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Background: Mitochondrial calcium uniporter regulator 1 (MCUR1, also known as 
CCDC90A) is a protein-coding gene that plays a key role in mitochondrial calcium uptake. 
However, knowledge about its clinical significance in breast cancer is still limited.
Methods: The expression profile of MCUR1 in various cancers was analyzed via the 
ONCOMINE and Tumor Immune Estimation Resource databases. The correlation between 
MCUR1 expression and the clinical features of breast cancer was investigated using 
UALCAN and MEXPRESS. Immunohistochemical analysis was applied to verify the 
expression of MCUR1 in breast cancer. The prognostic significance of MCUR1 in breast 
cancer was evaluated using Kaplan–Meier plotter and the PrognoScan database. Gene Set 
Enrichment Analysis (GSEA) was performed to explore the possible biological functions of 
MCUR1. In addition, the function of MCUR1 was examined by gene silencing in vitro. 
Western blotting was applied to detect the expression of proteins.
Results: MCUR1 was overexpressed in breast cancer and significantly related to the clinical 
characteristics of breast cancer. Results from the public databases and IHC analysis indicated 
that MCUR1 expression was the highest in triple-negative breast cancer (TNBC). The high 
expression of MCUR1 was associated with poor overall survival, distant metastasis-free 
survival, and recurrence-free survival. GSEA showed that the hypoxia pathway, cellular 
reactive oxygen species (ROS) pathway, epithelial–mesenchymal transition pathway, and 
notch signaling pathway were differentially enriched in the high MCUR1 expression pheno-
type. In vitro experiments showed that MCUR1 knockdown in TNBC cell lines led to 
a decrease in cellular ROS and weakened cell migration and invasion abilities. Moreover, 
Western blotting showed that MCUR1 knockdown inhibited the epithelial–mesenchymal 
transition of TNBC cells via the ROS/Nrf2/Notch pathways.
Conclusion: Our study suggests that MCUR1 plays a pivotal role in the malignant progres-
sion of breast cancer.
Keywords: MCUR1, breast cancer, reactive oxygen species, epithelial-mesenchymal 
transition

Introduction
Breast cancer seriously threatens female health and quality of life. According to the 
International Agency for Research on Cancer, female breast cancer is the most 
commonly occurring cancer worldwide, with approximately 2.3 million newly 
diagnosed cases in 2020, accounting for 11.7% of all new cancer cases globally.1 

Although the overall five-year survival rate for breast cancer patients exceeds 80%, 
metastasis to distant organs is still the main cause of breast cancer-related death.2 

Triple-negative breast cancer (TNBC) is an aggressive subtype that constitutes 12– 
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18% of breast cancer patients.3,4 TNBC patients lack the 
estrogen receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor 2 (HER2), and 
therefore are ineligible for hormone or anti-HER2 therapy. 
Thus, due to its high mortality rate, novel therapeutic 
strategies are urgently needed.5

As a widely distributed and crucial second messenger, 
calcium is an important regulator of cell metastasis.6,7 

Mitochondrial calcium regulates various processes from 
bioenergetics to cell death.8–10 Studies have shown that 
mitochondrial calcium homeostasis is unbalanced in 
malignant tumors, including in breast cancer.8,11 The mito-
chondrial calcium uniporter complex is considered 
a potential target for cancer treatment.12,13 Mitochondrial 
calcium uniporter regulator 1 (MCUR1, also known as 
CCDC90A) is an essential component of mitochondrial 
calcium uptake and regulator of cellular metabolism.14,15 

Furthermore, in hepatocellular carcinoma, MCUR1 facil-
itates cell survival and epithelial-mesenchymal transition 
via the mitochondrial calcium dependent reactive oxygen 
species (ROS)/Nrf2/Notch pathway.16,17 To date, however, 
evidence is limited regarding the clinical significance of 
MCUR1 in breast cancer.

In the present study, we found that MCUR1 was dys-
regulated in various cancers. We comprehensively ana-
lyzed the expression of MCUR1 in breast cancer through 
public datasets and immunohistochemical staining, and 
explored the role of MCUR1 in the malignant progression 
of cancer through in vitro cell experiments.

