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ABSTRACT

Plant specialized metabolites are chemically highly
diverse, play key roles in host–microbe interactions,
have important nutritional value in crops and are
frequently applied as medicines. It has recently be-
come clear that plant biosynthetic pathway-encoding
genes are sometimes densely clustered in specific
genomic loci: biosynthetic gene clusters (BGCs).
Here, we introduce plantiSMASH, a versatile online
analysis platform that automates the identification
of candidate plant BGCs. Moreover, it allows inte-
gration of transcriptomic data to prioritize candi-
date BGCs based on the coexpression patterns of
predicted biosynthetic enzyme-coding genes, and
facilitates comparative genomic analysis to study
the evolutionary conservation of each cluster. Ap-
plied on 48 high-quality plant genomes, plantiSMASH
identifies a rich diversity of candidate plant BGCs.
These results will guide further experimental explo-
ration of the nature and dynamics of gene cluster-
ing in plant metabolism. Moreover, spurred by the
continuing decrease in costs of plant genome se-
quencing, they will allow genome mining technolo-
gies to be applied to plant natural product discov-
ery. The plantiSMASH web server, precalculated re-
sults and source code are freely available from http:
//plantismash.secondarymetabolites.org.

INTRODUCTION

Across Planet Earth, bacteria, fungi and plants produce
an immense diversity of specialized metabolites, each with
their own specific ecological roles in the manifold interor-

ganismal interactions in which they engage. This diverse
specialized metabolism is a rich source of natural products
that are used widely in medicine, agriculture and manufac-
turing. In bacteria and fungi, where genes for most spe-
cialized metabolic pathways are physically clustered in so-
called biosynthetic gene clusters (BGCs), the rapid accumu-
lation of genome sequences has revolutionized the process
of natural product discovery: indeed, genome mining has
now become a dominant method for the discovery of novel
molecules (1–4). In this genome mining process, BGCs are
computationally identified in genome sequences and then
linked to molecules through functional analysis (e.g. using
metabolomic data, chemical structure predictions, mutant
libraries and/or heterologous expression). Many sequence-
based aspects of this genome mining procedure are facili-
tated by the antiSMASH framework, which was launched
in 2010 (5) and has seen continuous development since then
(6,7). The genome mining procedure has two main pur-
poses: (i) finding biosynthetic genes for important known
compounds to allow heterologous production through fer-
mentation in industrial strains, and (ii) identifying novel
natural product chemistry guided by biosynthetic gene clus-
ter diversity. Altogether, this development has appropriately
been termed the ‘gene cluster revolution’ (1).

In recent years, it has become clear that not only micro-
bial, but also plant biosynthetic pathways are frequently
chromosomally clustered: after the initial discoveries of
the cyclic hydroxamic acid 2,4-dihydroxy-1,4-benzoxazin-
3-one (DIBOA) and avenacin gene clusters (8,9), around
thirty plant BGCs have been discovered (10,11). Together,
they encode the production of a wide range of differ-
ent compounds, including cyclic hydroxamic acids, di-
and triterpenes, steroidal and benzylisoquinoline alkaloids,
cyanogenic glucosides and polyketides. In the genome of the
model plant species Arabidopsis thaliana alone, four BGCs
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have been linked to specific metabolites and recent analy-
ses based on epigenomic profiling indicate the presence of
various additional uncharacterized ones (12).

Various technological developments in eukaryote
genome sequencing (13) are finally making complete plant
genome sequencing feasible at larger scales: high-quality
plant genome sequences for almost 100 species are already
publicly available, and more or less complete genomes can
be sequenced for as little as 10–50k US dollars each. Hence,
genome mining may become an important methodology in
the study of plant natural products as well, and a realistic
opportunity thus presents itself for the plant natural prod-
uct research community to have a ‘gene cluster revolution’
of its own. Naturally, a key technology required to realize
this is a computational framework specifically designed for
the identification and analysis of plant BGCs. Importantly,
tools available for bacterial and fungal genome mining do
not suffice for plants (14), as (i) plant biosynthetic pathways
involve unique enzyme families not found in bacteria and
fungi; (ii) not all plant biosynthetic pathways are clustered
(e.g. anthocyanins (15)), so identification of a biosynthetic
gene does not equal identification of a BGC; (iii) intergenic
distances in plant genomes are larger and much more
variable (16–19); (iv) plant genomes contain clustered
groups of genes (e.g. tandem arrays) whose products do
not constitute a pathway; (v) several plant pathways are
split across more than one BGC (20,21).

