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Metabolomics and cognition in African American adults in
midlife: the atherosclerosis risk in communities study
J Bressler1, B Yu1, TH Mosley2, DS Knopman3, RF Gottesman4, A Alonso5,9, AR Sharrett6, LM Wruck7,10 and E Boerwinkle1,8

Clinical studies have shown alterations in metabolic profiles when patients with mild cognitive impairment and Alzheimer’s disease
dementia were compared to cognitively normal subjects. Associations between 204 serum metabolites measured at baseline
(1987–1989) and cognitive change were investigated in 1035 middle-aged community-dwelling African American participants in
the biracial Atherosclerosis Risk in Communities (ARIC) Study. Cognition was evaluated using the Delayed Word Recall Test (DWRT;
verbal memory), the Digit Symbol Substitution Test (DSST; processing speed) and the Word Fluency Test (WFT; verbal fluency) at
visits 2 (1990–1992) and 4 (1996–1998). In addition, Cox regression was used to analyze the metabolites as predictors of incident
hospitalized dementia between baseline and 2011. There were 141 cases among 1534 participants over a median 17.1-year
follow-up period. After adjustment for established risk factors, one standard deviation increase in N-acetyl-1-methylhistidine was
significantly associated with greater 6-year change in DWRT scores (β=− 0.66 words; P= 3.65 × 10− 4). Two metabolites (one
unnamed and a long-chain omega-6 polyunsaturated fatty acid found in vegetable oils (docosapentaenoate (DPA, 22:5 n-6)) were
significantly associated with less decline on the DSST (DPA: β= 1.25 digit-symbol pairs, P= 9.47 × 10− 5). Two unnamed compounds
and three sex steroid hormones were associated with an increased risk of dementia (all Po3.9 × 10− 4). The association of 4-
androstene-3beta, 17beta-diol disulfate 1 with dementia was replicated in European Americans. These results demonstrate that
screening the metabolome in midlife can detect biologically plausible biomarkers that may improve risk stratification for cognitive
impairment at older ages.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common form of dementia1

and is characterized by significant impairment in memory,
behavioral changes and gradual loss of functional autonomy.
The prevalence of AD dementia is as high as 20–30% in persons
aged 75–84 years, and up to 50% in individuals aged ⩾ 85 years.2

When 2800 subjects who were free of dementia were followed for
29 years in the Framingham Heart Study, the lifetime risk for
dementia was reported to be 1 in 5 for women and 1 in 10 for
men.3 There is currently no known cure or preventive intervention.
Cognitive function, including memory and executive function, is
influenced by both genetic and environmental factors.4,5 The
human metabolome is a reflection of the interaction between
genes and the environment, and studies examining the relation-
ship between metabolomic profiles and cognitive function may
lead to the development of biomarkers used to detect cognitive
decline or AD before clinical diagnostic criteria for impairment are
met. In this context, Mapstone et al.6 have recently reported that a
set of 10 lipids identified in a metabolomics screen in peripheral
blood could be used with 90% accuracy to predict conversion
from normal cognitive status to amnestic mild cognitive

impairment (MCI) or AD dementia over a 2–3-year period in
adults aged ⩾ 70 years. Several other investigators have also found
significant alterations in metabolic profiles in comparisons of
patients with MCI and AD dementia to cognitively normal
subjects.7–14 The goal of this study is to determine whether
metabolites measured in serum in middle-aged African American
adults are associated with cognitive function and cognitive
change in the Atherosclerosis Risk in Communities (ARIC) study.
African Americans are affected disproportionately with AD
dementia;15,16 therefore, this investigation may also provide
insight into the biological basis of this health disparity.

