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A systems-based method to repurpose marketed
therapeutics for antiviral use: a SARS-CoV-2 case study
Mengran Wang, Johanna B Withers, Piero Ricchiuto, Ivan Voitalov, Michael McAnally, Helia N Sanchez, Alif Saleh,
Viatcheslav R Akmaev, Susan Dina Ghiassian

This study describes two complementarymethods that use network-
based and sequence similarity tools to identify drug repurposing
opportunities predicted to modulate viral proteins. This approach
could be rapidly adapted to new and emerging viruses. The first
method built and studied a virus–host–physical interaction network;
a three-layer multimodal network of drug target proteins, human
protein–protein interactions, and viral–host protein–protein inter-
actions. The second method evaluated sequence similarity between
viral proteins and other proteins, visualized by constructing a
virus–host–similarity interaction network. Methods were validated
on the human immunodeficiency virus, hepatitis B, hepatitis C, and
human papillomavirus, then deployed on SARS-CoV-2. Comparison
of virus–host–physical interaction predictions to known antiviral
drugs had AUCs of 0.69, 0.59, 0.78, and 0.67, respectively, reflecting
that the scores are predictive of effective drugs. For SARS-CoV-2, 569
candidate drugs were predicted, of which 37 had been included in
clinical trials for SARS-CoV-2 (AUC = 0.75, P-value 3.21 × 1023). As
further validation, top-ranked candidate antiviral drugs were ana-
lyzed for binding to protein targets in silico; binding scores gen-
erated by BindScope indicated a 70% success rate.
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Introduction

Viruses are obligate intracellular parasites that can only replicate
by entering into a host cell and hijacking host cell machinery to
produce and assemble new progeny virions. The arsenal to treat
viral infections focuses on viral and cellular components that are
essential for the viral life cycle. There are two main categories of
antiviral therapies: (1) host-targeted antivirals that modulate host
proteins that interact with or are influenced by the virus and (2)
virus-targeted antivirals that directly bind to and modulate the
activity of viral proteins (1). Drugs that target viral proteins may
directly limit viral replication and propagation (1).

Themedical and scientific communities do not have the luxury of
time to develop new compounds that target highly contagious

life-threatening viruses with the rapidity required to combat an
ongoing pandemic (2). To facilitate the advancement of drugs into
clinical trials, identification of drugs that were previously approved
for other indications and exhibit a reasonable safety profile repre-
sent a resource for potential antiviral therapeutics (3, 4, 5 Preprint).

The coronavirus disease 2019 (COVID-19) pandemic, caused by
the spread of SARS-CoV-2, has highlighted the need for tools to
rapidly identify effective therapies against emerging pathogens.
Numerous drugs have been identified that are predicted to alle-
viate COVID-19 symptoms and are in clinical trials to assess their
safety and efficacy (6, 7). Identification of multiple treatment op-
tions is important to control the spread of the disease: patients
respond differently to the same treatments because of their ge-
netics (8), sequence variations in the viral genome may influence
drug efficacy (9), and bottlenecks in drug availability may occur
once an effective treatment is identified (10).

One consideration when evaluating drug repurposing oppor-
tunities is the ability of a drug to bind to multiple protein targets,
called drug promiscuity. It has been previously shown that a drug’s
promiscuity is correlated with structural similarity and binding site
similarity between the intended and unintended protein targets
(11). In this study, network-based tools and bioinformatic ap-
proaches identified drug repurposing opportunities that were
predicted to directly target viral proteins. The two antiviral drug
discovery methods developed in this study were designed to first
identify existing protein targets that are structurally similar to viral
proteins then, subsequently, predict and rank the interactions likely
to occur between existing compounds and viral proteins. These
methods were validated using the human immunodeficiency virus 1
(HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human
papillomavirus (HPV) then used to predict candidate antiviral drug
repurposing opportunities for SARS-CoV-2.