Here, we introduce antiSMASH for plants (or ‘plan-
tiSMASH’ in short), which has been designed to tackle each
of these challenges. Through a comprehensive library of
profile Hidden Markov Models (pHMMs) for enzyme fam-
ilies known to be involved in plant biosynthetic pathways,
combined with CD-HIT clustering of predicted protein se-
quences belonging to the same family, it allows the efficient
identification of genomic loci encoding multiple different
(sub)families of specialized metabolic enzymes. Moreover,
comparative genomic analysis as well as analysis of gene ex-
pression patterns within these candidate BGCs allow assess-
ment of each locus for its likelihood to encode genes work-
ing together in one pathway. Finally, coexpression analysis
between candidate BGCs and with other genes across the
genome allows identification of biosynthetic pathways that
are encoded on multiple loci. To exploit this new frame-
work, we offer an initial analysis of BGC diversity across
the plant kingdom, which showcases the presence of many
complex biosynthetic loci in diverse species.

METHODS AND IMPLEMENTATION

A procedure for the identification of candidate plant biosyn-
thetic gene clusters

The microbial version of antiSMASH (5) predicts BGCs
by using HMMer (22) to identify specific (combinations
of) signature protein domains that belong to scaffold-
generating enzymes specific for a class of biosynthetic path-
ways. Subsequently, hit genes are used as anchors from
which gene clusters are extended upstream and downstream
by a specified extension distance.

Although very effective for detecting biosynthetic clus-
ters in bacteria and fungi, this procedure is unfit to de-
tect biosynthetic gene clusters in plants, for the reasons de-

scribed above. To address this, a novel detection strategy
was chosen (Figure 1): instead of identifying BGCs through
the identification of core scaffold-generating genes alone,
plantiSMASH identifies them by looking for all genes pre-
dicted to encode biosynthetic enzymes, including those re-
quired for tailoring of the scaffold.

To determine what constitutes a high-potential candi-
date BGC, we make use of the recently proposed defini-
tion for plant BGCs as ‘genomic loci encoding genes for a
minimum of three different types of biosynthetic reactions
(i.e. genes encoding functionally different (sub)classes of en-
zymes)’ (14). (Albeit arbitrary, this definition correctly de-
scribes all known plant BGCs at the moment and is open to
improvement as more are discovered.) Accordingly, with de-
fault settings plantiSMASH defines clusters as loci where at
least three different enzyme subclasses belonging to at least
two different enzyme classes are co-located on the same lo-
cus. Enzyme classes are identified using pHMMs specific
for each class (Supplementary Table S1); to count the num-
ber of subclasses of each enzyme class at a certain locus,
the CD-HIT algorithm (23) is employed for sequence-based
clustering to identify groups of sequences within an en-
zyme class with (by default) >50% mutual amino acid se-
quence identity. This successfully distinguishes potentially
real BGCs from tandem repeat regions that are also fre-
quently found in genomes (Supplementary Table S2).

In order to identify all classes of biosynthetic enzymes
known to be involved in plant specialized metabolic path-
ways, we performed a comprehensive literature search
of previously characterized plant biosynthetic pathways,
which resulted in a list of 62 protein domains that have been
associated with specialized metabolic pathways in plants
(see Supplementary Table S1). Fifty-seven of these pro-
tein domains are represented by pHMMs from the Pfam
database (24), and custom pHMMs were generated for five
enzyme families not (fully) covered by Pfam domains. We
consciously refrained from attempting to construct custom
pHMMs for all enzyme families known to be involved in
plant biosynthetic pathways, as the limited amount of train-
ing data available would lead to an overly strict prediction
system that would no longer be able to detect biosynthetic
novelty; instead, we assume that the broad enzyme families
covered by Pfam domains are likely to be biosynthetically
involved if multiple enzymes from these different families
are encoded together in the same locus. As in the microbial
version of antiSMASH, the presence of genes predicted to
encode signature enzymes (defined as enzymes that deter-
mine the chemical class of the end compound, such as ter-
pene synthases) in a candidate BGC are used to assign a
cluster to a biosynthetic class (see Supplementary Table S3
for cluster rules). However, compared to the microbial ver-
sion, the biosynthetic classes in ‘plantiSMASH’ are more of
an approximation, since not all signature enzyme families
used can be unequivocally used to predict the compound
type; e.g. while strictosidine synthase (25) and norcoclau-
rine synthase (26) are well-characterized members of the Bet
v1 enzyme family, it is not clear what proportion of this fam-
ily have similar Pictet-Spenglerase(-like) catalytic activities.

