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Optimalmyelination of neuronal axons is essential for effective brain and cognitive function. The ratio of the axon
diameter to the outer fiber diameter, known as the g-ratio, is a reliablemeasure to assess axonalmyelination and
is an important index reflecting the efficiency and maximal conduction velocity of white matter pathways. Al-
though advanced neuroimaging techniques including multicomponent relaxometry (MCR) and diffusion tensor
imaging afford insight into themicrostructural characteristics of brain tissue, by themselves they do not allow di-
rect analysis of the myelin g-ratio. Here, we show that by combiningmyelin content information (obtained with
mcDESPOTMCR) with neurite density information (obtained through NODDI diffusion imaging) an index of the
myelin g-ratio may be estimated. Using this framework, we present the first quantitative study of myelin g-ratio
index changes across childhood, examining 18 typically developing children 3months to 7.5 years of age.We re-
port a spatio-temporal pattern of maturation that is consistent with histological and developmental MRI studies,
as well as theoretical studies of the myelin g-ratio. This work represents the first ever in vivo visualization of the
evolution of white matter g-ratio indices throughout early childhood.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The maturation of the brain's white matter and the establishment of
the lipid myelin sheath around neuronal axons are critical processes in
human brain development. Beginning prenatally, myelination advances
rapidly over the first 2 years of life before slowing through childhood
and continuing to slowly develop into the second and third decades of
life (Barkovich et al., 1988; Bartzokis et al., 2010; Brody et al., 1987;
Paus et al., 2001). The spatiotemporal pattern of myelination follows a
carefully choreographed order, extending from deep to superficial
brain regions in a posterior to anterior pattern (Barkovich et al., 1988;
Brody et al., 1987; Paus et al., 2001). This temporal pattern coincides
with the emergence and refinement of cognitive and behavioral func-
tions (Fields, 2008;Nagy et al., 2004),with the neural activity itself part-
ly drivingmyelination by oligodendricytes (Fields, 2005; Ishibashi et al.,
2006; Ullén, 2009).
. This is an open access article under
The primary role of the myelin sheath is to increase the conduction
velocity of electrical impulses along the myelinated fiber. For a fixed
axon diameter, conduction velocity increases in proportion to myelin
thickness (Waxman, 1980). However, biophysical limitations, including
intracranial space volume, axonal energy consumption; and other
neurodevelopmental processes (dendritic arborization, synapse forma-
tion, and neuronal pruning) influence the degree of myelination
(Chomiak and Hu, 2009). As a result, it is hypothesized that an optimal
ratio exists between the axon diameter and the total fiber diameter
(which consists of both the axon diameter and the thickness of themy-
elin sheath) that maximizes transduction efficiency (Chomiak and Hu,
2009; Goldman and Albus, 1968; Rushton, 1951). Defined as the
g-ratio, this index is informative of the underlying myelin microstruc-
ture, and may indicate the relative efficiency and maximal conduction
velocity of particular axons and white matter pathways.

Rushton (1951) first proposed that the relationship between axonal
conduction velocity was interdependent on fiber diameter and myelin
thickness. Through a simple mathematical model, he suggested that a
g-ratio of 0.6 would yield optimum fiber conduction. This result was
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.02.040&domain=pdf
mailto:deaniii@wisc.edu
http://dx.doi.org/10.1016/j.neuroimage.2016.02.040
www.elsevier.com/locate/ynimg


226 D.C. Dean III et al. / NeuroImage 132 (2016) 225–237
found to agree well with experimental measurements in peripheral
nerve fibers (Hursh, 1939). However, central nervous system (CNS) fi-
bers are generally smaller, and g-ratios greater than 0.6 are commonly
observed (Goldman and Albus, 1968). To account for this discrepancy,
Chomiak and Hu revisited Rushton's initial analysis and theoretical
framework and included additional biophysical constraints within
their model of impulse conduction. This work suggested an optimal g-
ratio of 0.77 for CNS fibers, which agree more closely with experimen-
tally measured g-ratios in the rat brain (Chomiak and Hu, 2009).

Outside of these theoreticalmodels, however, there exists significant
variation in the ratio of myelin thickness to fiber diameter between dif-
ferent brain regions, in different regions along the same axons, and
across neurodevelopment (Graf von Keyserlingk and Schramm, 1984;
Ikeda and Oka, 2012; Sanders and Whitteridge, 1946; Sherman and
Brophy, 2005; Spencer et al., 1973). Although not specifically tested,
neurodevelopmental differences between males and females have
been hypothesized to be associated with variations in the myelin g-
ratio (Paus and Toro, 2009; Pesaresi et al., 2015), and individuals with
schizophrenia are also believed to have atypical g-ratio values (Du and
Ongür, 2013).