Results

In this study, two network- and sequence-based methods were
developed to identify candidate drug repurposing opportunities
that directly target viral proteins. An underlying assumption behind
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many drug–target interaction predictions is that structurally similar
proteins are more likely to be targeted by similar drugs (11, 12, 13).
Using complementary approaches, the methods described herein
identify drugs by virtue of homology between viral proteins and
proteins that are the known target of therapeutics developed for
other indications. Both methods were designed to find proteins
that are structurally similar to viral proteins; method 1 inferred
structural similarity through common protein–protein interaction
(PPI) patterns and method 2 derived structural similarity through
sequence homology (Fig 1). When used in combination, these
complementary methods derive high-confidence predictions of
drug repurposing candidates.

Systems-based antiviral drug ranking and identification

In the network-based method, the similarity between viral proteins
and human proteins was indirectly inferred through their common
interaction patterns. We constructed and studied a virus–host–
physical interaction (VHPi) network; a three-layer multimodal
network of (1) drug and target protein interactions from DrugBank
(14,15), (2) consolidated human protein–protein pairwise interac-
tions (Human Interactome, see the Materials and Methods section),
and (3) viral–host PPIs (16). In this method, a network-based

similarity approach (17) was implemented to find human pro-
teins that are similar to viral proteins. These network-identified
proteins were predicted to have similar binding interfaces and thus
are likely to interact with the same compounds.

In the VHPi network, identifying a drug that is predicted to bind to
a viral protein is a link prediction problem (18) (Fig 1A). In most self-
organizing networks, such as social networks, two nodes (people)
are more likely to interact with (know) each other if they have a
greater number of common neighbors, a phenomenon known as
triadic closure principle (19). Hence, most link prediction methods
that have been implemented on biological networks use metrics
that incorporate common neighbors (20, 21). However, these
metrics do not successfully predict interactions in biological net-
works where interactions occur primarily through physical contacts.
For example, protein A interacts with both proteins B and C, in-
dependently (Fig 1A). In this case, protein B and C have a shared
neighbor–protein A–and are therefore at a network distance of two.
The interaction between proteins A and B indicates that these
proteins have complementary binding sites, and this assumption
holds true for proteins A and C as well. Proteins with a high number
of shared neighbors are more likely to have similar binding in-
terfaces and thus tend to interact with the same proteins (nodes).
Unlike the case of social networks, proteins B and C are not

Figure 1. Complementary methods to identify drug
repurposing candidates that directly target viral
proteins.
(A) A network-based approach using link prediction to
identify drug repurposing opportunities that are at a
path length of three from viral proteins on the
virus–host–physical interaction network. (B) A
sequence similarity approach that identifies drug
target proteins with protein sequence homology to
viral proteins.
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expected to directly interact with each other. Rather proteins B and
C are expected to be structurally similar. Therefore, protein B is
predicted to interact with other interacting partners of protein C, in
this case protein D. Note that the network distance between protein
B and the predicted interacting partner, protein D, is three.
Therefore, link prediction applied to biological networks involves
finding path lengths of three (L3) (17). Drugs with a path of length
three to the viral proteins will have a non-zero rank. In this scoring,
drugs with multiple paths of length three to the viral proteins were
ranked higher and promiscuous drugs (drugs with a high number of
target proteins) tended to have higher scores.

For physical PPI networks, the L3 methodology outperforms other
link prediction methods (17). In principle, this can be extended to any
network where the interactions are based on physical binding and
has the advantage that it should not be limited to one organism or
specific node type. In method 1, link prediction can be applied such
that drugs known to target human proteins would be expected to
interact with viral proteins if the drug is three steps away from a viral
protein in the VHPi network (Fig 1A). To generate a ranking score, each
drug score was penalized by the degree of the mediator nodes, that
is, a protein in the path between a viral protein and predicted drug
(see the Materials and Methods section, Equation (1)).

