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ABSTRACT

Background: Cancer cells rewire their metabolism to meet the energetic and biosynthetic demands of their high proliferation rates and
environment. Metabolic reprogramming of cancer cells may result in strong dependencies on nutrients that could be exploited for therapy. While
these dependencies may be in part due to the nutrient environment of tumors, mutations or expression changes in metabolic genes also
reprogram metabolic pathways and create addictions to extracellular nutrients.
Scope of review: This review summarizes the major nutrient dependencies of cancer cells focusing on their discovery and potential mecha-
nisms by which metabolites become limiting for tumor growth. We further detail available therapeutic interventions based on these metabolic
features and highlight opportunities for restricting nutrient availability as an anti-cancer strategy.
Major conclusions: Strategies to limit nutrients required for tumor growth using dietary interventions or nutrient degrading enzymes have
previously been suggested for cancer therapy. The best clinical example of exploiting cancer nutrient dependencies is the treatment of leukemia
with L-asparaginase, a first-line chemotherapeutic that depletes serum asparagine. Despite the success of nutrient starvation in blood cancers, it
remains unclear whether this approach could be extended to other solid tumors. Systematic studies to identify nutrient dependencies unique to
individual tumor types have the potential to discover targets for therapy.
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1. INTRODUCTION

Metabolism comprises the entire set of chemical reactions that occur
in a cell. These reactions provide essential building blocks and energy
to sustain cellular functions and show remarkable plasticity that allows
cells to adapt to stresses in their environments. Metabolic plasticity is
particularly important for cancer cells as they experience nutrient and
oxygen deprivation in the tumor microenvironment due to a dysfunc-
tional vasculature and high nutrient consumption rates [1]. To survive
and proliferate under limited resources, cancer cells rewire their
metabolic pathways, use alternative nutrients, and interact with other
cell types [2,3].
Mutations or expression changes of metabolic genes reprogram
metabolic pathways and impose addictions to non-essential nutrients,
which normal cells can synthesize from other sources. Loss of the
expression or activity of these metabolic enzymes have marked effects
on the levels of metabolite intermediates and precursors, which, in
turn, impact other secondary non-metabolic functions [4] (Figure 1).
Even in the absence of any metabolic defects, cancer cells often
display increased demands for particular nutrients or metabolic by-
products generated by other cell types (Figure 1). These unique
metabolic features provide the basis for potential anti-cancer thera-
pies. The best clinical example of exploiting cancer nutrient
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dependencies is the treatment of leukemia with L-asparaginase, a first-
line chemotherapeutic that depletes serum asparagine. Despite the
success of nutrient starvation as an anti-cancer approach in this
context, it remains unclear whether this approach could be extended to
diverse cancer types. In this review, we summarize the dependencies
of tumors on major extracellular nutrients, highlighting existing ther-
apies and the potential for depleting nutrients for anti-cancer therapy
(Figure 1). Finally, we emphasize the need for identifying such nutrient
dependencies to enable the development of future therapies.

2. IMPAIRED SYNTHESIS OF METABOLITES CAN RESULT IN
METABOLIC DEPENDENCIES

2.1. Asparagine
The asparagine dependency of blood cancers was fortuitously
discovered by John Kidd et al., in 1953. While testing animal sera as a
source of complement for the treatment of lymphomas, Kidd et al.
found that the serum of guinea pigs, but not that of other animals,
caused a strong regression of engrafted mouse lymphomas [5]. Eight
years later, JD Broome identified the component of guinea pig serum
responsible for tumor regression as asparaginase, an enzyme that
effectively depletes serum asparagine [6]. Although earlier studies
established the requirement for L-asparagine supplementation for the
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Figure 1: Nutrient dependencies of cancer. Oncogenic events can trigger the loss of
expression of metabolic enzymes or increase the demand for them. Additionally, tu-
mors may become dependent on metabolic by-products of neighboring or distant
cancer and non-malignant cells. These dependencies on extracellular nutrients can be
exploited for cancer therapy by nutrient-depleting custom diets, metabolite-degrading
enzymes, or blocking their uptake and utilization.