MATERIALS AND METHODS
The ARIC Study
The ARIC Study is a prospective longitudinal investigation of the
development of atherosclerosis and its clinical sequelae, in which 15 792
individuals aged 45–64 years were enrolled at the baseline examination. A
detailed description of the ARIC study has been reported previously.17 At
the inception of the study in 1987–1989, the participants were selected by
probability sampling from four communities in the United States: Forsyth
County, North Carolina; Jackson, Mississippi (African Americans only);
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suburbs of Minneapolis, Minnesota; and Washington County, Maryland.
Four examinations were carried out at 3-year intervals (examination 1,
1987–1989; examination 2, 1990–1992; examination 3, 1993–1995;
examination 4, 1996–1998). Subjects were contacted annually to update
their medical histories between examinations. Cognitive testing was
performed at examinations 2 and 4. Metabolomics profiles were available
for 1977 African American study participants.18 Cognitive function at the
baseline examination was examined in 1577 men and women after
excluding individuals who had an unknown history of definite or probable
stroke or a history of physician-diagnosed stroke prior to visit 2 (n=51), did
not attend the second clinical examination (n= 297), were missing test
scores for all three cognitive tests (n=50) or were missing information on
educational attainment (n= 2). Among the participants with cognitive test
scores obtained at both examinations, individuals were not included in the
analysis of 6-year cognitive change if they had an unknown history of
definite or probable stroke or a history of physician-diagnosed stroke prior
to visit 2 (n=51) or between visits 2 and 4 (n=74), or did not attend the
second (n= 297) or fourth (n= 361) clinical examination. Additional
exclusions were made for missing cognitive data for all three neuropsy-
chological tests at either visit 2 (n= 45) or visit 4 (n=112), or for missing
information concerning the highest level of education attained (n= 2); the
final study sample consisted of 1035 participants. Individuals hospitalized
for dementia through the end of 2011 were identified using ICD-9 codes
listed in the hospital discharge record (AD (331.0); vascular dementia
(290.4); or other forms of dementia (290.0, 290.1., 290.2, 290.3, 290.9, 294.1,
294.2, 294.8, 294.9, 331.1, 331.2, 331.8, 331.9) after collection of all hospital
records of the study participants.19 The study participants were excluded
from the analysis of incident hospitalized dementia if they had prevalent
stroke at visit 1 (n= 67), were missing information about the number of
years of education completed (n=5) or if follow-up time was missing
(n=371), leaving a total of 1534 individuals. Written informed consent was
provided by all study participants, and the study design and methods were
approved by the institutional review boards at the four collaborating
institutions: University of Mississippi Medical Center Institutional Review
Board (Jackson Field Center); Wake Forest University Health Sciences
Institutional Review Board (Forsyth County Field Center); University of
Minnesota Institutional Review Board (Minnesota Field Center); and the
Johns Hopkins School of Public Health Institutional Review Board
(Washington County Field Center).

Cognitive tests
Cognitive function was assessed by three neuropsychological tests at the
second and fourth clinical examinations that have been described
previously:20 (1) the Delayed Word Recall Test (DWRT) is a test of verbal
memory requiring recall of a word list after a short delay (score range 0–
10);21 (2) the Digit Symbol Substitution Test (DSST) is a subtest of the
Wechsler Adult Intelligence Scale-Revised involving timed translation of
numbers to symbols in 90 s using a key, and measures psychomotor
performance (score range 0–93);22,23 and (3) the Word Fluency Test (WFT)
is a measure of executive function. The score is the combined total of
correct words produced beginning with F, A and S.23,24 For all of the
neuropsychological tests, lower scores indicate a lower measure of
cognition. Six-year change in cognitive function was analyzed as the
difference between the test score obtained at visit 4 and the test score
obtained at visit 2 for each test.

Clinical and laboratory measurements
The clinical and laboratory measurements used for this study were
assessed during the first clinical examination for the analyses of incident
hospitalized dementia, and during the second clinical examination for the
analyses of cognitive function with the exception of education and
estimated glomerular filtration rate (eGFR), which were evaluated at the
first examination. Education was included as a covariate in regression
models as an ordinal variable based on the highest level attained (⩽11
years; 12–16 years; 416 years). Serum creatinine was measured using a
Jaffe method and calibrated to nationally representative estimates as
previously described.25 GFR was estimated based on serum creatinine
using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)
equation (eGFRCKD-EPI).