In parallel, a complementary approach was implemented in
which the similarity between viral proteins and other proteins was
directly derived by calculating their global sequence similarity. In
this method, proteins with high sequence similarity were predicted
to bind the same small molecules. BLAST homology analysis
assessed the amino acid sequence similarity between viral proteins

and other protein sequences (see the Materials and Methods
section). The results can be visualized by constructing a virus–
host–similarity interaction (VHSi) network (Fig 1B).

Method validation in HIV, HCV, HBV, and HPV

Four viruses were chosen to validate themethods: HIV, HBV, HCV, and
HPV. The VHPi networks were consolidated from (1) drug and target
protein interactions from DrugBank (14, 15), (2) consolidated human
protein–protein pairwise interactions (Human Interactome, see the
Materials and Methods section), and (3) virus–host protein inter-
actions from the National Center for Biotechnology Information
(NCBI) HIV-1 Interactions Database (22, 23) and published literature
(24, 25, 26) (see the Materials and Methods section; Table S1). Drugs
predicted to bind to viral proteins were ranked by calculating the L3
measure of the drug to a viral protein on the VHPi network. From
DrugBank, 7,859 drugs (containing approved small molecule drugs,
approved biologics, nutraceuticals, and experimental drugs) were
considered for which 5,576 (HIV), 4,532 (HBV), 5,313 (HCV), and 5,834
(HPV) drugs were given a non-zero rank based on the L3 measure. To
evaluate the performance of ranked drugs, antiviral drugs with at
least one human primary target protein were curated from the
DrugBank database (See the Materials and Methods section; Table
S1). To assess the performance of network, mean scores in predicting
antiviral drugs, an ROC curve was generated, which resulted in AUC
values of 0.69, 0.59, 0.78, and 0.67 for HIV, HBV, HCV, and HPV, re-
spectively (Fig 2A). This showed that network mean scores were

Figure 2. Method validation in HIV, hepatitis B virus,
hepatitis C virus, and HPV.
(A) Receiver operating characteristic curve evaluating
predictive power of network-based approach in ranking
known drugs in HIV, hepatitis B virus, hepatitis C virus,
and HPV. (B) Box and whisker plot of network mean
scores generated for all drugs with a non-zero value and
for drugs identified by the sequence similarity
approach for HIV. The sequence similarity approach
predicts drugs with high network mean scores.
(C) Virus–host–similarity interaction network
representation of drugs predicted by both methods for
HIV.
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predictive of effective drugs and that other highly ranked drugs
represent candidates for further study (Table S2).

To reduce the list of predicted drugs, we applied the sequence
similarity-based approach described above to the four viruses.
BLASTP searches were performed on unique viral protein se-
quences to find homologous proteins (see the Materials and
Methods section). Human proteins homologous to the viral protein
sequences were identified for HIV, but not the other viruses. Drugs
known to target the homologous proteins were predicted to also
bind the HIV viral proteins. Unlike the network-based method
where the predictions provide a continuous score for each drug, the
predictionsmade by this complementary method are binary, that is,
yes or no. Interestingly, we observed that drugs predicted through
sequence-based similarity tended to have high network mean
scores as predicted by the network-based method (P-value = 3.33 ×
10−22) (Fig 2B). This observation confirmed the complementary
nature of the two approaches. The VHSi network interactions of
predicted drugs supported by both methodologies for HIV viral
proteins are depicted in Fig 2C. No drug was found through BLAST
search for HBV, HCV, and HPV.

COVID-19: prediction and in silico validation of candidate antiviral
drugs

The SARS-CoV-2 VHPi network was consolidated to identify drugs
that are predicted to bind viral proteins based on link prediction.
From DrugBank, 7,859 drugs were considered and 4,486 were given a
ranking based on the L3 measure of the drug to a viral protein on
the VHPi network. The highest-ranked drug for each viral protein

type (structural, non-structural, and accessory) is shown in Fig S1.
The antimalarial drug artenimol was predicted to target the nu-
cleocapsid structural protein, the tyrosine kinase inhibitor fosta-
matinib used to treat chronic immune thrombocytopenia was
predicted to target the non-structural protein Nsp13, and the co-
enzyme NADH was predicted to bind to the viral protein ORF9C.