Despite the importance ofmyelin thickness to neuronal communica-
tion and consequently normative brain function, in vivo measurement
of this parameter has remained limited. Recently, several mathematical
models have been proposed that relateMRI-derivedmeasures ofmyelin
content (obtained using magnetization transfer or multicomponent
relaxometry imaging) and fiber volume fraction (obtained from diffu-
sion weighted imaging) to the myelin g-ratio. Stikov et al., for example,
proposed a tissue model that utilizes measurements of the bound pool
fraction (F) from quantitative magnetization transfer imaging (qMT)
withmeasurements of fractional anisotropy fromdiffusion tensor imag-
ing (DTI) to estimate an aggregatemeasure of themyelin g-ratio (Stikov
et al., 2011). Building on this result, Campbell et al. examined the differ-
ences in the tissue model when using DTI based parameters versus the
neurite orientation dispersion and density imaging (NODDI) model pa-
rameters (H. Zhang et al., 2012), and found that NODDI-basedmeasures
were more robust for estimating the fiber volume fraction compared to
DTI measures (Campbell et al., 2014). Stikov et al. further showed MRI
derived g-ratio estimates are consistent with histological estimates in
the corpus callosum of five macque monkeys (Stikov et al., 2015a, b),
and have demonstrated whole-brain g-ratio mapping may be an infor-
mative biomarker in multiple sclerosis (Stikov et al., 2015a). Using a
similar theoretical framework, Mohammadi et al. additionally demon-
strated histologically consistent in vivo MR measurements of g-ratio in
37 healthy volunteers across the whole brain (Mohammadi et al.,
2015). These studies provide initial evidence that suggests it is possible
to use MRI to map an aggregate measure of the myelin g-ratio in vivo
and that suchmeasurements are histologically consistent. These studies
have additionally used qMT measurements, which have been shown to
correlate with histological estimates of myelin (Schmierer et al., 2007,
2008; Thiessen et al., 2013), to derive the myelin volume fraction com-
ponent of the g-ratio formulation. Recent research has also suggested
that alternative quantitative imaging techniques, such as multicompo-
nent relaxometry, may be sensitive to the underlying myelin content
(Alexander et al., 2011; Deoni, 2010). Thus these studies raise the pos-
sibility that such alternative techniquesmay additionally be appropriate
for in vivo estimation of a myelin g-ratio index.

Multicomponent relaxometry (MCR) estimates specific MR tissue
characteristics by decomposing the measured MRI signal into contribu-
tions from distinct microstructural water pools with different T1 and T2
relaxation times. Prior MCR studies have consistently reported at least
two water compartments: a fast-relaxing water pool attributed to
water trapped between the myelin-lipid bilayers; and a slower-
relaxing water pool attributed to intra-/extra-cellular water (MacKay
et al., 1994, 2006). Quantification of the signal from the myelin-bound
water, termed the myelin water fraction (MWF), has been shown to
strongly correlate with histological assessments of myelin content
(Laule et al., 2006, 2008), thus warrants the use of such a parameter
for assessing myelin content (Laule et al., 2008). While MCR has tradi-
tionally been performed using multiple spin-echo T2 decay data
(Whittall et al., 1997), a recent approach named mcDESPOT (multi-
component driven equilibrium single pulse observation of T1 and T2),
has been proposed, which utilizes variable flip angle measurements
from steady state pulse sequences (Deoni et al., 2013b, 2008) Using
mcDESPOT, our group has previously demonstrated a spatio-temporal
pattern ofmyelination throughout infant neurodevelopment that close-
ly mirrors the established histological time-line (Dean et al., 2014b;
Deoni et al., 2011, 2012). However, it remains unclear how the myelin
g-ratio changes with age throughout development and in association
with behavioral maturation.

In this work, we present the first report of indices of the myelin g-
ratio across neurodevelopment using magnetic resonance imaging
(MRI). We extend our prior analyses of early neurodevelopment by
combining mcDESPOT myelin water volume fraction (VFM) and
NODDI fiber volume fraction data to obtain whole-brain voxel-wise
maps of an apparentmyelin g-ratio index. Further, we sought to explore
the evolution of this g-ratio index across early neurodevelopment by
tracking these measures in 18 healthy infants and toddlers between
3 months and 7.5 years of age. Within white matter, we demonstrate
g-ratio index versus age trajectory that asymptotically approaches 0.8,
consistent with theoretical predictions of the myelin g-ratio.