26 Plasma total cholesterol, triglycerides and low-
density lipoprotein (LDL) cholesterol were measured as previously
described.27–29 Hypertension was defined by diastolic blood pressure
⩾ 90 mm Hg, systolic blood pressure ⩾ 140 mm Hg or use of antihyper-
tensive medication. The prevalence of diabetes was defined using a fasting

glucose level ⩾ 7.0 mmol l− 1, a nonfasting glucose level ⩾ 11.1 mmol l− 1

and/or self-reported physician diagnosis or treatment for diabetes. Body
mass index (BMI) was calculated as weight in kilograms/(height in meters2).
Information on cigarette smoking and alcohol consumption was obtained
using an interviewer-administered questionnaire, and smoking and
drinking status were classified as current, former or never. Usual intake
of alcohol in grams/week was calculated for current drinkers;30 the usual
weekly intake was set to zero for former or never drinkers. Genotyping of
apolipoprotein E (APOE) polymorphisms at codons 112 and 158 (ref. 31)
was performed using the TaqMan system (Thermo Fisher Scientific,
Waltham, MA, USA) to generate the six APOE genotypes. The genotype call
rate, or the percentage of samples to which a genotype was assigned, was
determined prior to exclusion of individuals from the analysis and
was 92.5%.

Metabolomics
Metabolomic profiles were measured in a subsample of 1977 randomly
selected African American study participants from the Jackson, Mississippi
field center who had given consent for use of genetic information as
previously described.18 Metabolites were detected and quantified by
Metabolon (Durham, NC, USA) in serum isolated from individuals who had
fasted ⩾ 8 h before the first clinical examination using an untargeted, gas
chromatography/mass spectrometry, and a liquid chromatography–mass
spectrometry-based method. Instrument variability was determined by
calculating the median relative s.d. for the internal standards that were
added to each sample prior to injection into the mass spectrometers.
Overall process variability was determined by calculating the median
relative s.d. for all endogenous metabolites (that is, non-instrument
standards) present in 100% of the technical replicate samples created from
a homogeneous pool of human plasma. As the measurements span
multiple days, a data-normalization step was performed to correct
variation resulting from instrument tuning differences between days.
Metabolites were compared to library entries of purified standards that
included retention times, molecular weights, preferred adducts, in-source
fragments and associated fragmentation spectra of the intact parent ions,
or to recurrent unknown compounds. After laboratory quality-control
procedures described in detail elsewhere,18 this approach yielded a total of
602 metabolites, including 361 named compounds and 241 unnamed
compounds that did not have a chemical standard. The unknown
compounds are designated by X followed by numbers (e.g., X-12345) by
Metabolon. After conducting a repeatability study to determine the
stability of metabolites in two serum samples collected 4–6 weeks apart
from 60 individuals, 204 metabolites were selected that met the criteria of
a reliability coefficient of ⩾ 0.6 and o80% of values that were either
missing or below the limit of detection.18 The reliability coefficient is an
intraclass-correlation coefficient32 calculated as the ratio of between-
individual variance and the sum of between-individual variance and
within-individual variance over time. Using the intraclass-correlation
coefficient, a group of metabolites was defined where the between-
person variance accounts for most of the variability in metabolite
concentrations, whereas within-person variance is relatively low, thus
optimizing their usefulness for risk assessment.33,34