Methods
Datasets
The expression of MCUR1 in various cancers were ana-
lyzed via the ONCOMINE database (https://www. 
ONCOMINE.org/resource/login.html)18 and Tumor 
Immune Estimation Resource (TIMER) (https://cistrome. 
shinyapps.io/timer/).19 The relationships between the 
expression of MCUR1 and clinical features of breast inva-
sive carcinoma were explored via UALCAN (http://ual 
can.path.uab.edu/)20 and MEXPRESS (https://mexpress. 
be/).21,22 The prognostic significance of MCUR1 expres-
sion in breast cancer was analyzed by the Kaplan-Meier 
Plotter (http://kmplot.com/analysis/)23 and PrognoScan 
(http://www.prognoscan.org/).24 The correlation analyses 
of gene expression were performed on the Gene 
Expression Profiling Interactive Analysis (GEPIA) 
(http://gepia.cancer-pku.cn/).25

Immunohistochemical (IHC) Staining
Tissue chip, obtained from Shanghai Outdo Biotech 
Company (Shanghai, China), including breast cancer 
tissues (n=139) and peritumor tissues (n=90) with 
signed informed consents, was used to evaluate the 
expression of MCUR1. The latest follow-up date was 
July 2013 and the follow-up duration ranging from 9 to 
12.5 years. All tissues were assessed by H&E staining 
to select suitable regions for further examination. 
Intensity score of immunohistochemical staining was 
assigned as strong (+++ or 3), moderate (++ or 2), 
weak (+ or 1), or absent (- or 0). The frequency of 
positive cells is defined as < 5% (0), 5–25% (1), 26– 
50% (2), 51–75% (3), or >75% (4). IHC scores were 
presented as mean with standard deviation (SD). 
Statistical analysis was performed by unpaired t-test. 
For subgroup analysis according to protein expression, 
scores of 0-7 were considered low expression and scores 
of 8-12 were considered high expression.

Cell Culture and Reagents
Human breast cancer cell lines MDA-MB-231 and HCC- 
1937 were cultured in 5% CO2 incubator at 37°C. MDA- 
MB-231 cells provided by Sun Yat-sen University were 
cultured in DMEM medium with 10% Fetal Bovine Serum 
(FBS). HCC-1937 from the Shanghai Cell Bank of the 
Chinese Academy of Sciences were cultured in RPIM- 
1640 medium with 10% Fetal Bovine Serum.

Knockdown of MCUR1 Gene
Cells were seeded in six-well plates, siRNA transfection was 
performed when the cell density reaches about 60%. After 
transfection for 72h, the real-time fluorescent quantitative 
PCR and Western blotting analysis were performed to verify 
the transfection efficiency. All siRNAs were synthesized 
from RiboBio (Guangzhou, China) and the sequences were 
provided in Supplementary Table 1. Primers and antibodies 
used in this study were listed in Supplementary Table 2 and 
Supplementary Table 3 separately.

Detection of Reactive Oxygen Species 
(ROS)
Cellular ROS were detected by the fluorescence probe 
DCFH-DA (Beyotime, China). After 72 hours of transfec-
tion, cells were incubated with DCFH-DA (10 uM) for 20 
minutes. Then, the samples were analyzed by flow 
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cytometry (Beckman). FlowJo_V10 software was used for 
data analysis and t-test was used for statistical analysis.

Gene Set Enrichment Analysis (GSEA)
In order to further study the molecular biological pathways 
involved in MCUR1, enrichment analysis was performed 
by GSEA v4.1.0 software (https://www.gsea-msigdb.org/ 
gsea/downloads.jsp). The gene expression data from 
TCGA breast cancer was used and H: hallmark gene sets 
from the Molecular Signatures Database (MSigDB) were 
used as the reference gene sets.26 TCGA samples were 
sorted by the expression of MCUR1, and were divided into 
the high expression phenotype and the low expression 
phenotype. Gene sets that were clustered at the top or 
bottom significantly were considered to contribute to the 
phenotype. Normalized Enrichment Score (NES) > 1.0, 
Nominal p-value < 0.05, and FDR q-value < 0.25 were 
considered to be significantly.