Another particular challenge for BGC detection in plant
genomes is the large variation in gene density that occurs
not only between but also within plant genomes (16–19).
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Figure 1. General strategy followed by plantiSMASH for the identification of plant BGCs. First, plantiSMASH identifies biosynthetic genes (having a hit
on one of the 62 pHMMs) that are located in close proximity to each other. Subsequently, it will look for the co-occurrence of at least three biosynthetic
enzyme-coding genes, comprising at least two different enzyme types. (Based on the results of the CD-HIT clustering of encoded protein sequences, closely
related duplicate genes will only be counted once). Afterward, identified clusters are extended to incorporate any flanking genes. Finally, each cluster is
classified based on the presence of core enzymes (see Supplementary Table S1). In this example, the detected cluster is assigned to the ‘Terpene’ class due
to the presence of a terpene synthase-encoding gene.

Replacing the static kilobase distance cut-off of microbial
antiSMASH by a fixed cut-off based on the maximum num-
ber of genes that lie between each pHMM hit also does
not provide a solution, as BGCs would then be allowed to
cross large repeat regions or even centromeres. Therefore,
we chose an alternative, more dynamic, cut-off that is a lin-
ear function of local gene density (defined as the gene den-
sity of the ten genes nearest to a pHMM hit), and applies a
multiplier to calculate the cut-off in kb that is optimal for
that specific genomic region (see Supplementary Table S2
and Figures S1 and S2 for results illustrating calibration of
the defaults).

Flexible and user-friendly input and output

To obtain reliable BGC predictions, a high-quality annota-
tion of gene features in a genome is essential. While we do
make available the option to run GlimmerHMM (27) on
plant genome sequences, performing de novo gene finding
on a raw FASTA file is not desirable, given the relatively
low accuracy of such a procedure. Because, additionally,
the GenBank and EMBL input formats previously accepted
for antiSMASH are not available for many plant genomes,
we now allow users to supply input also in FASTA+GFF3
format, currently the most widely used format for de-
scribing plant genome annotations. For this, we imple-
mented a new module based on Biopython’s GFF parsing
package (http://biopython.org/wiki/GFF Parsing) capable
of combining the CDS features from the input sequence,
if any, with those of a file compliant to the Generic Fea-
ture Format Version 3 as defined by The Sequence Ontol-
ogy in 2003 (https://github.com/The-Sequence-Ontology/
Specifications/blob/master/gff3.md). To properly match

GFF3 CDS features to their correct sequence, the module
demands record names (chromosome/scaffold/contigs) to
be identical in both inputs; the only exception being if both
inputs only contain one record, in which case the require-
ment is instead that no feature has coordinates outside the
sequence range. This new module allows plantiSMASH to
be used with genomes that are only annotated with GFF3
files, such as many of those present in the Joint Genome In-
stitute’s Phytozome database (28).

Based on the biosynthetic gene cluster predictions, a
rich and interactive HTML output is generated (Figure 2),
which is largely reminiscent of the output of microbial an-
tiSMASH jobs (5). Additionally, genes in the visualization
page for each candidate BGC are colored based on the class
of enzymes encoded, and a legend is provided that details
the color scheme. On mouse click, panels for each gene pro-
vide information on the pHMMs that have hits against it,
as well as on the amino acid identity to homologous genes
within the same locus as calculated by CD-HIT.