Statistical analysis
The 204 metabolites described above were divided into two groups for
statistical analysis (Supplementary Table S1). The first group was composed
of 187 metabolites (108 named and 79 unnamed compounds) that were
analyzed as continuous variables and had values above the limit of
detection in ⩾ 50% of samples; values below the limit of detection were
assigned the lowest detected value for that metabolite in all samples. The
lowest detected values for the metabolites found to be significantly
associated with incident hospitalized dementia or interindividual variation
in performance on neurocognitive tests in this study are shown in
Supplementary Table S2. Each of the 187 metabolites was centered by its
mean and scaled by its s.d. prior to the analysis. A second group of 17
metabolites (10 named and 7 unnamed) with 50–80% of values that were
below the limit of detection were analyzed as ordinal variables with the
levels specified as follows: 1 = below the limit of detection; 2 = detected
values below the median of the detected values; and 3= detected values
at or higher than the median. Proportions, means and s.d.s were
calculated for clinical and demographic characteristics for individuals
categorized by incident dementia case status, and for all individuals for the
analyses of cognitive function. Groups were compared using Χ2-tests for
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categorical variables and t-tests for continuous variables. Cox proportional
hazards models were used to estimate the hazard ratio (HR) for developing
hospitalized dementia; the median follow-up period was 17.1 years (25th
percentile = 10.8 years; 75th percentile = 21.2 years). All HRs were
calculated and reported per one s.d. increase for continuous variables,
and per one category change for the categorical variables. Linear
regression models were applied separately for each of the three cognitive
tests (DWRT, DSST and WFT) for each metabolite to estimate its association
with baseline cognitive function and 6-year cognitive change. Two
multivariable models were used to evaluate the relationship between
individual metabolites and both incident dementia and cognitive function.
Model 1 was adjusted for age, gender, education defined as an ordinal
variable (⩽11 years; 12–16 years; 416 years) and eGFR, whereas Model 2
was adjusted for the covariates in Model 1 with the addition of potential
confounding variables including diabetes and hypertension case status,
BMI, LDL cholesterol, current smoking, alcohol intake and APOE genotype
(carriage of at least one ε4 allele) after exclusion of individuals with missing
data.20,35 The Dubey/Armitage-Parmar algorithm,36 a modified stepwise
Bonferroni procedure, was used to correct for multiple comparisons as
previously described,18 and a two-tailed P-value of 3.9 × 10− 4 was
considered statistically significant for each individual test. A power
calculation was performed using the fixed sample size for each analysis
and a pre-specified effect size reported from previous studies. For incident
hospitalized dementia, more than 90% power will be reached if the sample
size is 1534 (141 cases), the HR is 1.7,37,38 the correlation between
metabolites is 0.3 and the alpha level is 3.9 × 10− 4. For the tests of
association of baseline neurocognitive test scores and 6-year score change,
assuming a small effect size of 0.02,39 five predictors (Model 1) and an
alpha level of 3.9 × 10− 4, there will be more than 90% and 80% power with
sample sizes of 1577 and 1035, respectively. All statistical analyses were
performed using R.40

RESULTS
The clinical and demographic characteristics of the study sample
are summarized in Table 1 for individuals included in the analyses
of incident hospitalized dementia who were free of dementia and
self-reported stroke or transient ischemic attack at baseline.
Among the 1534 participants, 9.2% (n= 141) were hospitalized
with dementia during a median follow-up period of 17.1 years.
Participants who developed dementia were significantly more
likely to be older at baseline, have had 11 years or less of formal
education, have hypertension or diabetes, have a lower eGFR and

to bear at least one copy of the APOE ε4 allele that has been
reproducibly associated with increased risk of AD41–43 and
variation in cognitive function in non-demented community-
dwelling adults35,44–47 (Po0.05). Individuals without prevalent
stroke at visit 1 or incident clinical stroke between visits 1 and 4
were included in the analyses of baseline cognitive function and
6-year cognitive change, and the characteristics of this study
sample are shown in Table 2. As a randomly selected subsample of
African American ARIC study participants with metabolomics
profiles were included in this analysis, the clinical and demo-
graphic characteristics of those with and without available data
were compared (Supplementary Table S3). Individuals with
metabolomics data were significantly younger and less likely to
be male or have diabetes or hypertension, and also had a higher
eGFR than ARIC participants who were not chosen for measure-
ments of the metabolome.
Two unnamed compounds (X-11423, X-11491) were signifi-

cantly associated with incident hospitalized dementia in the
minimally adjusted Cox proportional hazards model but were no
longer associated with susceptibility to dementia after further
adjustment for a panel of established risk factors, whereas another
metabolite implicated in sex steroid metabolism (5 alpha-
androstan-3 beta, 17 beta-diol disulfate) and an unnamed
compound (X-12851) were significantly associated with elevated
dementia risk only after adjustment for all covariates (Table 3).
Three metabolites were significantly associated with increased
hospitalized dementia using both the minimally adjusted and full
Cox proportional hazards regression models including two named
compounds involved in sex steroid metabolism (pregnen-diol
disulfate and 4-androsten-3 beta, 17 beta-diol disulfate 1) and one
metabolite with unknown structural identity (X-11440). Secondary
analyses stratified by gender revealed that the two androgen
sulfates were either significantly or marginally significantly
associated with incident dementia in men (Table 4), although
there was no association observed in women. The associations
appeared to be similar in men and women for pregnen-diol
disulfate.
In the analyses of 6-year cognitive change, the N-acetylated

amino acid N-acetyl-1-methylhistidine was associated with greater
decline in scores on the DWRT, and two metabolites