Figure 2: Asparagine availability is dictated by both synthesis and uptake. In
acute lymphoblastic leukemia (ALL), cells are unable to synthesize asparagine and rely
upon extracellular asparagine for proliferation. L-asparaginase, a bacterial enzyme that
depletes serum asparagine, is used in the treatment of ALL to limit extracellular
asparagine and inhibit cancer cell proliferation. Asparagine is synthesized from
aspartate by asparagine synthetase (ASNS), whose expression is controlled by tran-
scription factor ATF4. Aspartate is derived from anaplerotic substrates such as
glutamine or pyruvate through aspartate aminotransferases (GOT1 and GOT2) or the
enzyme pyruvate carboxylase (PC), respectively. Exogenous aspartate can also be taken
up from serum through aspartate transporters (SLC1A3). Alternatively, asparagine may
be recycled through autophagy or proteasomal mechanisms. Finally, asparagine may
be imported from the serum or provided by adjacent cell types.
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growth of these lymphomas, the discovery of L-asparaginase was the
first conclusive demonstration of a tumor metabolic requirement [7]
(Figure 2). Initial attempts to exploit this dependency in patients
involved the use of guinea pig serum until the isolation of an
Escherichia coli L-asparaginase, which accelerated the clinical use of
the strategy [8,9]. As a monotherapy, L-asparaginase has been shown
to cause tumor regression in 20e60% of ALL patients and is a critical
component of induction chemotherapy for ALL [10e12].
Unlike leukemias, most human cell types can synthesize asparagine
from aspartate through an ATP-dependent reaction catalyzed by
asparagine synthetase (ASNS) [13] (Figure 2). Consistent with this,
normal cells can survive asparagine depletion by upregulating ASNS
transcription and de novo asparagine synthesis. This is mediated by a
conserved transcriptional program called the integrated stress
response (ISR), which restores homeostasis under a range of physi-
ological stresses. Under nutrient deprivation, the ISR is activated by the
accumulation of uncharged tRNAs, which directly activate general
control non-derepressible 2 (GCN2), a kinase responsible for the
phosphorylation of the eukaryotic initiation factor 2 alpha subunit
(eIF2alpha) of the eIF2 complex [14,15]. A major output of ISR is the
upregulation of activating transcription factor 4 (ATF4) [16e19]. ATF4
stabilizes and coordinates the upregulation of several nutrient trans-
porters and enzymes, such as ASNS (Figure 2), providing essential
nutrients required for survival under nutrient deprivation. The role of
asparagine in leukemia cells is likely limited to its proteogenic use in
translation as ribosome profiling studies have shown that asparagine
limitation halts translation at asparagine residues [20e22]. Indeed,
reduction of serum asparagine with L-asparaginase potently restricts
global protein synthesis and induces apoptosis in ALL cells [23e25].
Recent work, however, has also highlighted a function of asparagine as
an amino acid exchange factor potentially coordinating both protein
and nucleotide synthesis [26].
While the precise cause of the asparagine dependencies of leukemias
has not been fully elucidated, it has been proposed to involve reduced
or complete loss of ASNS expression. Protein levels of ASNS have been
shown to strongly correlate with the response to L-asparaginase [27].
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In 1969, Haskell et al. reported a positive correlation between ASNS
enzyme activity and L-asparaginase resistance [28]. Likewise, a study
of 60 human cancer cell lines from the National Cancer Institute
revealed that ASNS cDNA levels negatively correlate with sensitivity to
L-asparaginase, a correlation that was even stronger among leukemic
cell lines [29]. Furthermore, a competitive growth assay for 554 bar-
coded cell lines demonstrated that cell lines with high ASNS expression
outcompeted those with low expression [30]. In ALLs, the ASNS pro-
moter is regulated through methylation of specific histone marks
associated with expression. In cell lines with low baseline ASNS
expression, hypermethylation of CpG islands within the promoter of the
ASNS gene has been observed [31,32]. Similarly, a recent study found
that T-ALLs exhibit lower levels of ASNS due to hypermethylation of the
ASNS promoter, which is associated with better outcomes after
asparaginase therapy [33]. Interestingly, why ALLs lose or reduce their
expression of ASNS remains unclear. It is possible that the expression
of ASNS is downregulated at certain stages of hematopoiesis.
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Figure 3: Arginine dependency of ASS1-deficient cancers. Some tumors become
dependent on exogenous arginine due to low expression of ASS1, the enzyme cata-
lyzing the first step of the de novo synthesis of arginine from aspartate. As a conse-
quence, depletion of circulating arginine by arginase treatment impairs growth of these
tumors. Loss of ASS1 may shunt accumulated aspartate into pyrimidine synthesis and
may also decrease the synthesis of arginine metabolism by-products such as nitric
oxide (NO) and polyamines.
Alternatively, loss of ASNS expression may be beneficial in order to
maintain higher levels of aspartate (Figure 2), a growth-limiting
metabolite for some tumors [34e36]. Taken together, these findings
suggest that ASNS is likely the primary cell autonomous determinant of
L-asparaginase sensitivity in leukemia. However, conflicting results
have also been drawn in correlating ASNS expression to L-aspar-
aginase sensitivity in ALLs [37e40]. For example, a study of clinical
ALL samples found no correlation between baseline ASNS expression
and response to L-asparaginase in vitro [41]. This discrepancy may be
explained in part by alternative cellular sources of asparagine from
catabolic protein degradation. Indeed, the proteasomal degradation
pathway may provide sufficient asparagine to leukemia cells under
asparaginase treatment (Figure 2). Activation of WNT-dependent in-
hibition of proteasomal degradation improves the therapeutic index of
asparaginase [42]. Other cell types in the bone marrow environment
may also provide asparagine to leukemia cells under asparaginase
treatment (Figure 2). For example, bone marrow-derived mesenchymal
cells express ASNS at high levels, and expression has been shown to
correlate with both synthesis and secretion of asparagine [43,44].
Furthermore, ALL cells secrete insulin-like growth factor (IGF)-binding
protein 7 (IGFBP7) when co-cultured with bone marrow stromal cells to
stimulate ASNS expression and asparagine secretion [45]. Adipocytes
may also provide anaplerotic substrates to leukemic cells and coun-
teract the effects of L-asparaginase [46]. These studies suggest po-
tential resistance mechanisms for L-asparaginase therapy.
Building upon the success of L-asparaginase for the treatment of blood
cancers, there is growing interest in its use for the treatment of solid
tumors. Early clinical trials of L-asparaginase across neoplastic dis-
eases found a partial response in melanoma and lymphoma patients
[11]. Additionally, hepatocellular carcinomas and gastric and pancre-
atic cancers with low expression of ASNS exhibit sensitivity to L-
asparaginase [30,47,48]. Asparagine availability strongly regulates
metastatic potential as L-asparaginase treatment reduces the
epithelial-to-mesenchymal transition, invasiveness, and metastatic
progression [49]. It should be noted that administration of L-aspar-
aginase may also result in significant depletion of serum glutamine
levels at higher doses [50,51]. However, in cells expressing low levels
of ASNS, the asparaginase activity, and not the glutaminase activity of
L-asparaginase, is sufficient to induce cell death [52]. To overcome this
challenge, L-asparaginases have been engineered with negligible off-
target glutaminase activity, which may reduce the toxic side effects
associated with therapy [53].