Analysis for Cell Invasion and Metastasis
Forty-eight hours after transfection, a wound was 
scratched using a 200μL pipette tip in each well. Cells 
were washed with phosphate buffer saline for several 
times and then incubated in 2% FBS medium. Wound 
closure was monitored at 0 and 24h on Olympus 
Inverted Microscope. The distance of cell migration at 0 
and 24 h after scratching was evaluated. Forty-eight hours 
after transfection, cell migration and invasion abilities 
were assessed through transwell assay. Cells were pre-
pared as a single cell suspension. For cell invasion assays, 
transwell chambers were coated with Matrigel. The upper 
chamber was seeded with 3×104 cells suspended in 500μL 
of serum-free medium, while the lower chamber was filled 
with 25% FBS medium. After 24h incubation, the trans-
well chamber was immersed in 4% paraformaldehyde for 
10 min and stained with 0.1% crystal violet for 10 min. 
Then, cells in the upper chamber were carefully removed 
with a cotton swab. The invasive cells attaching to the 
lower surface of the membrane were counted under 
microscopy.

Nuclear and Cytoplasmic Protein 
Extraction
Nuclear and cytoplasmic proteins were extracted accord-
ing to the instruction manual from the Nuclear and 
Cytoplasmic Protein Extraction Kit (Beyotime, China). 
Then, cytoplasmic and nuclear proteins of each sample 

were analyzed by Western blotting with antibodies against 
the indicated proteins. Hsp60 was used as internal refer-
ence of cytoplasmic protein, and Lamin B1 was used as an 
internal reference of nuclear protein.

Statistical Analyses
Kaplan-Meier curves were based on the Log rank test. All 
experiments were repeated at least three times. The data 
was presented as mean with standard deviation (SD) and 
multiple t tests were used for statistical analysis. P-value < 
0.05 was considered to be significant.

Results
Expression Profile of MCUR1 in Various 
Cancers
We first found that MCUR1 was dysregulated in a variety 
of tumors. As shown in Figure 1A, we set the following 
thresholds in the ONCOMINE database: p-value of 0.05, 
fold change of 1.5, and gene rank of all. Dysregulated 
MCUR1 expression was found in various types of cancer, 
including breast cancer, cervical cancer, lymphoma, and 
ovarian cancer. In addition, the expression of MCUR1 was 
analyzed in samples from TCGA using TIMER2. Results 
showed that MCUR1 was overexpressed in invasive breast 
carcinoma and lung carcinoma, and lowly expressed in 
kidney carcinoma (Figure 1B). As breast cancer is the 
most common cancer worldwide, we analyzed the expres-
sion of MCUR1 in breast cancer through the ONCOMINE 
database (see Table 1). Interestingly, compared with nor-
mal breast tissue samples, MCUR1 was highly expressed 
in breast cancer samples and lowly expressed in breast 
cancer stroma.

The Expression of MCUR1 in Breast 
Cancer
We next investigated the relationship between MCUR1 
expression and the clinical characteristics of breast cancer 
based on TCGA samples using UALCAN and 
MEXPRESS. As shown in Figure 2A, MCUR1 was 
obviously overexpressed in breast cancer (p < 0.001). We 
further explored MCUR1 expression based on cancer 
stage, and found that MCUR1 was more highly expressed 
in the advanced clinical stage (Figure 2B). After we ana-
lyzed the expression of MCUR1 based on molecular sub-
types, MCUR1 showed significantly higher expression in 
TNBC samples compared to other subtypes (Figure 2C). 
Many studies have identified the important role of TP53 
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mutation in various cancers.27–29 In our study, a strong 
relationship between MCUR1 overexpression and TP53 
mutation was also found (Figure 2D). When performed 
visual analysis in MEXPRESS based on 1268 samples of 
invasive breast carcinoma (Figure 2E), MCUR1 expres-
sion was found to be significantly associated with estrogen 
receptor status (p = 4.432e-21), progesterone receptor sta-
tus (p = 2.288e-22), and histological type (p = 1.806e-25). 
In addition, MCUR1 expression was related to metastatic 

site at diagnosis (p = 0.005), sample type (p = 0.021), and 
subtype of invasive breast carcinoma (p = 8.034e-21).