Coexpression analysis identifies pathways within and between
gene clusters

As plant scientists are just beginning to understand the phe-
nomenon of metabolic gene clustering in plant genomes, it
is currently unknown which proportion of genomic loci that
encode multiple contiguous biosynthetic enzyme-encoding
genes are bona fide BGCs in the sense that their constituent
genes are involved in one specific pathway. One power-
ful strategy to predict whether genes are involved in the
same pathway is the use of coexpression analysis, in which
their expression patterns are compared across a wide range
of samples. This strategy has proven very effective in the
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Figure 2. Outputs generated by the plantiSMASH pipeline. The figure illustrates several visualized outputs generated by plantiSMASH, as they appear for
various biosynthetic gene clusters of known natural products. (A) Visual overview generated for each gene cluster; in this case, the tirucalladienol cluster
from Arabidopsis thaliana (47) is shown. Gene annotations and pHMM hit details appear on mouse click. Also, ClusterBlast output showing alignment
of homologous genomic loci across other genomes of related species is provided. (B) Example of a gene expression heat map, showing coexpression
among the core genes of the marneral BGC from A. thaliana (48) (and not with the flanking genes). (C) Hive plot on the overview page, which highlights
pairs of candidate BGCs which show many coexpression correlations between their genes; in this example view, the coexpression links between the two
loci encoding �-tomatine biosynthesis in Solanum lycopersicum (20) are highlighted (clusters 31 and 44). (D) Example ego network that summarizes
coexpression correlations between members of the �-tomatine gene (cluster 44), as well as with genes in other gene clusters (including the other �-tomatine
biosynthetic locus, cluster 31) and with genes elsewhere on the genome.

de novo identification of gene sets involved in biosynthetic
pathways, even if they are not physically clustered on the
chromosome (29).

To allow detailed investigation of whether genes in a clus-
ter show coexpression, we added a dedicated analysis mod-
ule: CoExpress. This module reads transcriptomic datasets,
either in SOFT format (from the NCBI Gene Expression
Omnibus) or in comma-separated (CSV) format, and gener-
ates powerful visualizations of these data for each candidate
BGC. Because combining many datasets into one coexpres-
sion analysis may blot out coexpression signals that are very
specific to certain biological or chemical treatments (which
often highly specifically incite expression of plant special-
ized metabolic pathways), we designed the module in such
a way that it visualizes one transcriptomic dataset at a time.
This has the added value that the user can browse through
multiple datasets and can individually assess specific sam-
ples that are linked to a treatment of interest.

The visualizations of within-cluster coexpression pat-
terns are 2-fold: first, a hierarchically clustered heatmap
visualization, plotted using a modified version of the InCH-
lib (http://www.openscreen.cz/software/inchlib/home)

JavaScript library, offers a direct view of patterns in
and relationships between the supplied normalized gene
expression values. The dendrogram is generated using
a coexpression distance metric with a complete-linkage
hierarchical clustering method. In this metric, the Pearson
Correlation Coefficient (PCC) is transformed directly into
a distance value scaled from 0 to 200 (0 for PCC = 1, or
positively correlated, and 200 for PCC = -1 or negatively
correlated). In order to make correlations maximally
visible, the color scheme is normalized per gene (row) by
default; however, the user can also select for the color
scheme to be normalized by sample (column). Second, a
gene cluster-specific coexpression network (30) (with a de-
fault distance based cutoff of <50, dynamically adjustable)
summarizes the correlations and helps to identify specific
groups of genes in the locus that are highly coexpressed:
these occur as connected components with high numbers
of edges.

Coexpression analysis is not just useful for analysis of
functional connections within a candidate BGC, but also al-
lows prediction of functional links with other genomic loci.
It is now well-understood that several plant BGCs do not

http://www.openscreen.cz/software/inchlib/home
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act alone, but rather in concert with another BGC or with
individual enzyme-coding genes elsewhere on the genome
(11). Therefore, plantiSMASH leverages coexpression data
to offer two analyses that identify these trans-genomic in-
teractions: first, the BGC-specific coexpression network can
be extended to display a first-order ego network that incor-
porates genes elsewhere on the genome that either (i) are
members of another candidate BGC and show high gene
expression correlation (>0.9 PCC) with at least one gene in
the BGC, or (ii) contain a ‘biosynthetic’ domain (defined
as being one of the domains in Supplementary Table S1)
and show high gene expression correlation with at least two
genes in the BGC, at least one of which being a biosynthetic
gene itself. Second, interactions between candidate BGCs
are summarized in a hive plot, in which pairs of clusters are
connected by an edge if the genes of both clusters create at
least one subnetwork that satisfies the following criteria: (i)
all nodes belong to the same Louvain community (31), as
determined by analyzing the full coexpression network of
all candidate clusters’ genes; (ii) all nodes have a transitiv-
ity greater than zero; (iii) the subnetwork contains at least
two genes from each cluster; (iv) the subnetwork contains
at least one gene per cluster that has a biosynthetic domain;
and (v) The subnetwork contains at least three genes with a
biosynthetic domain. This highlights arrangements of pairs
of clusters that may be linked functionally via coexpression,
and is reminiscent of the characterized �-tomatine biosyn-
thetic pathway in Solanum lycopersicum, which is encoded
in two separate clusters that are highly coexpressed (20).