Table 1. Clinical and demographic characteristics stratified by incident hospitalized dementia status

Characteristic All; N= 1534; N (%) Na Incident dementia; N= 141; N (%) Na Non-case; N=1393; N (%) Pb

Male 559 (36.4) 141 53 (37.6) 1393 506 (36.3) 0.766
Female 975 (63.6) 88 (62.4) 887 (63.7)
Education 141 1393 0.002
⩽ 11 Years 659 (43.0) 80 (56.7) 579 (41.6)
411 Years and ⩽ 16 years 418 (27.2) 30 (21.3) 388 (27.8)
416 Years 457 (29.8) 31 (22.0) 426 (30.6)
Current smokers 465 (30.4) 141 35 (24.8) 1390 430 (30.9) 0.133
Hypertension 862 (56.5) 140 94 (67.1) 1386 768 (55.4) 0.008
Diabetes 269 (17.5) 141 39 (27.7) 1393 230 (16.5) 0.001
APOE (at least 1 ε4 allele) 591 (43.2) 131 81 (61.8) 1237 727 (58.8) o0.001
APOE (ε4/ε4) 63 (4.6) 131 15 (11.4) 1237 48 (3.9) o0.001

Mean (s.d.) Mean (s.d.) Mean (s.d.)

Age (years) 53.4 (5.8) 141 56.4 (5.6) 1393 53.1 (5.7) o0.001
BMI (kg/m2) 29.8 (6.1) 141 30.1 (6.5) 1392 29.8 (6.1) 0.532
LDL cholesterol (mmol l− 1) 3.6 (1.1) 139 3.6 (1.2) 1355 3.6 (1.1) 0.677
Ethanol (g per week) 32.8 (104.2) 139 34.9 (123.3) 1372 32.6 (102.1) 0.809
eGFRCKD-EPI (ml min− 1 per 1.73 m2) 104.0 (18.4) 141 100.3 (18.9) 1393 104.4 (18.4) 0.011

Abbreviations: APOE, apolipoprotein E; BMI, body mass index; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; eGFR, estimated glomerular
filtration rate; LDL cholesterol, low-density lipoprotein cholesterol; N, number. aNumber of participants with data for clinical and demographic characteristics.
bIndividuals with and without incident hospitalized dementia were compared using Χ2-tests for categorical variables and t-tests for continuous variables.
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(docosapentaenoate (DPA) and X-12844) were associated with less
decline in scores on the DSST only in the fully adjusted models
(Table 5). DPA (22:5 n-6) is a long-chain n-6 polyunsaturated fatty
acid (PUFA). Long-chain PUFAs are lipids at least 18 carbons in
length with two or more double bonds that are categorized as n-3
or n-6 based on the position of the first double bond with respect
to the omega or last carbon end of the molecule. Although a
significant relationship between five individual metabolites and
baseline cognitive function was observed for the DSST using the
minimally adjusted model, none remained significant after further
adjustment for lifestyle and physiological factors. No metabolites
were associated with either performance on the WFT at baseline
or with change in scores over the 6-year interval.

DISCUSSION
Associations between the levels of three sulfate-conjugated sex
steroid hormones and increased risk of incident hospitalized