2.2. Arginine
Arginine is a nonessential amino acid and a major biosynthetic pre-
cursor for a wide range of metabolic reactions. In addition to its pro-
teinogenic role, arginine is required for the synthesis of creatine,
polyamines, nitric oxide (NO), agmatine, and urea, with glutamate and
proline as dietary precursors. While diet can provide sufficient levels of
arginine, many human cells synthesize it from aspartate and citrulline
through two major cytosolic urea cycle enzymes, argininosuccinate
synthetase (ASS1) and argininosuccinate lyase (ASL) (Figure 3). In the
first and rate-limiting reaction [54], ASS1 catalyzes the conversion of
amino acids aspartate and citrulline into argininosuccinate prior to its
conversion by ASL into fumarate and arginine. Accumulating evidence
suggests that some cancer cells, unlike their normal counterparts, are
unable to synthesize sufficient arginine and become dependent on
extracellular levels to proliferate. This dependency on arginine was first
recognized in 1947 [55]. Bach et al. observed a strong inhibition of
tumor growth upon injection of purified arginase [56], an enzyme that
catalyzes the conversion of arginine into ornithine and urea (Figure 3).
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Similar results were obtained later using arginine deiminase (ADI)
purified from Mycoplasma arginini, a 300-fold more efficient enzyme
than arginase at depleting arginine [57]. In hepatocellular carcinoma
and melanoma, ADI treatment reduces in vitro and in vivo proliferation
[58]. These anti-proliferative effects could be reversed by the addition
of supraphysiological concentrations of arginine [59] or overexpression
of ASS1 [60]. The recombinant forms of ADI are currently in clinical
trials to treat arginine auxotrophic hepatocellular carcinomas, mela-
nomas, acute myeloid leukemias, and colorectal tumors [61e63].
The arginine dependency of many human cancers results from a
decrease in ASS1 expression (Figure 3). Reduced or loss of ASS1
expression has been observed in melanoma [64], hepatocellular carci-
noma [64], lymphoma [65], and prostate cancer [66], but also often in
renal cell carcinoma [67], pancreatic ductal adenocarcinoma [68],
ovarian cancer [69,70], lung pleural mesotheliomas [71], or sarcomas
and invasive breast carcinomas [72]. While a major mechanism for ASS1
silencing is hypermethylation of its promoter [65,70,71], other mecha-
nisms have been proposed. In fumarate hydratase (FH) deficient tumors,
accumulation of fumarate reverts ASL reactions and results in the
consumption of cellular arginine, making these cancers arginine auxo-
trophic [73]. Indeed, treatment of FH null cells with ADI decreases
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 69
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intracellular arginine levels and inhibits their proliferation. Arginine de-
pendency has recently been associated with the Myc oncogene status of
small cell lung carcinomas (SCLC) [74]. Myc-driven mouse and human
SCLCs display altered arginine metabolism and are sensitive to ADI
treatment. Importantly, upon depletion of arginine, synthesis of poly-
amines may be the growth-limiting factor for these lung tumors [74].
Arginine depletion also reduces the synthesis of nitric oxide [75], a key
promoter of tumor survival and angiogenesis (Figure 3) [76,77]. Finally,
prolonged arginine depletion may result in the autophagy-dependent
death of ASS1-deficient breast cancers by impairing the mitochondrial
integrity and increasing the reactive oxygen species (ROS) [78]. This
suggests that arginine depletion may suppress tumor growth by
impacting multiple cellular and metabolic processes.
The fact that ASS1 expression is frequently lost in many cancer types
suggests that blocking this step in the arginine biosynthetic pathway
may be beneficial for tumor growth. The reason for ASS1 down-
regulation in cancer cells is unknown. ASS1 downregulation may in-
crease the uptake of exogenous arginine, which could be shunted to
different metabolic fates such as the production of NO or polyamines
[79]. Alternatively, a recent report showed that the accumulation of
A

B

Figure 4: Cholesterol auxotrophic lymphomas accumulate squalene, an antioxidant
unable to synthesize cholesterol upon the loss of expression of squalene monooxygenase
consequence, in order to proliferate, these cancers depend on the uptake of cholesterol th
lipid peroxidation. Certain mevalonate pathway intermediates, such as squalene or coenzym
fatty acids (PUFAs). Conversely, the functioning of glutathione peroxidase 4 (GPX4), the m
reduced glutathione (GSH) levels. GSH is synthesized from three amino acids: glycine, gluta
decreases GSH synthesis and depletes the antioxidant capacity of cells.
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aspartate, an ASS1 substrate, and its diversion into nucleotide syn-
thesis promotes ASS1-deficient cancer proliferation (Figure 3) [35,80].
This higher flux into nucleotide synthesis would explain why some
ASS1-deficient cancers are resistant to chemotherapy and platinum
salts, agents that target DNA repair [70,81].
Without the ability to synthesize asparagine, ASS1 deficient cancers
rely on extracellular arginine sources from serum or other cell types
(such as macrophages and CAFs) for growth [68,82]. A recent study
showed that sustaining circulating arginine levels requires a functional
host autophagy in mice. Indeed, defective host autophagy reduces
serum arginine levels and suppresses the growth of ASS1-deficient
melanomas [83], raising the possibility that autophagy inhibition may
also be an effective therapy for arginine auxotrophic cancers.