All in all, the coexpression analysis of candidate BGCs al-
lows effective prioritization for, e.g. heterologous expression
studies. Yet, it should still be kept in mind that loci that do
not show high coexpression might still encode genes that are
jointly involved in a biosynthetic pathway, e.g. if the tran-
scriptomic samples available do not include any treatments
that induce the expression of the pathway, or if expression
of the pathway is sequestered either spatially across tissues
or in terms of timing.

Comparative genomic analysis shows conservation and diver-
sification

Comparing a candidate BGC with homologous genomic
loci in other plant genomes can give important information
on its evolutionary conservation or diversification. Whereas
strong conservation of clusteredness across larger periods
of evolutionary time may point to a selective advantage of
clustering for these genes, diversification of BGCs by co-
option of other enzyme-coding genes may give clues to find-
ing novel variants of natural products that have been gen-
erated through directional pathway evolution. In order to
facilitate such comparative analysis on a case-by-case basis,
we constructed a plant-specific version of the antiSMASH
ClusterBlast module. To do so, we ran plantiSMASH on a
collection of all publicly available plant genomes, obtained
from NCBI’s GenBank, JGI’s Phytozome and Kazusa (32).
In order to avoid cases where loci homologous to detected
candidate BGCs would not be included in the database by
not satisfying the identification criteria, the thresholds for
this search were lowered to find all genomic loci with two
or more different enzymes, where the CD-HIT cut-off was

also set to a generously inclusive level of 0.9. A total of 7978
genomic loci were thus included in the plant ClusterBlast
database. As in the microbial version of antiSMASH, the
translated protein sequence of each predicted gene in a can-
didate BGC is searched against this database using the DI-
AMOND algorithm (33) and genomic loci are sorted based
on the number of hits, conserved synteny and cumulative bit
score. To also facilitate direct comparison with known plant
BGCs, all plant BGCs with known products for which the
sequence was available were added to the MIBiG repository
(34), which allows users to find similarities between newly
identified and known clusters with the KnownClusterBlast
module of antiSMASH.

Precomputed results allow fast access to comprehensive plan-
tiSMASH results

In order to allow users to directly access plantiSMASH re-
sults for publicly available plant genomes, runs for 47 high-
quality plant genomes were precomputed and made avail-
able online at http://plantismash.secondarymetabolites.org/
precalc. Importantly, publicly available gene expression
datasets with sufficient numbers of samples to be suitable
for coexpression analysis were loaded into these results.
In total, 73 transcriptomic datasets were included for five
species: A. thaliana, S. lycopersicum, Oryza sativa, Zea mays
and Glycine max (Supplementary Tables S4–7). As an indi-
cation for web server users: the computations took about 24
min per genome on average, on a 2 GHz CPU, depending
on the size of the genome and pre-selected additional anal-
yses including the co-expression analysis (see further details
in Supplementary Table S4).

Sequences that are not publicly available (as well as avail-
able sequences with custom transcriptomic datasets) can
be analyzed directly using the plantiSMASH web server at
http://plantismash.secondarymetabolites.org. In this way,
plantiSMASH results for all kinds of genomes and tran-
scriptomes are optimally available to users.

RESULTS AND DISCUSSION

PlantiSMASH successfully detects all experimentally char-
acterized plant biosynthetic gene clusters