dementia, the omega-6 fatty acid DPA and less decline in
processing speed, and an N-acetylated amino acid and greater
decline in verbal memory were identified in a large-scale screen of
serum metabolites in middle-aged African American participants
in the ARIC study. Although the phenotype examined in this study
was incident hospitalized dementia that encompassed AD and
vascular dementia as well as other forms of dementia, several
investigators have previously observed significant alterations
in metabolic profiles in cerebrospinal fluid,7,8,48–51 or
blood6,7,9–14 in comparisons of patients with MCI or AD to
cognitively normal subjects. Because sample acquisition is less
invasive, identification of blood-based biomarkers would be
advantageous for clinical diagnosis, AD-screening programs and
monitoring of response to therapy. Mapstone et al. recently
reported that a set of 10 lipids identified in a metabolomics screen
in peripheral blood could be used with 90% accuracy to predict
conversion from normal cognitive status to amnestic MCI or AD
dementia over a 2–3-year period in 525 community-dwelling
adults ⩾ 70 years.6 Although these findings were not replicated in
three independent cohorts including the ARIC study,52,53 higher
concentrations of one of the 10 phospholipids was significantly
associated with a decreased prevalence of dementia.54 Alterations
in lipid metabolic pathways detected in the blood of patients with
AD dementia have also been described by other investigators.9–14

For example, significantly decreased plasma concentrations of
three phosphatidylcholines were observed when individuals with
AD dementia were compared to controls from the King’s College
London Dementia Case Register and the AddNeuroMed study,12

and six ether-containing phosphatidylcholines and sphingomye-
lins were associated with abnormal levels of Aβ1–42 in the
cerebrospinal fluid in participants in the Alzheimer’s Disease
Neuroimaging Initiative-1 cohort.14 A group of 154 metabolites
associated with AD dementia was identified in the Mayo Clinic
Study of Aging including etiocholanolone sulfate (5-androstan-3-
alpha-ol-17-one sulfate) and testosterone sulfate, two metabolites
of testosterone.7 Most of the metabolites described in the studies
above6–14,48–51 were not included in the panel analyzed in the
ARIC study, with the exception of uridine,7,48 creatine,7

dimethylglycine,7 tryptophan,7,49 2-hydroxyisobutyrate7 and
valine.14 Providing evidence in support of an initial discovery in
Alzheimer’s Disease Neuroimaging Initiative-1, higher levels of the
branched-chain amino acid valine were significantly positively
associated with general cognitive ability and conferred a
decreased risk of incident AD dementia over a median 9.7-year
follow-up period in 2505 dementia-free participants in the
population-based Rotterdam Study.14 However, among these
metabolites, only dimethylglycine was nominally associated with
incident hospitalized dementia using the fully adjusted Cox
regression model (P= 0.0252).
In the ARIC study, profiling of serum metabolites by an

untargeted mass spectrometry-based method revealed associa-
tions between increased risk of incident hospitalized dementia
and three metabolites involved in sex steroid metabolism
including 4-androsten-3 beta, 17 beta-diol disulfate 1 (sulfate of
4-androsetenediol; HR = 1.25, P= 1.44 × 10− 4), 5 alpha-androstan-3
beta, 17 beta-diol disulfate (HR= 1.26, P= 1.64 × 10− 4) and
pregnen-diol disulfate (HR = 1.35, P= 5.59 × 10− 5) and two
unnamed metabolites after adjustment for a panel of established
risk factors for cognitive function.35 The regression models were
also adjusted for eGFR, as the kidney freely filters molecules
weighing less than 10 000 Da from the blood that are then
reabsorbed, catabolized and/or secreted so that interindividual
variation in renal function can influence metabolite
concentrations.55 The association with 4-androsten-3 beta, 17
beta-diol disulfate 1 was replicated in European American ARIC
study participants, providing stronger evidence that levels of this
hormone influence susceptibility to dementia. As both androgens
and estrogens have been shown to exert neuroprotective effects

Table 2. Clinical and demographic characteristics—baseline cognitive
function and 6-year cognitive change

Characteristic Na Baseline;
N= 1577;
N (%)

Na Cognitive
change;

N= 1035; N (%)

Male 1577 538 (34.1) 1035 341 (33.0)
Female 1039 (65.9) 694 (67.0)

Education 1577 1035
⩽ 11 Years 615 (39.0) 364 (35.2)
411 Years and ⩽ 16
years

432 (27.4) 283 (27.3)

416 Years 530 (33.6) 388 (37.5)
Current smokers 1575 385 (24.4) 1033 214 (20.7)
Hypertension 1570 810 (51.6) 1028 502 (48.8)
Diabetes 1561 344 (22.0) 1023 209 (20.4)
APOE (at least
1 ε4 allele)

1404 592 (42.2) 912 392 (43.0)

APOE (ε4/ε4) 1404 63 (4.5) 912 47 (5.2)

Mean (s.d.) Mean (s.d.)