We also explored the relationship between MCUR1 
expression and methylation level of the MCUR1 promoter 
in breast cancer via MEXPRESS and UALCAN. As 
shown in Supplementary Figure 1, the promoter methyla-
tion level of MCUR1 was low in breast cancer 
(Supplementary Figure 1a) and lowest in luminal breast 
cancer (Supplementary Figure 1b). When evaluating the 

Figure 1 The expression profile of MCUR1 in various cancer. (A) The expression of MCUR1 in cancers based on data from the ONCOMINE. The thresholds were set as 
follows: p-value of 0.05, fold change of 1.5, and gene rank of all. (B) The expression of MCUR1 in TCGA samples through TIMER2. (Statistical significance: *p<0.05, **p<0.01, 
***p<0.001).

Table 1 MCUR1 Expression in Breast Cancer (ONCOMINE)

Analysis Type Fold Change P-value t-test

TCGA Breast Statistics
Mucinous Breast Carcinoma vs Normal 2.243 2.49E-05 8.362

Ma Breast 4 Statistics
Ductal Breast Carcinoma in Situ Epithelia vs Normal 1.638 5.34E-04 3.994

Curtis Breast Statistics
Medullary Breast Carcinoma vs Normal 1.634 8.83E-10 7.582

Invasive Breast Carcinoma vs Normal 1.535 7.07E-08 6.898

Finak Breast Statistics
Invasive Breast Carcinoma Stroma vs Normal −9.336 2.20E-19 −20.886

Ma Breast 4 Statistics
Invasive Ductal Breast Carcinoma Stroma vs Normal −2.019 0.012 −2.717

Karnoub Breast Statistics
Invasive Ductal Breast Carcinoma Stroma vs Normal −1.845 3.61E-04 −4.935
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Figure 2 Comprehensive analysis of MCUR1 based on public databases. (A) MCUR1 was over expressed in breast cancer. (B) The expression of MCUR1 in breast cancer 
based on individual cancer stages. (C) The expression of MCUR1 in breast cancer based on breast cancer subclasses. (D) The expression of MCUR1 in breast cancer based 
on TP53 mutation status. (E) The relationship between MCUR1 expression and clinical characteristics of breast cancer based on TCGA samples via MEXPRESS. Statistical 
significance (correlation coefficient (r) and p-value) were shown on the right. (*p<0.05, ***p<0.001).
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relationship between MCUR1 methylation and TP53 
mutation, the methylation level of MCUR1 was lower in 
TP53 non-mutation patients (Supplementary Figure 1c). In 
addition, MCUR1 expression was positively correlated 
with MCUR1 copy number, and negatively correlated 
with MCUR1 promoter methylation (Supplementary 
Figure 1d). We identified five CpG islands of MCUR1 
(ie, cg05768403, cg00214855, cg18831738, cg20860086, 
and cg04558386) that were negatively associated with 
MCUR1 gene expression in invasive breast carcinoma.

IHC Analysis of MCUR1 Expression in 
Breast Cancer
We evaluated the expression of MCUR1 in breast cancer 
(n = 139) and peritumor tissues (n = 90) through IHC 
staining, resulting in a total of 129 tumor and 68 peritu-
mor samples for subsequent analysis after removal of 
ineligible samples. The clinical characteristics of patients 
with breast cancer included in IHC analysis were shown 
in Table 2. The age range of the overall samples was 29– 
83 years old (mean ± SD: 54.1 ± 13.5). Figure 3A 
showed the representative IHC images of MCUR1 
expression. The IHC scores of MCUR1 were significantly 
higher in tumor tissues than in peritumor tissues 
(Figure 3B, p < 0.001), consistent with the results of 
our analysis from public databases. Moreover, in the 
high MCUR1 expression group, TNBC subtype 
(Figure 3C) and stage III (Figure 3D) accounted for the 
largest proportion. Thus, both the public database and 
IHC results showed that MCUR1 was highly expressed 
in breast cancer and was related to molecular type and 
clinical stage.