Even though only a relatively small set of plant BGCs
has been discovered, these ∼30 BGCs still present the best
objective test case for the BGC detection algorithm. Im-
portantly, they range from complex BGCs with many dif-
ferent enzyme-coding genes, such as the noscapine and
cucurbitacin BGCs (21,35), to relatively simple ones that
only encode a couple of enzymes, such as the dhurrin
and linamarin/lotaustralin BGCs (36). Of this set, only 19
BGCs have annotated sequence information publicly avail-
able. When plantiSMASH was run on a multi-GenBank file
containing accurately annotated versions of these 19 known
BGCs, all clusters were successfully detected with default
settings. When run on different genome annotation versions
available from GenBank or Phytozome, BGCs of low com-
plexity (i.e. with a small number of enzyme-coding genes)
were occasionally missed when key genes were missing from
the structural annotations or when many false positive gene
assignments were present in the region of interest (affecting

http://plantismash.secondarymetabolites.org/precalc
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Figure 3. Numbers of candidate BGCs identified across the Plant Kingdom. (A) PlantiSMASH BGC predictions plotted onto a phylogenetic tree of plant
species for which chromosome-level genome assemblies are available. The blue bars indicate the number of candidate BGCs per genome, the red bars
indicate the most complex candidate BGC identified in each species (in terms of the number of unique enzymes encoded, as defined by CD-HIT groups).
(B) Number of candidate BGCs plotted versus the total number of genes; as expected, more BGCs are found in larger genomes. Outliers represent genomes
that have recently undergone whole-genome duplication, and the moss Physcomitrella patens, in the genome of which only a very low number of candidate
BGCs is found. (C) Number of candidate BGCs plotted versus the number of genes with pHMM hits to biosynthetic domains. (D) Number of genes with
biosynthetic domains plotted against the total number of genes; a linear correspondence is largely observed.

the dynamic gene density-based cut-off of plantiSMASH):
for example, the linamarin BGC from Lotus japonicus was
not detected in assembly/annotation version 3.0, while it
was detected in the older version 2.5. This highlights the
importance of using high-quality genome annotations sup-
ported by transcriptomic data when using plantiSMASH to
search for BGCs of interest. Alternatively, the stand-alone
version of plantiSMASH provides additional cut-off meth-
ods (e.g. raw distance-based or gene-count-based) that can
be attempted as well to mitigate such issues.

Plant genomes contain large numbers of complex biosyn-
thetic gene clusters

When run on the 47 plant genomes for which chromosome-
level assemblies are currently available on either NCBI or
Phytozome, plantiSMASH found a wide variety of candi-
date BGC numbers across plant taxonomy (Figure 3). In
general, the numbers of candidate BGCs were relatively
even between monocots and dicots (while very low in the
only moss genome included), while the largest numbers of
BGCs were found in dicot genomes. These outliers all cor-
responded to recent (partial) genome amplification events,
such as in the case of Camelina sativa (37) with 88 candidate
BGCs, Brassica napus (38) with 68 candidate BGCs and G.
max (39) with 76 candidate BGCs.
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Figure 4. Example candidate BGCs identified by plantiSMASH. Five example candidate BGCs are shown, which cover a diverse range of enzymatic
classes. Dozens of candidate BGCs of comparable complexity can be found across the precomputed plantiSMASH results that are available online.

In many plant genomes, candidate BGCs of high com-
plexity were identified, with as many as seven or eight differ-
ent enzymatic classes encoded in the same tight genomic re-
gion. These constitutions are clearly non-random and make
it promising to study candidate BGCs even in the absence
of coexpression data. Dozens of such complex BGCs were
found, which cover all known as well as putative pathway
classes; examples are provided in Figure 4.

Coexpression patterns can guide BGC prioritization

We subjected the candidate BGCs identified in the genome
of A. thaliana to a more detailed statistical analysis us-
ing within-cluster coexpression in a merged transcriptomic
dataset. For this, we compiled two sets of gene expression
datasets, one containing transcriptomic experiments of bi-
ological treatments (defense; Supplementary Table S5) and
one containing experiments of hormone treatments and
non-biological stress inductions (Supplementary Table S6).
Together, these datasets comprise transcriptomic measure-
ments of 1047 samples. The Mann–Whitney U one-sided
test was selected to test which of the A. thaliana BGCs have
a statistically greater within-cluster coexpression distribu-
tion than the genome’s background coexpression distribu-
tion. Given a BGC consisting of x genes, the background
distribution for the statistical test of this cluster contains
all PCCs between pairs of genes that are x-1, x-2, . . . , 0
genes away from each other across the entire genome (ex-
cept predicted BGCs). Only genes observed in all transcrip-
tomic experiments were allowed in the test, and only PCCs
between genes that each have a Median Absolute Deviation
>0 are added to the distributions. Lastly, the CD-HIT algo-