Age (years) 1577 55.4 (5.6) 1035 55.0 (5.4)
BMI (kg/m2) 1577 30.1 (6.1) 1035 30.2 (6.1)
LDL cholesterol
(mmol l− 1)

1550 3.5 (1.0) 1021 3.5 (1.0)

Ethanol (g per week) 1573 23.5 (84.6) 1031 21.6 (76.2)
eGFRCKD-EPI
(ml min− 1 per
1.73m2)

1577 105.1 (17.3) 1035 105.0 (16.7)

Cognitive tests
Baseline (visit 2)
DWRT (words) 1575 6.2 (1.6) 1034 6.3 (1.6)
DSST (digit-
symbol pairs)

1565 31.4 (13.6) 1030 32.9 (13.3)

WFT (words) 1570 27.9 (13.3) 1031 29.3 (13.2)

6-Year change (visit 2–visit 4)
DWRT (words) --- --- 1034 − 0.25 (1.72)
DSST (digit-
symbol pairs)

--- --- 1018 − 2.06 (8.82)

WFT (words) --- --- 1026 − 0.89 (8.41)

Abbreviations: APOE, apolipoprotein E; BMI, body mass index; CKD-EPI,
Chronic Kidney Disease Epidemiology Collaboration; DSST, Digit Symbol
Substitution Test; DWRT, Delayed Word Recall Test; eGFR, estimated
glomerular filtration rate; LDL cholesterol, low-density lipoprotein choles-
terol; N, number; WFT, Word Fluency Test. aNumber of participants with
data for clinical and demographic characteristics.
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including prevention of amyloid beta deposition and tau
hyperphosphorylation,56–60 age-related depletion of sex steroid
hormones might be expected to contribute to an increased
susceptibility to neurodegenerative diseases. Accordingly, age-
related decline in circulating estrogens and testosterone has
previously been reported to be a risk factor for AD dementia or
MCI in women and men, respectively, in some61–67 but not all
studies.68 The relationship between steroid hormones and AD has
also been evaluated directly in samples of neural tissue.69,70

Although these previous reports provide support for the sugges-
tion that interindividual variation in the levels of the three sex
steroid metabolites may be biologically linked to cognitive
impairment, important caveats are that dementia as defined in
this study was based on hospital ICD-9 codes and was not
restricted to AD, and that even many cases of clinically diagnosed
dementias including AD show a mixture of AD and vascular
neuropathology at autopsy.71–73

Four-androstenediol is a precursor of both testosterone and
estradiol, and is used as a prohormone by men to elevate levels of
serum and urinary testosterone.74,75 5-alpha-androstan-3-beta, 17-
beta-diol (3-betaAdiol) is a metabolite of the androgen dihydro-
testosterone. Pregnen-diol disulfate has not been well character-
ized. An increase in the levels of sulfated intermediates in steroid
metabolism in individuals with incident hospitalized dementia
could reflect alterations in a number of biological processes. The
major site of clearance and inactivation of steroids is the liver
where conjugation with sulfuric acid is one mechanism whereby
the compounds become water-soluble and can be excreted in the
urine.76 Changes in the rate of steroid clearance in individuals with
dementia may be reflected in the increased levels detectable in
the serum. Another possibility is that, as hydrolysis of steroid
sulfates by steroid sulfatase in the liver, kidney and other tissues
can contribute to the pool of unconjugated androgens,77 as yet
undescribed variation in this enzymatic reaction may also be a
factor.
To our knowledge, this study is among the first to examine the