2.3. Cholesterol
Cholesterol is an essential structural component of cellular membranes.
As lipoproteins aremajor cholesterol carriers in the serum,many human
cells rely on the endocytosis-mediated uptake of lipoproteins through
low-density lipoprotein receptor (LDLR) to meet their cholesterol de-
mands (Figure 4) [84]. Additionally, cholesterol can be synthesized from
-like metabolite. A) ALK-positive anaplastic large cell lymphomas (ALKþ ALCLs) are
(SQLE), which triggers the accumulation of the cholesterol intermediate squalene. As a
rough the low-density lipoprotein receptor (LDLR). B) Mechanisms that prevent cellular
e Q, can protect cells from cell death triggered by the peroxidation of polyunsaturated
ajor enzyme involved in detoxification of lipid peroxides, depends on the availability of
mate, and cysteine. Disruption of the uptake or utilization of these immediate precursors
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acetyl-CoA in the endoplasmic reticulum through consecutive enzy-
matic reactions (Figure 4) [85]. Cells maintain cholesterol homeostasis
through an integral membrane protein, SREBP cleavage-activating
protein (SCAP). SCAP contains a cholesterol-binding pocket and, upon
cholesterol shortage, cleaves the sterol regulatory element-binding
protein (SREBP) transcription factors, which translocate into the nu-
cleus and promote the transcription of key cholesterol metabolism
genes [86]. Because of their high proliferation rates, cancer cells have
an increased requirement for cholesterol and many cholesterol genes
are downstream effectors of oncogenic signals. Activation of the Pi3K/
AKT signaling pathway, for example, induces cholesterol synthesis by
activating SREBP and promotes tumor growth and metastasis [87e89].
Similarly, mutant p53 in breast tumors is associated with an increase in
cholesterol biosynthesis genes [90].
Paradoxically, cholesterol auxotrophy is also observed in some tumors
as a rare phenotypic trait. One of the first examples of cholesterol
auxotrophy in cancer was observed in a histiocytic lymphoma cell line,
U-937. These cells are cholesterol auxotrophic due to a defect in 3-
ketosteroid reductase (HSD17B7) and die in culture unless supple-
mented with cholesterol [91,92]. Using a DNA barcode-competition
assay, our group recently identified similar cholesterol auxotrophic
cell lines from several cancer types, including gastric cancer,
myeloma, Burkitt’s lymphoma, and anaplastic lymphoma kinase (ALK)-
positive anaplastic large cell lymphoma (ALKþ ALCL) [93]. Intriguingly,
ALKþ ALCL cancer cell lines and primary tumors lose the expression of
a rate-limiting cholesterol biosynthesis enzyme, squalene mono-
oxygenase (SQLE) (Figure 4). Consistent with the loss of SQLE
expression, these cancers accumulate massive levels of squalene, a
cholesterol metabolism intermediate with antioxidant properties [93]
(Figure 4). The role of squalene as a lipophilic antioxidant is consistent
with previous reports revealing the benefit of endogenous antioxidants
for tumor growth and metastasis [94e98]. Similar to squalene or
mevalonate intermediates (i.e., coenzyme Q10) [99], there are likely
other non-polar endogenous antioxidants that promote primary and
metastatic tumor growth.
Most prior attempts to target cholesterol metabolism have focused on
the use of statins, a clinical inhibitor of HMG-CoA reductase [100,101].
While statin use is associated with reduced cancer-related mortality for
some cancer types [102], it remains unclear whether these effects are
cell-autonomous or which tumor types would be most sensitive to such
therapy. A recent study identified a strong dependency of gliomas on
de novo cholesterol synthesis. Disruption of this process using the
menin inhibitor MI-2, which directly inhibits the cholesterol-synthesis
enzyme lanosterol synthase (LS), strongly impairs glioma tumor
growth and indicates cholesterol synthesis as an attractive target
pathway [103]. In other cancer types, such as pancreatic cancers,
inhibition of cholesterol uptake through blocking LDLR has also been
suggested as an anti-cancer strategy [104,105]. Similarly, in
ALKþ ALCLs that are unable to perform de novo cholesterol synthesis,
disruption of cholesterol uptake through inhibition of LDLR strongly
abrogates their growth in vivo (Figure 4) [93]. This indicates that the
cell of origin or mutational landscape can force tumor cells to obtain
cholesterol via different metabolic routes.