MCUR1 Overexpression Predicted Poor 
Survival in Breast Cancer
To assess the prognostic value of MCUR1 in breast 
cancer, we analyzed the prognosis of patients based on 
MCUR1 expression using the PrognoScan database and 
Kaplan-Meier plotter. Evidences showed that MCUR1 
overexpression significantly affected the prognosis of 
multiple cancers, including breast cancer, lung adeno-
carcinoma and skin cancer (Supplementary Table 4). We 
further analyzed the prognostic potential of MCUR1 in 
breast cancer via Kaplan-Meier plotter. As expected, 
high MCUR1 expression was significantly correlated 
with poor overall survival (OS) (hazard ratio 
(HR) = 1.43, log-rank p = 0.0011), poor distant 

metastasis-free survival (DMFS) (HR = 1.37, log-rank 
p = 0.0014), and poor recurrence-free survival (RFS) 
(HR = 1.72, log-rank p < 1E-16) in breast cancer 
patients (Figure 3E).

Cellular ROS Decreased After MCUR1 
Knockdown in Breast Cancer Cell Lines
To explore the significance of MCUR1 in breast cancer 
progression, we knocked down MCUR1 in the MDA- 
MB-231 and HCC-1937 TNBC cell lines by transient 
transfection of small interfering RNA (siRNA). Real- 
time fluorescent quantitative polymerase chain reaction 

Table 2 Characteristics of Patients with Breast Cancer Included 
in Immunohistochemical Analysis

Characteristics NO. of Cases 
(%)

MCUR1 
High

MCUR1 
Low

Age

≤50 60 29 31
>50 69 39 30

Stage
Stage I 33 12 21

Stage II 83 45 38
Stage III 13 11 2

T
T1 29 13 16

T2 85 46 39

T3 15 9 6

N

N0 44 30 14
N1 40 17 23

N2 34 17 17

N3 8 3 5
N? 3 1 2

M
M0 139 68 61

ER
ER+ 84 38 46

ER- 44 29 15

Unqualified 1

PR

PR+ 70 28 42
PR- 58 39 19

Unqualified 1

HER2

HER2+ 39 26 13

HER2- 90 42 48
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Figure 3 MCUR1 was over expressed in breast cancer and predicted poor prognosis. (A) Representative immunohistochemical staining images of MCUR1 in tissues (Scale 
bars:100um). (B) IHC scores of MCUR1 in tumor and peritumor tissues of breast cancer. IHC scores were presented as mean with SD. The TNBC molecular subtype (C) 
and stage III (D) account for the largest proportion among the high expression group. (E) The OS, DMFS and RFS were compared between the MCUR1-high and MCUR1- 
low expression groups in breast cancer. (***p<0.001).
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Figure 4 Suppression of MCUR1 promoted ROS decrease. The relative mRNA expression (A) and protein level (B) of MCUR1 after transient transfection by siRNAs. 
(C) The cellular ROS in MDA-MB-231 and HCC-1937 after MCUR1 knockdown. (D) Gene Set Enrichment Analysis were performed based on TCGA breast cancer 
samples. (** p< 0.01, ***p<0.001).
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(PCR) and Western blotting analysis were performed to 
identify knockdown efficiency. As shown in Figure 4A– 
B, the third one (ie, siMCUR1-3) had the best knock-
down effect. Therefore, siMCUR1-3 was selected for 
subsequent study. We found that the level of cellular 
ROS significantly decreased after MCUR1 knockdown 
(Figure 4C). To validate this result, GSEA was per-
formed using gene expression data from TCGA breast 
cancer. We found that the hypoxia and ROS pathways 
were differentially enriched in the high MCUR1 expres-
sion phenotype (Figure 4D). These results indicate that 
MCUR1 may be closely related to oxidative stress.

Suppression of MCUR1 Inhibited 
Epithelial-Mesenchymal Transition via the 
ROS/Nrf2/Notch Pathway
Emerging evidences suggest that the production of cellular 
ROS is essential for maintaining the metastatic phenotype 
of tumors.30,31 Thus, we studied changes in the invasion 

and metastasis phenotypes of breast cancer cell lines after 
ROS decreased. As shown in Figure 5A–C, cell migration 
and invasion capabilities significantly decreased after 
knockdown of MCUR1. Moreover, GSEA revealed that 
the epithelial-mesenchymal transition and Notch signaling 
pathways were enriched in the MCUR1 high expression 
phenotype (Figure 6A). In order to verify the phenomena 
and analysis results, the expression of related proteins was 
analyzed by Western blotting. As shown in Figure 6B, 
GSS, GLRX, and GPX8 which related to ROS were down-
regulated after MCUR1 knockdown. Epithelial markers 
(ZO-1 and E-cadherin) increased and mesenchymal mar-
kers (N-cadherin and Snail) decreased following MCUR1 
knockdown (Figure 6C). In addition, Nrf2 and Notch1 
were found to be positively correlated in breast cancer 
via GEPIA (Figure 6D). The protein levels of Nrf2 
decreased in the nucleus and increased in the cytoplasm 
after MCUR1 knockdown. Meanwhile, Notch1 expression 
also decreased (Figure 6E).