As there are currently no approved drugs for COVID-19, we used a
list of drugs currently in clinical trials for preliminary validation
(Table S3). A list of 322 drugs in clinical trials for COVID-19 (as of 1
January 2021) was curated from ClinicalTrials.gov as a surrogate for
effective drugs (see the Materials and Methods section). The drug
rankings provided by the network-based approach were able to
predict the drugs in clinical trials with an AUC of 0.64 (Fig 3A).

To refine the drug predictions, sequence-based similarity ana-
lyses of SARS-CoV-2 viral proteins were performed. To facilitate
further in silico methodology validation, the similarity analyses
were restricted to those proteins for which a structure was available
in the Protein Data Bank (PDB). Similar to HIV, the drugs predicted
by sequence similarity tended to have high scores as predicted by
the network-based method (P-value = 2.57 × 10−38) (Fig 3B). The
interaction patterns of the human proteins with sequence ho-
mology to SARS-CoV-2 viral proteins were visualized on the VHSi
network (Fig 3C). The network visualization represents 569 SARS-
CoV-2 candidate antiviral drugs predicted by the sequence simi-
larity method that had a non-zero network mean score according to
the network-based method (Table S4). Among these 569 predicted
drugs, 37 of them have been included in clinical trials for SARS-CoV-
2 (AUC = 0.75, P-value 3.21 × 10−3). Gene ontology analysis of human
proteins that are homologous to SARS-CoV-2 proteins indicated an

Figure 3. Method implementation on SARS-CoV-2.
(A) Receiver operating characteristic curve evaluating
predictive power of network-based approach in
ranking drugs currently under investigation for COVID-
19 in clinical trials. (B) Box and whisker plot of
network mean scores generated for all drugs with a
non-zero value and for drugs identified by the sequence
similarity approach. (C) Visualization of predicted
antiviral drugs and SARS-CoV-2 Protein Data Bank
structures on the virus–host–similarity interaction
network.
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enrichment for proteins involved in neurotransmission and mi-
tochondrial function (Table S5).

Computational prediction of drug–target interactions has be-
come an essential step in the drug discovery process. The Bind-
Scope web application for active-inactive classification of compounds
based on deep convolutional neural networks (27), was used to
evaluate the binding affinity of the candidate drug–protein pairs
predicted in this study. The interactions are scored based on prob-
ability where values close to one imply strong binding affinity and
those close to zero imply low binding affinity. Binding scores were
determined for the drug–targets pairs predicted by both the network-
based and sequence similarity methods introduced in this study
(Table 1). The results showed that 70%of the predicted drug-virus pairs
have a binding score over 0.6.

Discussion

Using network topological and biological properties of viral pro-
teins, two complementary methods were developed for identifi-
cation of candidate antiviral therapies. Host proteins that interact
with viral proteins were studied by mapping the proteins onto a
consolidated Human Interactome map of PPIs, observing their
underlying interaction patterns, and studying their biological
properties. Four well-studied viruses were used to validate the drug
prediction methods. Candidate antivirals ranked by the network-
based method predicted known HIV, HBC, HCV, and HPV drugs with
AUC values of 0.69, 0.59, 0.78, and 0.67, respectively, reflecting that
the network mean scores were predictive of effective drugs. Finally,
the novel SARS-CoV-2 drug–virus protein interactions that were
predicted by bothmethods were validated in silico using BindScope
and resulted in a 70% success rate of identifying candidate antiviral
therapies that bind directly to viral proteins with high affinity. This
suggests that the methods described herein have the potential to
identify candidate drug repurposing opportunities that directly
bind to viral proteins.