3. INCREASED DEMAND FOR NUTRIENTS MAY LEAD TO
METABOLIC DEPENDENCIES

3.1. Cysteine
Cysteine is a sulfur containing amino acid with diverse roles in protein
function and oxidative metabolism. Cysteines in proteins can generate
disulfide bonds essential for protein folding. Cysteine availability also
MOLECULAR METABOLISM 33 (2020) 67e82 Published by Elsevier GmbH. This is an open access article
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impacts iron sulfur cluster containing proteins [106], which are
involved in oxidative phosphorylation, heme biosynthesis, and central
carbon metabolism. In addition to its proteinogenic role, cysteine
contributes to the synthesis of intracellular metabolites such as
taurine, coenzyme A, and glutathione (GSH), a tripeptide antioxidant
[107]. Among these, glutathione synthesis is the most studied function
of cysteine metabolism and its levels strongly depend on cysteine
availability (Figure 4).
Most cellular cysteines are acquired from the extracellular environ-
ment in the form of cystine, the oxidized dipeptide form of cysteine,
by the solute carrier family 7 member 11 (SLC7A11), often referred
as system xCT [108]. Alternatively, cysteine can also be synthesized
de novo from methionine and serine through the trans-sulfuration
pathway [109]. In the de novo synthesis of cysteine, methionine-
derived homocysteine is conjugated to serine by the enzyme cys-
tathionine beta-synthase (CBS), generating an intermediate, cys-
tathionine, which in turn is hydrolyzed into cysteine, ammonia, and
2-ketobutyrate in a reaction catalyzed by cystathionine gamma-
lyase (CTH). In 1966, Eagle and colleagues observed that some
human cells could not grow in cystine-free media even in the
presence of L-cystathionine, indicating a block in the trans-
sulfuration pathway [110]. Similarly, other groups found that
leukemic cells could not grow without cystine in the media, whereas
healthy lymphocytes proliferated normally in the absence of envi-
ronmental cystine [111,112]. Despite their ability to synthesize
cysteine, most cells require cystine uptake to proliferate. This de-
pendency is in part due to a decrease in the expression of the trans-
sulfuration pathway enzymes in cancer cells [113,114] and to an
insufficiency in the de novo synthesis. Blocking cystine uptake in-
creases lipid peroxides and triggers an iron-dependent non-apoptotic
type of cell death called ferroptosis by inhibiting a major lipid
peroxidase, glutathione peroxidase 4 (GPX4), which requires GSH as
a cofactor (Figure 4) [115]. In addition to being a substrate for GSH
synthesis, cysteine also prevents ferroptotic cell death in its role as a
sulfur donor in the iron-sulfur cluster biosynthesis. In the context of
tumors exposed to high-oxygen environments, the cysteine desul-
furase NFS1, which uses cysteine as a substrate to donate sulfur for
the formation of iron-sulfur clusters, is essential for maintaining
cellular health upon lipid peroxidation [116]. Loss of NFS1 results in
decreased iron-sulfur cluster synthesis and an increase in free iron,
which induces lipid peroxidation and ferroptosis under high oxygen
tension [116]. To maintain cellular cysteine levels, several cancers
upregulate cysteine transport [117] or, in some cases, decrease its
consumption [118].
Targeting cystine uptake has recently been suggested as a
strategy for inhibiting the proliferation of glioblastoma [119],
pancreas [120], prostate [121], and breast cancer [122]. While
targeting of xCT has been achieved pharmacologically using
drugs such as the anti-inflammatory drug sulfasalazine [123], its
efficacy in vivo remains unclear. This has led to the design of a
cystathionine gamma-lyase enzyme with a much higher affinity
for L-cysteine than for L-cystathionine [124]. Similar to L-aspar-
aginase and arginase enzymes, cyst(e)inase can be delivered
in vivo and deplete serum cystine. The potential of this treatment
has already been shown in prostate cancer xenografts, with
animals receiving this treatment presenting tumors with lower
GSH levels, high ROS production, and impaired growth [124]. In
addition to its effect on solid cancers, a complementary study
showed that the treatment of acute myeloid leukemias with
cyst(e)inase almost completely eradicated leukemia stem cells
and may be a useful therapeutic strategy [125].
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3.2. Glutamine/glutamate
While glutamine is a non-essential amino acid that can be de novo
synthesized, most cancer cells depend on it to proliferate in culture
[126e128]. This universal dependency is rooted in glutamine’s role in
central carbon metabolism. Glutamine feeds the TCA cycle and is a key
nitrogen donor for the synthesis of purine and pyrimidine nucleotides
[129], the cofactor nicotinamide adenine dinucleotide (NAD), and
glucosamine-6-phosphate, a precursor for N-linked glycosylation
[126]. Moreover, glutamine contributes to the de novo synthesis of
other non-essential amino acids such as asparagine, glutamate, pro-
line, aspartate, serine, alanine, and ornithine [128]. Consistent with
these essential roles, depletion of glutamine strongly impacts prolif-
eration in vitro. However, in vivo glutamine utilization differs among
tumor types, at least at the entry level into the TCA cycle, where
glutamine contribution is minimal [130,131], with the notable excep-
tion of pancreatic cancers [130]. Indeed, glutaminase inhibitors, which
block glutamate synthesis from glutamine, show minimal efficacy
in vivo despite their strong anti-proliferative effects in culture. Gluta-
minase inhibition with a phase 2 clinical drug, CB-839, strongly im-
pairs the in vitro proliferation of PDAC cells but does not impact tumor
growth in an autochthonous PDAC model [132]. This raises the pos-
sibility that in vivo compensatory mechanisms exist to manage the
oxidative stress triggered by impaired glutamine utilization [132].
Glutamine-derived glutamate is one of the three amino acids required
for GSH synthesis, but it also facilitates the uptake of cystine, another
GSH precursor, from the extracellular environment through its use as
an antiporter metabolite by system xCT (SLC7A11) (Figure 4). Gluta-
mine’s role in GSH synthesis creates an exploitable dependency when
cancer cells are wired to have an increased antioxidant response. For
example, loss of Kelch-like ECH-associated protein 1 (Keap1), a
negative regulator of nuclear factor erythroid-2-related factor 2 (NRF2;
encoded by NFE2L2), the master regulator of the cellular antioxidant
response [133], increases the dependency of lung cancer cells on
glutamine, likely due to an increased demand for GSH synthesis [95].
Treatment of these cancer cells in vitro and in vivo with glutaminase
Figure 5: Aspartate is a limiting metabolite in the tumor microenvironment. When
enables the de novo synthesis of aspartate and its use for the synthesis of new nucleotides
and oxygen environments (right). This stressed microenvironment, in a way similar to ce
aspartate from other sources. In order to meet their aspartate demands, tumors may rely on
some tumors are able to take up environmental aspartate through the expression of aspar
through macropinocytosis, the lysosome-dependent uptake of extracellular proteins.
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inhibitors strongly inhibits their proliferation [95]. Mechanistically, the
inhibition of glutamine metabolism decreases intracellular glutamate
levels and impairs cystine uptake, leading to a depletion of cellular GSH
pools [134,135]. Similarly, high levels of environmental cystine in-
crease glutamine consumption and glutamate secretion through xCT
and sensitize lung cancer cells to glutaminase inhibition [136]. Finally,
a study assessing cancer cell dependencies on extracellular glutamine
identified a subset of triple-negative breast cancers auxotrophic for
glutamine [137]. This dependency was mostly due to the cellular need
to generate intracellular glutamate and drive sufficient cystine uptake.
Consistently, the inhibition of xCT using sulfasalazine decreased the
proliferation of these glutamine auxotrophic cancers [137].