rithm was run on the entire A. thaliana proteome at 0.5 iden-
tity cutoff (same as plantiSMASH’s default) to cluster all
similar enzymes. The same statistical tests were repeated af-
terward, but this time discarding PCCs between genes that
code for enzymes within the same CD-HIT cluster, ensur-
ing both distributions only include coexpression of genes
that produce enzymes of different classes, which more ac-
curately resembles the type of interactions desired in a bona
fide BGC. The results of these analyses (Supplementary Ta-
ble S8 and Figure S3) show that at a significance level of
0.05, 11 predicted BGCs showed statistically higher within-
cluster coexpression than their respective background dis-
tribution even when discarding coexpression between genes
in the same CD-HIT cluster. This list includes the four
known A. thaliana BGCs, encoding the biosynthetic path-
ways for arabidiol/baruol (P = 2.92e-40), thalianol (P =
1.94e-17), marneral (P = 7.03e-10) and tirucalla-7,24-dien-
3�-ol (P = 1.10e-4), which corroborates that coexpression
is a valid criterion to prioritize functional BGCs.

There are several explanations for the fact that strong co-
expression is observed for some candidate BGCs but not
others. A first explanation is that their coordinated expres-
sion is induced by conditions not included in these tran-
scriptomic experiments; in other words, absence of evi-
dence of coexpression is not evidence of absence of coex-
pression. A second explanation is that a number of candi-
date BGCs probably do not encode entire consistently coex-
pressed biosynthetic pathways by themselves; evidence for
this comes from an analysis of characterized enzyme-coding
genes inside these candidate BGCs (Supplementary Table
S9); e.g. AT1G24100 and AT5G57220, which occur in two
different candidate BGCs, are known to each be involved in
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a different branch of glucosinolate biosynthesis (40,41), a
complex multifurcated pathway that shows only partial and
fragmented genomic clustering. Contrary to what might be
expected, however, there was no strong correlation (R =
0.004, and P = 0.64 when fitting linear regression) of co-
expression with cluster size, which suggests that the default
plantiSMASH BGC prediction cut-offs are not set too in-
clusively.

All in all, coexpression analysis provides a powerful tool
to prioritize the candidate BGCs detected by plantiSMASH
that are most likely to encode functional pathways.

CONCLUSION

The highly automated discovery of candidate BGCs by
plantiSMASH and the powerful visualizations of coexpres-
sion data that allow their prioritization present a key tech-
nological step in the route toward high-throughput genome
mining of plant natural products. As plant genome sequenc-
ing and assembly technologies continue to improve at a
rapid pace, it is likely that high-quality plant genomes for
thousands of species will soon be available; hence, ‘clus-
tered’ biosynthetic pathways present low-hanging fruits for
the discovery of novel molecules. Empowered by synthetic
biology tools and powerful heterologous expression systems
in yeast and tobacco (42–46), this will likely make it possible
to scale up plant natural product discovery tremendously.

Continued development of the antiSMASH/plantiSMAS
H framework in the future is needed to further accelerate
this process: e.g. the development of (machine-learning) al-
gorithms that predict substrate specificities of key enzymes
like terpene synthases, and the systematic construction of
pHMMs for automated subclassification of complex en-
zyme families such as cytochrome P450s and glycosyltrans-
ferases, will allow more powerful predictions of the natural
product structural diversity encoded in diverse BGCs. Addi-
tionally, detailed evolutionary genomic analysis of the phe-
nomenon of gene clustering, including BGC birth, death
and change processes, will further our understanding of
how BGCs facilitate natural product diversification during
evolution. As more plant BGCs are experimentally charac-
terized, the algorithms will co-evolve with the knowledge
gained, and more detailed class-specific cluster detection
rules could be designed; moreover, it will become clearer
what does and what does not constitute a bona fide BGC.
Finally, when scientists further unravel the complexities of
tissue-specific and differentially timed gene expression of
plant biosynthetic pathways, we will learn more on how best
to leverage coexpression data for biosynthetic pathway pre-
diction.

Thus, a more comprehensive understanding of the re-
markable successes of evolution to generate an immense di-
versity of powerful bioactive molecules will hopefully make
it possible for biological engineers to mimic nature’s strate-
gies and deliver many useful new molecules for use in agri-
cultural, cosmetic, dietary and clinical applications.
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