Materials and methods

Subjects

Participants in this study were a subset of those involved in a
broader longitudinal investigation of white matter maturation in
healthy, typically developing children and correspondingbehavioral de-
velopment (Dean et al., 2014b; Deoni et al., 2012). Informed parental
consent was obtained in accordance to ethics approval from the Institu-
tional Review Board of Brown University. Children enrolled in the study
met the following inclusion/exclusion criteria: uncomplicated single
birth between 37 and 42weeks; no in utero exposure to alcohol or illicit
drugs; no familial history of major psychiatric or depressive illness; no
diagnosis of major psychiatric, depressive or learning disorder in partic-
ipant; and no pre-existing neurological conditions or major head trau-
ma in participant. A total of 18 healthy infants (13 males/5 females)
and toddlers between 102 and 2713 days of age (approximately
3months to 7.5 years,mean=2.58 years), corrected for a 40-week ges-
tation were included in the present study. The NODDI imaging protocol
was added late into the longitudinal study and thus these 18 study par-
ticipants were the only subjects that had both mcDESPOT and NODDI
data. Full participant demographics are provided in Table 1.

Data acquisition

Children under 4 years of age were scanned during natural, non-
sedated, sleep; while children over this age were able to watch a
favorite TV show or movie while being scanned (Dean et al., 2014c).
All data was acquired on a 3 Tesla Siemens Tim Trio scanner equipped
with a 12-channel receive-only head RF array coil. To minimize intra-
scan motion, children were swaddled with an infant or pediatric
MedVac vacuum immobilization bag (CFI Medical Solutions, USA) and
foam cushions were placed around their head. Scanner noise was re-
duced by limiting the peak gradient amplitudes and slew-rates to
25 mT/m/s. A noise-insulating insert (Quiet Barrier HD Composite,
UltraBarrier, USA) was also fitted to the inside of the scanner bore.
MiniMuff pediatric ear covers and electrodynamic headphones (MR
Confon, Germany) were used for all scanned children. A pediatric
pulse-oximetry system and infrared camera were used to continuously
monitor the infants and children during scanning.



Table 1
Demographic information for the 18 study participants.

Subject Sex Age
(days)

gestational period
(weeks)

Birth weight
(kg)

Birth height
(cm)

1 F 102 38.57 2.78 47.63
2 M 116 39.57 2.72 45.72
3 F 123 40.71 4.00 54.61
4 M 124 40.86 2.89 45.72
5 M 129 40.71 NR NR
6 M 354 38.29 2.75 48.26
7 M 357 38.00 2.78 49.53
8 M 362 39.00 3.20 50.80
9 M 376 41.00 3.20 48.26
10 M 663 38.00 2.86 48.26
11 M 717 39.00 3.83 53.34
12 M 940 39.86 2.89 50.80
13 M 1228 39.43 3.74 54.99
14 M 1381 39.00 3.43 50.80
15 M 1978 40.57 2.98 53.34
16 F 2334 39.86 2.98 59.17
17 F 2713 38.00 4.03 52.07
18 F 2713 42.00 3.12 NR

NR = not reported.
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mcDESPOT imaging
Age-specific and acoustically muffled imaging protocols, previously

described in Deoni et al. (2012), were used to acquire mcDESPOT imag-
ing data from each subject. Each mcDESPOT protocol consisted of 8 T1-
weighted spoiled gradient echo images (SPGR or spoiled FLASH) and
16 balanced T1/T2-weighted steady-state free precession (bSSFP or
TrueFISP) images acquired across multiple flip angles (Deoni et al.,
2013b). Two inversion-prepared (IR)-SPGR images were additionally
acquired for correction of radio-frequency (B1) inhomogeneities and
bSSFP images were acquired with two phase cycling patterns (φ =
180o and 0o) for correction ofmainmagnetic field (B0) inhomogeneities
(Deoni, 2011). Since the field-of-view and image-matrix size varied be-
tween each of the age-specific imaging protocols thatwere designed (to
account for the variable head size of the subject population of the longi-
tudinal study while maintaining a constant 1.8 mm isotropic voxel res-
olution (Deoni et al., 2012)) total imaging times ranged from 19min for
the youngest infants, to 24 min for older and larger children.