3.3. Aspartate
Aspartate is a precursor for asparagine and arginine in addition to its
requirement for purine and pyrimidine synthesis (Figure 5). As most
human cells are unable to effectively take up aspartate due to the low
expression of aspartate/glutamate transporters [138], they depend on
aspartate synthesis from oxaloacetate through mitochondrial aspartate
aminotransferase (GOT2) (Figure 5). Aspartate production can be a
metabolic limitation for cancer cell proliferation under certain meta-
bolic stresses. As the substrates for aspartate aminotransferases are
synthesized through oxidative steps coupled to NADþ availability,
impaired regeneration of cellular NADþ results in a decrease in
aspartate synthesis. Indeed, under electron transport chain inhibition,
cytoplasmic aspartate aminotransferase (GOT1) sustains cellular
aspartate levels through the reductive carboxylation of glutamine
(Figure 5) [139]. GOT1, however, is not capable of producing enough
aspartate to support proliferation. This is illustrated by the fact that
supplementation of exogenous electron acceptors, such as pyruvate
[139] or alpha-ketobutyrate [140], the heterologous expression of a
NADþ recycling enzyme [141], or increasing aspartate uptake [36]
rescue cell proliferation defects under electron transport chain inhi-
bition. These findings are also in agreement with the observation that,
in order to proliferate in culture, cells lacking functional mitochondria
oxygen and nutrients are abundant, the mitochondrial electron transport chain (ETC)
and proteins required for cellular proliferation. Cancer cells often experience low nutrient
lls with ETC defects, decreases aspartate synthesis and imposes the need to obtain
its de novo synthesis by the aspartate aminotransferases GOT1 and GOT2. Conversely,
tate transporters such as SLC1A3. KRAS-mutant cancer cells may assimilate aspartate
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require the presence of supraphysiological concentrations of pyruvate
[142]. Interestingly, cellular aspartate levels and the expression of its
transporters can predict the response of different cancer cell lines to
electron transport chain (ETC) inhibitors [36]. In complex II deficient
kidney cancers, aspartate synthesis is achieved through the carbox-
ylation of pyruvate into oxaloacetate by pyruvate carboxylase (PC) [143]
(Figure 5). In addition, under certain conditions, cancer cells down-
regulate aspartate-consuming pathways to shunt aspartate to nucle-
otide biosynthesis. For example, cancer cells with low ASS1
expression accumulate aspartate to support proliferation and nucleo-
tide synthesis (Figure 3) [35], demonstrating that different metabolic
routes are used to overcome a shortage of aspartate. Under milder ETC
dysfunction, aspartate contributes to the formation of oxaloacetate and
enables NADH recycling for continuous glycolysis [144]. In malignant
cells, aspartate carbons may also be used to replenish the TCA cycle.
Indeed, upon glutamine depletion, cancer cells with wild-type p53 can
sustain the TCA cycle and proliferation by increasing aspartate avail-
ability through the expression of an aspartate transporter [145].
Several studies recently suggested aspartate as a limiting metabolite
for the growth of some tumors. Increasing aspartate availability by
expressing an aspartate plasma membrane transporter, SLC1A3
[36], or guinea pig asparaginase, an enzyme that metabolizes
intracellular asparagine into aspartate, enhances tumor growth [34].
Interestingly, among many metabolites, aspartate abundance cor-
relates best with established transcriptional markers of hypoxia in
primary glioblastoma tumors [36], supporting the hypothesis that
aspartate synthesis may be impaired in hypoxic tumor environments.
Aspartate limitation is likely not common to all cancers, as the
growth advantage conferred by increasing aspartate levels is not
observed in certain pancreatic cancer cell lines [34,36]. Since
pancreatic cancers may use macropinocytosis to scavenge extra-
cellular proteins [146e148], whether these cancers obtain their
aspartate through other mechanisms should be determined [149].
Low aspartate levels in tumors likely limit nucleotide synthesis.
Indeed, isotope tracing of exogenous aspartate or glutamine reveals
a higher incorporation of aspartate to purine and pyrimidines,
particularly under low oxygen [36,150]. Interestingly, this essential
role in nucleotide synthesis was recently demonstrated by the
finding that breast cancer cells lacking functional mitochondria were
unable to form tumors due to the impaired functioning of the
respiration-linked pyrimidine synthesis enzyme dihydroorotate de-
hydrogenase (DHODH) [151]. As most cancer types, including hyp-
oxic cancers such as pancreatic ductal adenocarcinoma, generally
cannot take up exogenous aspartate from the environment, these
cancers may rely on aspartate synthesis or other sources to prolif-
erate. Despite the limiting role of aspartate in tumor growth [34,36],
targeting its de novo synthesis in tumors remains untested. Further
studies addressing the impact of targeting aspartate metabolism in
cancer will clarify the potential of this anti-cancer strategy.

3.4. Serine
Serine is a central biosynthetic metabolite and acts as a precursor for a
wide range of biosynthetic reactions. A major role of serine is to
provide one-carbon units to folate metabolism by generating 5,10-
methylenetetrahydrofolate (CH2-THF), a metabolite with an impact
on NADPH production [152e154] that is also essential for nucleotide
synthesis. Additionally, serine availability influences epigenetic regu-
lation by coupling the folate cycle with the methionine cycle, allowing
the generation of S-adenosyl-methionine (SAM), the methyl donor for
DNA and histone methylation [155,156]. Serine also contributes to lipid
synthesis as a head group of phospholipids [157] and serves as a
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precursor for sphingolipid synthesis [158]. Serine availability is a
limiting factor for these processes as its depletion impacts sphingolipid
synthesis and impairs the proliferation of yeast [159] and human
cancer cells [160]. Serine is used as a precursor for the synthesis of
glycine in reactions catalyzed by the mitochondrial enzyme serine
hydroxymethyltransferase 2 (SHMT2).
Serine can be either exogenously taken up or synthesized from a
glycolytic intermediate (3-phosphoglycerate) in three consecutive re-
actions that involve phosphoglycerate dehydrogenase (PHDGH) [161],
phosphoserine aminotransferase 1 (PSAT1), and phosphoserine
phosphatase (PSPH). De novo serine synthesis is upregulated at the
gene transcription level or by genomic amplification of the PHDGH
locus in some cancer types such as basal-like breast cancers [162]
and melanoma [163]. Interestingly, the suppression of PHGDH impacts
the proliferation of cancers with elevated PHDGH expression, even in
the presence of serine [162]. This raises the possibility that PHDGH
expression in these cancers, in addition to driving serine synthesis,
may support the TCA cycle anaplerotic generation of alpha-
ketoglutarate in transamination reactions catalyzed by PSAT1 [162]
and affect central carbon metabolism and the pentose phosphate
pathway [164]. Similarly, the overexpression of PHGDH in mouse
models of breast cancer and melanoma enhances tumor growth,
suggesting that incipient tumors experience periods of serine depri-
vation in which increased de novo serine synthesis may be beneficial
[165].
As PHDGH expression varies greatly across cancer types [162,163],
exogenous serine depletion can be used as a therapeutic strategy in
cancers with low PHGDH expression [162] or high serine demand. In a
p53 null colon cancer model, serine deprivation impaired cell viability
due to a decrease in the GSH levels [166]. Activation of p53 in this
model triggered the diversion of glucose into serine biosynthesis and
the replenishment of GSH pools, increasing survival and proliferation
[166], further stressing the potential of lowering serine for the treat-
ment of p53 mutant cancers. A complementary study using serine and
a glycine-free (SG-free) diet [167] showed the potential of limiting
serine in vivo as an anti-cancer strategy in both a xenograft colorectal
cancer model and autochthonous cancer models of adenomatous
polyposis coli (Apc)-driven colorectal cancer and c-Myc-driven lym-
phoma [166,167]. Interestingly, the introduction of an activating mu-
tation of KRAS into these models triggered serine biosynthesis and
strongly reverted the anti-tumor effect of the SG-free diet [167].
Deficiency of liver kinase B1 (LKB1), a frequently mutated tumor
suppressor gene in pancreatic adenocarcinoma and lung cancer [168],
also sensitizes cancer cells to inhibit serine synthesis [156]. Similarly,
NRF2, a transcription factor commonly deregulated in lung cancer,
activates the expression of PHDGH, PSAT1, and SHMT2 and increases
the flux of glucose in serine and glycine biosynthesis [169]. Altogether,
these studies suggest that the expression of serine biosynthesis genes
and genomic status of the tumors should be considered when targeting
serine metabolism.