Numerous antiviral drug repurposing candidates identified by this
study were predicted to bind to viral proteins using BindScope. The
application of deep neural networks through tools such as BindScope
has opened a new path to perform molecular docking using methods
that have been previously trained and validated to predict drug–target
interactions. Many of the candidate antiviral drugs were predicted to
target SARS-CoV-2, which reflects the ability of the methods to identify
promiscuousdrugs. However, inclusionof the sequence similarity-based
method eliminated many drugs that bind indiscriminately and lack
specificity for the particular virus of interest.

Gene ontology analysis of the proteins homologous to SARS-CoV-2
proteins identified enrichment of terms associated with mitochon-
dria and synaptic transmission. Previous studies suggested a link
between SARS-CoV-2 pathogenesis and manipulation of mitochon-
drial function (16, 28, 29). Homology to humanmitochondrial proteins
may enable viral proteins to bind to and manipulate mitochondrial
protein function to promote viral entry andmodulate host responses
to viral infection (29). The enrichment of gene ontology terms as-
sociated with neurological processes in consistent with the neuro-
invasive potential of SARS-CoV-2 (30, 31, 32). Patients with COVID-19
show signs of neurologic involvement including headache, loss of
taste and smell, or, less frequently, encephalopathy and acute ce-
rebrovascular disease (33, 34). The homology between human pro-
teins and those encoded by SARS-CoV-2, suggests that, as is common
among viruses, mimicry of host proteins can promote infection and
pathogenesis. Although the similarity between viral and host pro-
teins can make it difficult for the immune system to recognize and
clear invading pathogens, this same characteristic could be exploited
to identify drug repurposing opportunities.

Among the top predicted HIV-1 drug/target combinations are drugs
approved by the FDA for treatment of HIV (etravirine, zidovudine, and
lamivudine) and have completed Phase III clinical trials (bictegravir) (35).
A fifth drug, capravirine, was predicted in this study to target HIV-1 Gag
protein; however, its development ceased because of safety concerns
and because it did not provide sufficiently substantial improvement over
already available treatment options. Among the top predicted SARS-CoV-
2–specific drug repurposing candidates were fostamatinib, glutathione,

Table 1. Binding scores for drug–targets pairs predicted by network-based and sequence similarity methods.

Drug name Drugbank ID Viral protein name Viral protein target PDB Network mean score BindScope score

Artenimol DB11638 NSP8 7BTF_chainB 0.51001897 0.951099694

NADH DB00157 NSP13 7BTF_chainC 0.35027915 0.908634782

Fostamatinib DB12010 NSP13 7BTF_chainC 1.23132454 0.878183186

Artenimol DB11638 N 6YI3 0.38998956 0.793080389

Fostamatinib DB12010 ORF9b 6Z4U 0.57350959 0.535310388

NADH DB00157 ORF8 QHD43422 0.43256958 0.407533526

Fostamatinib DB12010 NSP7 6WCF 0.31270554 0.27964434

Fostamatinib DB12010 NSP1 QHD43415_1 0.42845161 0.1326

NADH DB00157 NSP7 6WCF 0.46385305 0.034212183

Fostamatinib DB12010 NSP2 QHD43415_2 0.39158755 0.0123

Fostamatinib DB12010 ORF8 QHD43422 0.4730801 0.01216421

Fostamatinib DB120109 N 6YI3 0.30990618 0.003463759

Colors indicate strength of binding predictions from BindScope from poor (red) to good (green).
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and valproic acid. Fostamatinib, artenimol, and bosutinib were identified
in other bioinformatic studies as a potential treatment option to target
human proteins associated with COVID-19 (36, 37). Furthermore, fosta-
matinib is used to treat chronic immune thrombocytopenia, a condition
associated with severe COVID-19 (38). Glutathione is an antioxidant that
helps defend against oxidative damage of cells from reactive oxygen
species and regulates metabolic pathways vital to whole-body ho-
meostasis (39, 40). Glutathione deficiency in patients has been linked to
severemanifestations of COVID-19, which has been attributed to indirect
effects of glutathione deficiency on enhancing SARS-CoV-2–induced
lung damage (41). The results of this study suggest that glutathionemay
also interact with viral proteins. Valproic acid is a short chain fatty acid
with antiviral activity against several viruses (42, 43) and might also be
effective against SARS-CoV-2 (44, 45, 46). Therefore, the network- and
sequence similarity-based methods identified compounds that may
limit viral activities.