association between the human metabolome and change in
cognitive function among middle-aged adults who are not
cognitively impaired using scores on standardized neuropsycho-
logical tests. Higher levels of an N-acetylated amino acid
previously associated with lower eGFR in African American ARIC
study participants were significantly associated with greater
decline in scores on the DWRT, a test of verbal declarative
memory.55 Although lower eGFR has been shown to be associated
with impairment in delayed word recall in patients with chronic
kidney disease,78,79 N-acetyl-1-methylhistidine was significantly
associated with memory performance after adjustment for eGFR,
suggesting an effect on cognition that is independent of its role in
renal function. The DSST is a test widely used to measure
information-processing speed while an individual translates
numbers to letters on a paper and pencil test. The rate of
information-processing speed has been shown to decrease in
older individuals,80,81 and low scores on the DSST indicative of
poor performance in this domain have been associated with MCI
and early-stage dementia.82,83 Higher n-6 DPA levels were
associated with less decline in DSST scores over a 6-year period
in ARIC study participants (β= 1.25, P= 9.47 × 10− 5). DPA is a long-
chain n-6 PUFA found in vegetable oil that can also be
metabolized from the essential fatty acid linoleic acid (18:2 n-6)
or from arachidonic acid (20:4 n-6) by a series of chain elongation
and desaturation reactions.84 The higher serum DPA levels may
indicate an increased rate of conversion from either linoleic acid or
arachidonic acid to n-6 DPA in those with less pronounced DSST
score change. Genetic variants in enzymes involved in the n-6
metabolic pathway have been associated with linoleic acid and
arachidonic acid levels, and could potentially underlie the
observed variation in cognitive status.85,86

Dietary intake of omega-6 fatty acids has previously been
shown to be associated with a lower risk of AD, MCI, cognitive
decline and all-cause mortality,87–90 although increased risk has
also been reported.91–93 For example, intake of omega-6
polyunsaturated fat was inversely associated with incident
clinically diagnosed AD in a biracial sample of 815 participants
from the Chicago Health and Aging Project,87 and the odds ratio
of MCI decreased as intake of omega-6 fatty acids increased in
1233 individuals in the Mayo Clinic Study of Aging.88 In one of the
only studies to specifically address the association between n-6
DPA and cognitive status, erythrocyte DPA levels were higher in
adults older than 65 years with MCI than in healthy controls.94 Of
particular relevance to the results reported here, a higher ratio
between total erythrocyte n-6-PUFAs and n3-PUFAs was signifi-
cantly negatively correlated with baseline DSST scores in the
Lothian Birth Cohort 1936 study.95 However, as all n-6 PUFAs were
considered as a group, it is possible that individual components
such as DPA exerted a range of effects in different directions that
could not be distinguished in the assay used. Although there may
be many reasons for the inconsistent results reported across
studies, many relied on food frequency questionnaires or
interviews87–89,92,93 that are subject to recall bias rather than on
laboratory measurements of metabolites as reported here. Most
importantly, both the neuropsychological test batteries used to
evaluate cognition and the individual omega-6 fatty acids chosen
for analysis either alone or as components of a composite
measure often varied between cohorts, and a large-scale
hypothesis-free screen of the metabolome was not undertaken
except in the ARIC study. Further research optimally relying on the
use of the same cognitive tests to assess change over a similar
time period may help to clarify whether increased levels of serum
n-6 DPA are consistently associated with less decline in processing
speed in early middle age.
Taken together, these results demonstrate that screening the

metabolome in midlife can be used to discover and prioritize
biologically plausible biomarkers that may improve risk stratifica-
tion for cognitive impairment at older ages. The strengths of the
study include the prospective design and a large deeply
phenotyped cohort that allowed the detection of an association
between novel biomarkers and incident hospitalized dementia
decades before it came to medical attention, as well as early
cognitive change in non-demented community-dwelling adults.
There are also limitations. Only one cognitive test was used to
measure each of three cognitive domains, and cognitive change
was analyzed over a short period in middle age when relatively
few participants will have undergone substantial decline. Finally,
there was only a single measurement of the serum metabolites,
although rigorous quality-control procedures were undertaken to
assure medium term reliability of the data, and the identity of
some of the metabolites significantly associated with both
phenotypes is currently unknown. While the association between
a sex steroid hormone significantly associated with incident
hospitalized dementia in African Americans was replicated in
European American study participants, evaluation of the same
metabolites in an independent replication sample of African
Americans and across different ethnicities to address the general-
izability of the findings is warranted.
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