Figure 5 MCUR1 knockdown inhibited epithelial-mesenchymal transition of TNBC. (A) Wound healing assays for migration rate. Transwell assay for migration (B) and 
invasion (C) ability in transient transfected TNBC cells. (** p< 0.01).
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Figure 6 Suppression of MCUR1 inhibited EMT via the ROS/Nrf2/Notch pathway. (A) GSEA results based on TCGA breast cancer samples. (B) Expression levels of the 
ROS-associated proteins after MCUR1 knockdown. (C) Expression levels of the EMT-associated proteins after MCUR1 knockdown. (D) The relationship between Nrf2 
(NFE2L2) and Notch1 in breast cancer via GEPIA. (E) Western blotting analysis of the Nrf2/Notch pathway.
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Discussion
MCUR1 is an important component of the mitochondrial 
calcium uniporter complex, which plays a key role in the 
mitochondrial calcium uptake and cell physiology.14,32 

Previous studies have shown that MCUR1 occupies a pivotal 
role in hepatocellular carcinoma, and is closely related to the 
survival and metastasis of hepatocellular carcinoma through 
the mitochondrial calcium dependent ROS pathway.16,17 In 
this study, we found that MCUR1 was overexpressed in breast 
cancer, with the highest expression detected in TNBC. 
Importantly, overexpression of MCUR1 predicted poor survi-
val in breast cancer patients. This finding is significant and 
worthy of further study. TNBC is an aggressive breast cancer 
subtype with limited treatment options and poor prognosis.33 

Therefore, we explored the function of MCUR1 knockdown in 
TNBC cell lines by siRNA transfection. Our study revealed 
that ROS decreased after MCUR1 silencing, and GSEA indi-
cated that MCUR1 may be related to ROS. These results 
suggest that MCUR1 may play a crucial role in the malignant 
progression of breast cancer through oxidative stress.

Studies have shown that ROS levels are increased in cancer 
cells compared to healthy cells, which may be the cause of the 
genomic instability that leads to tumor formation.31 Moreover, 
a relative excess of ROS, known as oxidative stress, has been 
proved to be linked to tumor metastasis.30,34,35 Cell invasion 
and metastasis abilities were weakened after knocking down 
MCUR1 in the TNBC cell lines in this study. These findings 
are consistent with previous research, which states that mito-
chondrial calcium uniporter is related to breast cancer cell 
migration.6 Upon further exploration of the signaling pathway 
mechanism involved in MCUR1, we found that the Nrf2/ 
Notch signaling pathway changed after MCUR1 knockdown.

Nrf2 is a major effector of ROS and regulates the expres-
sion of its target genes, including Notch1.36–39 According to 
previous reports, Nrf2 and the Notch signaling pathway are 
closely related to the epithelial-mesenchymal transition of 
cancer cells.31,38 Upon oxidative stress, Nrf2 disassociates 
from Keap-1 and translocates to the nucleus.32,33 In the 
present study, we revealed that MCUR1 knockdown signifi-
cantly decreased the nuclear translocation of Nrf2, which, in 
turn, inhibited epithelial-mesenchymal transition in the 
TNBC cell lines. Therefore, our results suggest that 
MCUR1 may modulate epithelial-mesenchymal transition 
via the ROS/Nrf2/Notch pathway in breast cancer.

In summary, our study confirmed that MCUR1 is highly 
expressed and correlated with molecular subtype in breast 
cancer. These findings shed light on the important role of 

MCUR1 in breast cancer and provide novel evidence support-
ing MCUR1 as a promising therapeutic target for the treatment 
of TNBC. There are many factors that affect the malignant 
progression of breast cancer. In the future, we can carry out 
further research on the relationship between MCUR1 and 
genes involved in the malignant progression of breast cancer.
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