3.5. Proline
Proline is a key proteinogenic amino acid that is highly abundant in the
extracellular matrix component collagen [170]. Proline is synthesized
via pyrroline-5-carboxylate reductases and degraded by a mitochon-
drial enzyme, proline dehydrogenase (PRODH). Both de novo synthesis
and degradation of proline involve metabolite intermediate D1-
pyrroline-5-carboxylic acid (P5C) and are coupled to cellular energy
and redox status, demonstrating the additional functions of this amino
acid. During proline degradation, PRODH bound to the mitochondrial
inner membrane transfers electrons from proline to a FADþ prior to its
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 73
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transfer to a coenzyme Q pool, enabling ATP production through ETC
[171]. In the de novo synthesis of proline, the final step that converts
P5C into proline catalyzed by mitochondrial PYCRs (PYCR1 and PYCR2)
or cytosolic PYCRL requires reducing the power of NADPH or NADH,
depending on the specific isoform [172].
Several cancers depend on the uptake of exogenous proline due to a
partial auxotrophy. For example, a human leukemic lymphoblastoid
cell line, REH, presents a defect in PYCR activity and completely de-
pends on taking up proline to proliferate [173]. A recent study identified
a group of pancreas and lung cancer cell lines as dependent on
extracellular proline supplementation [174]. These proline-dependent
cancer cell lines exhibited a basal metabolic shunting of glutamine
into proline synthesis but failed to trigger the de novo synthesis
pathway upon proline depletion. This dependency on exogenous pro-
line was recapitulated in vivo using a proline-free diet [174]. Notably,
c-Myc is a known regulator of proline metabolism and plays an
important role in activating proline metabolism genes in Burkitt’s
lymphoma and prostate cancer models [175]. Despite these results,
the determinants of proline dependency in vivo have not yet been
identified.
Similar to aspartate, proline levels may also limit tumor formation.
Ribosome profiling studies to identify tRNA abundance in human
clear cell renal cell carcinoma (ccRC) samples revealed enriched
signals in proline codons, indicating a proline limitation in vivo [20].
Interestingly, the limitation of proline correlated with an increase in
the expression of the de novo proline synthesis enzyme PYCR1, and
its knockdown in different ccRC cell lines strongly impaired in vivo
tumor formation [20]. These results suggest that proline can limit
some primary tumors. Interestingly, matrix metalloproteinases
(MMP) can degrade collagen [176], the most abundant protein in the
body, and increase proline availability. Because MMP-mediated
degradation of ECM is considered pro-tumorigenic in many con-
texts [177], this raises the possibility that cancer-associated MMPs
may provide an important source of proline and thus make tumors
less dependent on their synthesis. The energy and redox status can
also determine the metabolic route by which cancer cells obtain their
proline [178]. For example, an imbalance of the cellular redox state
triggered by IDH1 mutation can impact proline metabolism. Indeed,
IDH1-mutant glioma cells compensate for this imbalance by
increasing proline biosynthesis, in which enhanced PYCR1 activity
maintains redox homeostasis [179].
A higher demand of cancer cells for essential amino acids such as
methionine [180] or branched-chain amino acids (BCAAs) [181,182]
was previously described. This review addresses only the increased
dependencies of cancer cells on vitamins.

3.6. Vitamins
Cancer cells may demonstrate increased dependencies on vitamins
due to their need for particular vitamin-dependent reactions or
because of defects in vitamin transport or activation. Vitamin B9, or
folate, is a precursor for tetrahydrofolate, a coenzyme involved in
enzymatic transfer of one-carbon groups in various amino acid and
nucleic acid synthesis pathways collectively referred to as one-carbon
metabolism. As many cancers rely on one-carbon pathways for pro-
liferation [183], targeting one-carbon metabolism pathways with drugs
such as methotrexate and 5-fluorouracile (5-FU) has been a successful
strategy since the 1940s [184].
Few reports have identified vitamin utilization defects such as
impaired transport or inability to synthesize activated derivatives,
defects that can be exploited therapeutically. In breast cancer cells,
thiamine transporters (SLC19A2 and SLC19A3) have been found to be
74 MOLECULAR METABOLISM 33 (2020) 67e82 Published by Elsevier GmbH. This is
expressed at lower levels than their normal tissue counterparts. This
led to the hypothesis that decreased thiamine transporter expression
may make these cancers more dependent on exogenous thiamine, a
vulnerability that can be targeted with acute thiamine starvation
[185,186]. To circumvent the effects of chronic thiamine starvation,
studies utilized a recombinant thiaminase enzyme that digests thia-
mine and induces an acute thiamine depletion state [187]. One
subset of leukemias were more dependent on extracellular thiamine
than other tested cell lines [187,188]. In follow-up studies, thiami-
nase was found to have in vivo efficacy against breast cancer and
leukemia subcutaneous xenografts, as well as primary ALL cells
injected intravenously [189]. These thiaminase studies provide
interesting examples of differential dependencies on extracellular
vitamin levels possibly explained by varying degrees of vitamin
transport capabilities.
Another vitamin with reported heterogeneity in transporter expression
across normal and cancerous tissues is riboflavin. Some riboflavin
transporters were observed to be overexpressed in melanoma, breast
cancer, and squamous cell carcinoma samples relative to healthy
tissues [190]. While these expression patterns may be useful for
designing targeted drug-delivery systems, these findings may suggest
the existence of cancers with increased riboflavin dependencies. It is
also possible for cancers to have vulnerabilities in vitamin utilization
downstream of extracellular uptake, such as in the enzymatic con-
version of vitamins to activated derivatives. Examples include vitamin
B6, an umbrella term for the 6 different vitamers that require different
enzymatic steps for interconversion before yielding the activated
cofactor form, pyridoxal phosphate (PLP) [191]. Dependencies on
exogenous pyridoxal (PL) or PLP forms of vitamin B6 have been
observed in some tumors [192]. Overall, with the exception of folate,
there are promising but few reports on unique vitamin dependencies in
cancer. Studying these dependencies could lead to dietary in-
terventions or new therapeutic targets that could be as impactful as
anti-folates have been for the last several decades.