Viral proteins often share common tertiary folds and short segments
of protein sequence homology with proteins encoded by the host that
they infect. These similarities can be exploited to identify drugs thatmay
limit viral replication. However, subtle differences in amino acid se-
quences relative to the humanprotein ormutation of viral genomes can
limit the efficacy and affinity of a drug for a viral protein by altering
binding affinity or binding site availability. World-wide mutations of
SARS-CoV-2 havebeen studied extensively in other publications, and the
mutation rate of the virus is considered to be low (47, 48, 49, 50). Mu-
tations that result in amino acid changes are the most common mu-
tation type and every viral protein has at least one frequently recurring
mutation (48). Preclinical testing of any candidate viral protein drug
target should include assessments of these common protein sequence
variations. The SARS-CoV-2 protein with the top-ranked drug repur-
posing opportunities was Nsp15. Nsp15 is of particular interest as a drug
target because it is an endoribonuclease common to all coronaviruses,
is necessary for SARS-CoV-2 replication and interfereswith host immune
responses (51, 52, 53, 54, 55, 56, 57).

Manyof thepredicteddrug repurposingcandidates identifiedby these
methods weremolecules that promiscuously bind to many proteins and
are required for a sizable fraction of all human enzymatic activities (e.g.,
NADH, zinc, pyridoxal phosphate, and serine) (58, 59, 60, 61). The ability to
identify promiscuous drugs is both the greatest strength and greatest
weakness of the methods described herein. Therefore, experimental
evidence is required to assess whether any of the candidate antiviral
drugs reported in this study possess the ability to affect the SARS-CoV-2
replication cycle. This work does not directly test the efficacy of these
drugs inexperimentalmodelsor in clinical trials. It does, however, identify
drugs that represent promising repurposing candidates for further study.

Materials and Methods

Human interactome

The Human Interactome was consolidated as previously described
(62, 63) from 21 public databases containing different types of
experimentally derived PPIs data:

1. Binary PPIs, derived from high-throughput yeast-two hybrid
(Y2H) experiments (HI-Union [2016] (64)), 3D protein structures

(Interactome3D (65), Instruct (66), Insider (67)) or literature
curation (PINA [2014] (68), MINT [2019] (69), LitBM17 [2013] (64),
Interactome3D, Instruct, Insider, BioGrid [2019] (70), HINT [2019]
(71), HIPPIE (72), APID (73), InWeb (74), IntAct (75))

2. PPIs identified by affinity purification followed by mass spec-
trometry present in BioPlex2 (2017) (76), QUBIC (77), CoFrac (78),
HINT, HIPPIE, APID, LitBM17, and InWeb

3. Kinase-substrate interactions from KinomeNetworkX (79) and
PhosphoSitePlus (80)

4. Signaling interactions from SignaLink (2019) (81) and InnateDB
(2019) (82); and

5. Regulatory interactions derived by the ENCODE consortium
(2012).

The curated list ofmolecular interactions provided by Alonso-López
et al (73) was used for differentiating binary interactions among the
experimental methods present in the literature curation databases.
For InWeb, interactions with a curation score <0.175 (75th percentile)
were not considered. All proteins weremapped to their corresponding
Entrez ID (NCBI), with unmapped proteins removed. The resulting
interactome includes 18,505 proteins and 327,924 interactions.

The network analyses were limited to the largest connected
component, containing 18,446 proteins and 322,159 interactions.

