in the IC as well. In addition,

we could demonstrate reduced activity in the OC after cochlea ablation. Hsu et al. [8] com-

pared after unilateral cochlea ablation ipsilateral and contralateral activity in AC and IC–dur-

ing ambient noise condition and stimulation 50–60 dB SPL above the ambient noise (i.e. with

115 dB). Ratios expressing activity during ambient noise on the side mainly associated with

the preserved cochlea against activity on the side mainly associated with the ablated cochlea

equaled 1.24±0.08 for the IC and 1.18±0.07 for the AC. Acoustic stimulation increase activity

in the IC to 1.36±0.14 but not in the AC. These results are basically well in line with our pres-

ent results. Likewise, we observed (compared to cochlea ablated status) higher activity due to

ambient noise (BG(55dB)) preoperatively in the IC as compared to the AC (18±4% vs. 10±2%)

and an increase due to auditory stimulation (RN(95dB)) for the IC (35±4%) but not for the AC

(10±3%). SC and CB as reference regions showed (as expected) no significant change due to

auditory stimulation and after cochlea ablation. On the contrary, an increase in activity of

more than 20% after ablation in comparison to each of the three auditory conditions preopera-

tively was seen in the ON. Such extra-auditory effects were not described in the studies of Ahn

et al. [33] and Hsu et al. [8]. It is known particularly for the visual and auditory system that

deprivation of sensory input to one sense can lead to cross-modal neuronal plastic changes

with enhanced activity in cortex region primarily belonging to the other sense [34, 35]. With

respect to the olfactory system, a regulatory impact of the auditory system via a noradrenergic

cortical modulation on the olfactory system has been demonstrated in a learning paradigm

[36]. Furthermore, based on behavior tasks and local field potential recordings, Zhou et al.

[37] showed that cross-modal enhancement of olfactory perception was present 7 days after

visual deprivation. We observed this analogously in our study while testing in a dark environ-

ment. A corresponding effect of higher olfactory activity about 22% after cochlea ablation was

found.

Limitations

As 18F-FDG PET is performed as an integrative measure over 30min, detection probability of

cortical activation of small regions, such as single cells, or with low frequency of activation is

Visualization of the auditory pathway in rats with 18F-FDG PET

PLOS ONE | https://doi.org/10.1371/journal.pone.0205044 October 2, 2018 12 / 16

https://doi.org/10.1371/journal.pone.0205044


only limited. Visualization of information transmission by sparse coding as discussed for the

AC [38] might not be possible with 18F-FDG-PET.

Furthermore, use of standard VOI atlases in analyses might result in misalignment and low

coverage due to the variability among animals even of the same breed. For small regions, this

could cause loss of detected activations which are identifiable in SPM by visual assessment. In

our study, the SPM results displayed in Fig 4 (column 6, row 4) shows an activation which

could be located in the OC. Nevertheless, we limited our analyses to the standard VOI atlas in

order to be comparable to established methods in humans.

We decided to selected hypothesis-driven representative control regions–ON and CB as

non-cortical control and SC as cortical control–instead of data-driven VOI regions.

Even though constant acoustic, climatic and olfactory conditions have been maintained, a

small possibility remains that changes in the olfactory system have been influenced by hidden

changes in the environment over the duration from January to May for example due to seasonal

clothing. We expect any hidden impact to be negligible compared to the effect caused by ablation.

Conclusions

This study demonstrates the usefulness of small animal PET with 18F-FDG to image auditory

system activations along nuclei of the central auditory pathway in normal hearing rats. For the

strongest, non-adaptive stimulus (95dB, rippled noise) against background noise (55 dB) activa-

tions were consistently seen in NC, OC, MGB and IC with VOI and voxel-based analyses. A

functional deactivation of the AC was measurable comparing a continuous white noise to both

previous mentioned auditory conditions. Nevertheless, our data indicate, that sound depriva-

tion to the greatest possible extent is necessary for the reference condition to allow for detection

of increased activation in the AC even when a strong non-adaptive stimulus is used for stimula-

tion. Furthermore, we found evidence for neuronal plasticity following continuous complete

sound deprivation (cochlea ablation) in the form of increase (compensatory) activity in the

olfactory system. The specificity of auditory and cross-modal compensatory activations is sup-

ported by the fact that no activations were detected in any reference non-auditory region (SC,

CB). In summary, small animal 18F-FDG PET appears to be very promising to evaluate the

pathophysiology of hearing loss in rats and the process of hearing restoration following auditory

/ cochlear implantation. Due to the minimal invasive procedures of PET imaging, the combin-

ability of 18F-FDG imaging with other additional PET tracers, e.g. for different neurotransmit-

ters [39], further enables a more-extensive observation and characterization of hearing, hearing

disorders and corresponding healing processes. Moreover, the applicability of PET in medium

size animals and humans makes it a valuable tool for translational hearing research.
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