4. CANCER DEPENDENCIES ON METABOLIC BY-PRODUCTS

4.1. Lactate
Cancer cells generally produce high amounts of lactate as a metabolic
by-product and secrete it through monocarboxylate transporters
(MCTs) [3,193e197]. While lactate production and its reduction from
pyruvate are essential for maintaining cellular redox balance, recent
studies suggest that extracellular lactate may also be utilized as a
carbon source for tumors. For example, some cancer cells in tumors
are more oxidative than others and depend on MCT1-mediated lactate
uptake to feed mitochondrial oxidative phosphorylation [198]. This
dependency is phenocopied in vivo by inhibiting MCT1 activity, which
impairs tumor growth and synergizes with radiotherapy [198]. How-
ever, the precise contribution of lactate as a fuel for tumors in vivo was
an unanswered question until recently. Two studies, one performed in
human and mouse lung tumors [199] and the other in mouse cancer
models of lung and pancreatic ductal adenocarcinoma [130], showed
not only that circulating lactate can be taken up by tumors and used as
an anaplerotic substrate for the TCA cycle, but also may be preferred
as a substrate over any other carbon source, including glucose
[130,199]. Similar to the previous study, MCT1 seems to be the major
cell-surface transporter involved in capturing environmental lactate by
lung tumors [199]. Altogether, these studies emphasize the need to
determine whether lactate is a preferred substrate for some tumors
and how secreted lactate from normal tissues and stromal cells may
impact tumor growth.
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


4.2. Acetate
Acetyl-coA is a metabolite involved in diverse cellular functions including
central carbon metabolism, lipid and cholesterol synthesis, and post-
translational modification of proteins [200]. Acetyl-coA can be pro-
duced through glucose or glutamine metabolism via ATP-citrate lyase
(ACLY) [201,202]. Alternatively, acetate produced from the diet or the
microbiome functions as a precursor of acetyl-coA through reactions
catalyzed by acetyl-coenzyme A synthetases (ACSS). While some tu-
mors mostly rely on de novo acetyl-coA synthesis from major carbon
sources [201e203], others are avid acetate consumers as observed by
positron electron tomography (PET) imaging [204e207] or via nuclear
magnetic resonance (NMR) [208]. Studies of hepatocellular carcinoma
[209] and glioblastomas [208] show a clear correlation between ACSS2
expression and tumorigenesis in patients and how disruption of ACSS2
expression decreases malignant potential in these cancer models
through depleting cellular acetyl-coA levels. Similarly, high ACSS2
expression was observed in patient samples of lung, ovarian, and breast
compared to corresponding normal tissue [209], and in the case of
triple-negative breast cancer, strongly correlated with poor survival
[209]. Acetate is consistently an important carbon source for growth
under limiting nutrient and oxygen conditions in several cancer types.
Breast cancers show ACSS2 genomic amplification and rely on acetate
for most of their fatty acid and phospholipid synthesis during metabolic
stresses [210,211]. Complementary studies show that hypoxia not only
increases the capture of acetate by cancer cells, but also induces a
lipogenic program by increasing histone acetylation [212].

4.3. Ammonia
Ammonia is considered a major metabolic waste product when cancer
cells catabolize nitrogenous nutrient sources [213]. Since the de novo
synthesis of amino acids and nucleotides requires nitrogen, some
cancer cells may rely on reactions that utilize ammonia as a nitrogen
source. Two such mechanisms have recently been identified in glio-
blastoma [214] and breast cancer [215], mediated by glutamine syn-
thetase (GS) and glutamate dehydrogenase (GDH), respectively. In the
case of glioblastomas, GS allows the incorporation of ammonia into
nitrogen reservoirs by the de novo synthesis of glutamine from gluta-
mate, thus supporting nucleotide synthesis in the context of glutamine
starvation [214]. Building upon the observation that ERþ breast cancers
express high levels of GDH [216], the second study reported that
ammonia is incorporated into glutamate through a GDH-catalyzed re-
action of alpha-ketoglutarate and ammonia [215]. In these cancers, very
high levels of ammonia accumulate in the tumor interstitial fluid and
generate glutamate-derived metabolite products such as proline,
aspartate, or glutamine. Knockdown of GDH in an ERþ breast cancer
cell line strongly impaired its proliferation in vitro as well as its in vivo
growth as tumor xenografts [215], stressing the relevance of this
nitrogen-salvaging pathway in this cancer type. Nonetheless, it remains
unclear whether this reliance on recycling ammonia as a mechanism to
increase nitrogen biomass in the tumor microenvironment occurs in
other cancer types or whether the presence of tumor stroma cells may
compensate for this dependency by supplying exogenous glutamine to
tumor cells. It is also unclear why high levels of ammonia are not toxic in
tumors [213] and whether there are adaptative strategies to withstand
the anti-proliferative effects of ammonia accumulation.

5. CONCLUSIONS

Cancer cells rewire their metabolic pathways to adapt and survive the
demands of high proliferation rates and their environment. Metabolic
reprogramming is in part determined by cell-autonomous factors such
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as the tissue of origin and oncogenic alterations. These metabolic
changes often promote tumorigenesis but also provide opportunities for
therapy. Indeed, in some cases, cancer cells become dependent on
extracellular nutrients to survive and proliferate. These dependencies
have been exploited as anticancer therapies for blood cancers, and the
discovery of similar nutrient dependencies in other tumor types may
result in alternative therapeutic interventions that involve the use of
custom diets or metabolite-degrading enzymes.
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