Viral–host interactions curation and analysis

The map of virus–host interactions for SARS-CoV-2 was generated
using an affinity purification mass spectrometry experiment (16).
Virus–host interactions with high-confidence scores were selected,
resulting in 332 interactions among 26 viral proteins and 332 unique
human proteins (Table S3).

The entire list of submitted HIV-1 virus–host interactions was
downloaded from NCBI website (Table S1).

As the network-based link prediction method was based on
physical interactions of the nodes (proteins), interactions were
limited to physical interaction annotations only. The interaction
types considered as physical included:

1. Physical binding interactions: interacts with, associates with,
complexes with, fractionates with, interacts, binds, and

2. Substrate–enzyme interactions: deglycosylated, glycosylated
by, modified by, processed by, sulfated by, methylated by,
palmitoylated by, is polyubiquitinated by, phosphorylated by,
recruited by, ubiquitinated by, isomerized by, myristoylated by,
acetylated by, sumoylated by, phosphorylates, acetylates,
dephosphorylated by, and ubiquitinates.

Virus–host interactions included in analyses had at least two
sources of evidence (https://www.ncbi.nlm.nih.gov/genome/viruses/
retroviruses/hiv-1/interactions/). Virus–host interactions for HBV, HCV,
and HPV were as reported in the literature (24, 25, 26) (Table S1).

Method 1: link prediction method (L3)

The link prediction problem between two nodes describes the
existence of network paths of length three (L3) between the two
nodes. To account for biases result ing from high-degree
nodes (i .e . , those with a large number of connections on
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the Human Interactome), a degree-normalized version of L3 was
used where the score of each drug–target pair was penalized by the
degree of the nodes in the path of length three between them:

Pd;t =�
i;j

ad;iai;jaj;tffiffiffiffi
ki

p
kj

(1)

Where ki represents the degree of node i and ai,j = 1 if nodes i and j
interact, and zero otherwise.

Drug protein interaction (DPI) data sources

The protein targets for the drugs evaluated in this study were
obtained from DrugBank Release Version 5.1.6 (https://github.com/
emreg00/drugbox) (14, 15). Only drugs with at least one reported
target were included in this analysis. For network-based rankings,
drugs were required to have at least one protein target in the
human interactome (6,128 drugs in total).

Curation of COVID-19 drugs in clinical trial and known HIV drugs

Using the ClinicalTrials.gov Advanced Search tool, all studies with the
condition or disease corresponding to either COVID-19, SARS-CoV-2, or
2019-nCoV were retrieved. Condition terms were those designated by
ClinicalTrials.gov to include all COVID-19 studies. Similar to the clinical
trials curation procedure from a previous study (5 Preprint), we selected
clinical studiesof interventional type, andwhosefist submissionyearwas
not earlier than 2020. Studies that are either terminated, suspended, no
longer available or withdrawn were excluded from the analysis. For each
remaining study, drug names were retrieved by parsing the “inter-
vention_name” and “mesh_term” fields corresponding to interventions
used in a study. To search these fields, we manually constructed a list of
regular expressions containing synonyms, possible misspellings or non-
English names of drugs. Drugs presented in the “intervention_name” and
“mesh_term” fields were then checked against the compiled list of
regular expressions, andeach studywasmapped toa list of drugsused in
it. Finally, we compiled a list of potential COVID-19drugs thatwereused in
clinical trials at least once for all studies submitted as of 1 January 2021.

The list of known drugs for HIV were selected manually from the
literature and the corresponding targets were curated from
DrugBank. A list of 54 “known HIV drugs” was generated from ap-
proved HIV drugs and drugs currently in late stage clinical trials
(Phase II and Phase III) curated from the DrugBank database on 22
May 2020. A distinction was made between drugs with primary
targets (polypeptides), which are thought to modulate the thera-
peutically beneficial effects of each drug, and drugs with secondary
targets (enzymes, transporters, and carriers), which mediate
pharmacologically relevant effects (83). Of the 54 curated known
HIV drugs, 27 had at least one human primary target. Drugs targeting
HBV, HCV, and HPV were obtained from DrugBank.

Method 2: curation of protein FASTA sequences from PDB and
BLAST sequence similarity analysis

160 SARS-CoV-2 protein structures and corresponding amino acid
sequences were obtained from the PDB. Redundant amino acid
sequences were removed, resulting in 149 unique sequences.

HIV-1, HBV, HCV, and HPV protein structures and corresponding
amino acid sequences were obtained from the PDB. After filtering
the “Entity Macromolecule Type” to “Polypeptide only” to remove
nucleic acid sequences, a list of 3,421 amino acid sequences was
generated for HIV-1. A list of 30, 238, 47 amino acid sequences was
generated for HBV, HCV, and HPV, respectively. BLAST search found
only a few homologous proteins and none of them are known drug
targets.

Because of the large number of existing HIV amino acid se-
quences, redundant sequences, as measured by pairwise sequence
similarities, were removed. The 3,421 sequences were split into four
batches, each with a similar number of sequences, to generate a
pairwise distance matrix for each batch using the MSA package in R
(84). An empirical cutoff of 0.8 was selected from the distribution
plot and used to remove one of the two paired sequences with
distance below 0.8 (high similarity). After processing all four
batches, the total number of amino acid sequences was reduced to
363. MSA was run again on the reduced list of 363 sequences from
all four batches. Using the same distance cutoff of 0.8, the final
number of unique sequences was reduced to 199.

The protein FASTA sequences were used as input for the simi-
larity searching program BLASTP from NCBI with standard general
parameters and “max target sequences” set to 20,000 non-
redundant (nr) protein sequences. Because finding distantly re-
lated protein sequences is more challenging than finding closely
related sequences, the BLOSUM62 matrix (85) was used. NCBI
provides a unique accession ID for each homolog protein found
in the BLAST search results. NCBI accession IDs were converted
to a UniProt ID using the ID Mapping database (https://ftp.
expasy.org/databases/uniprot/current_release/knowledgebase/
idmapping/).

BLASTP was performed with the final list of unique viral protein
sequences querying human (specifying homo sapiens in “Organ-
ism”) and non-human (excluding homo sapiens in “Organism”)
sequences to find proteins with similarity to the viral proteins (see
Supplemental Data 1).

Evaluating performance of drug predictions

Each drug was assigned by method 1 (network-based similarity
method, Fig 1) a score specific to each viral protein. The drug’smean
score across all viral proteins was used as the final score and
method validation. Performance of the drug predictions was
evaluated by area under the receiver operating characteristic curve
(AUC), which was calculated by comparing network mean scores
provided by network-based method 1 and the label indicating
whether the predicted drug was used in a clinical trial for COVID-19
or a known antiviral drug with at least one human primary target
(see Supplemental Data 1).

DPI scores

BindScope predicts DPIs for a given protein PDB structure and small
molecule (e.g., drug) (27). The binding pocket and ligand pose are
featurized by voxelizing according to different pharmacophoric-like
properties, then trained on a three-dimensional convolutional
neural network to predict the binding likelihood. BindScope was
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trained on ligand conformations from the latest iteration of the
Directory of Useful Decoys, Enhanced (DUD-E) (86), and docked
using Smina (87). In their article, the authors evaluated BindScope
performance using AUC and per receptor fivefold cross-validation.
The yielded AUC values ranged from 0.496 to 0.997 with 0.885 as the
average.

To use BindScope, PDB structures were downloaded from the
PDB database, water molecules were removed and one polypeptide
chain was extracted for the analysis. The protein hydrogens were
added to the PDB structure in BindScope. Ligand structures were
downloaded from DrugBank in SDF format.

Data Availability

https://github.com/ScipherMedicine/NetworkMedicine.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000904.
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