NODDI imaging
A two-shell diffusion weighted imaging (DWI) protocol was addi-

tionally acquired using a single-shot, spin-echo, echo planar imaging
(EPI) pulse sequence. In order to make the acoustic noise of this scan
tolerable for natural sleep, the sequence was additionally modified by
reducing the gradient switching rate andmaximum gradient amplitude
to 60% and 80% ofmaximum, respectively. Diffusionweightingwas per-
formed with bipolar gradients with dual-echo refocusing to reduce
eddy currents (Reese et al., 2003). Parallel acquisition, with a geometric
reduction factor of two,wasused to reduce image distortions frommag-
netic field inhomogeneities and reduce acquisition time. Diffusion-
weighted images were obtained in thirty non-collinear diffusion
encoding directions with b= 700 and 2000 s/mm2, and two b= 0 im-
ages. Forty-eight contiguous 2.5 mm axial slices were acquired over the
cerebrum and cerebellum (matrix = 88 × 88; Field of view [FOV] =
220 mm; resolution = 2.5 × 2.5 × 2.5 mm3; repetition time [TR] =
6700 ms; echo time [TE] = 104 ms and pixel bandwidth = 1623 Hz).
Total imaging time was 9 min 49 s.

Image analysis and g-ratio index calculation

Following acquisition, data were assessed for motion artifacts (blur-
ring, ghosting, etc) and standard mcDESPOT processing was performed
(Deoni et al., 2012). Individual SPGR, IR-SPGR, and bSSFP images for
each participant were linearly co-registered to account for subtle head
movement during the scan (Jenkinson et al., 2002) and non-
parenchyma voxels were removed using an automated and deformable
model approach (S. M. Smith, 2002). Corrections for flip angle
errors and off-resonance inhomogeneities were calculated using the
DESPOT1-HIFI and DESPOT2-FM techniques, respectively (Deoni,
2011). The SPGR and bSSFP data were subsequently fit to a 3-pool
tissue model that estimates the volume fractions and relaxation times
for intra/extra-axonal water, myelin-associated water, and non-
exchanging free water. The volume fraction associated with the myelin
water compartment of the model therefore provides VFM estimates at
each image voxel (Deoni et al., 2013a, b).

NODDI images were corrected for distortion, translation and rota-
tion from eddy currents and bulk head motion using an affine registra-
tion tools implemented in the fMRIB Diffusion Toolbox, and the
gradient orientations were corrected for rotation. The pre-processed
data were then fit to a three-compartment tissue model to provide
neurite density and dispersion estimates (H. Zhang et al., 2012) using
an available MATLAB toolbox (nitrc.org) and adapting it to run on con-
dor parallel computing environment (https://github.com/nadluru/
NeuroImgMatlabCondor). Defaultmodel assumptions andfixed param-
eter values as described in Zhang et al. (2012)were used in the fitting of
theNODDImodel. From thismodel fit, the tissuemodel parameters cor-
responding to the volume fraction of the intra-cellular or restricted dif-
fusion compartment (νIC) and the volume fraction of an isotropic
diffusion compartment (νISO) are estimated. Within the NODDI formu-
lation, restricted diffusion is attributed to axons and dendrites
(neurites) and thus νic is interpreted as a quantitative measure of
neurite density, while the volume fraction of the isotropic diffusion
compartment, νiso, is attributed to CSF or isotropic diffusion (H. Zhang
et al., 2012).

Myelin g-ratio index calculation

To calculate the myelin g-ratio index, each participant's mcDESPOT
and NODDI parameter maps were first co-registered as follows: for
each infant, a mean non-diffusion weighted image was calculated
from the two acquired b = 0 images. This image was then registered
to the infant's high flip angle T1-weighted SPGR image using an auto-
matic affine registration technique (Jenkinson et al., 2002). The calculat-
ed transformation matrix was then applied to the restricted (νIC) and
isotropic (νISO) volume fraction maps estimated from the NODDI data.
Finally, the g-ratio index was calculated from the VFM, νIC, and νISO

maps as in Stikov et al. (2015a),

VFA ¼ 1� VFMð Þ 1� νISOð ÞνIC ð1Þ

VF F ¼ VFM þ VFA ð2Þ

and

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� VFM

VF F

s
ð3Þ

Here, VFA denotes the axon volume fraction, and VFF is the total fiber
(sum of the myelin and axon) volume fraction.

Reconstruction of g-ratio developmental trajectories

In order to generate the developmental trajectories of regional mye-
lin g-ratio indices, the image data for all the subjects were spatially nor-
malized using nonlinear diffeomorphic image registration (Avants et al.,
2008) and the subjects high flip angle SPGR T1-weighted image to trans-
formbetween each infant's image space and a previously created study-
specific template (Deoni et al., 2012). An adult reference brain template
was also non-linearly registered to the infant template to provide brain
region tissue masks, as described in Deoni et al. (2012). Anatomical

http://nitrc.org
https://github.com/nadluru/NeuroImgMatlabCondor
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regions of interest (Mazziotta et al., 2001; Oishi et al., 2008) within this
co-registered reference dataset, including left and right hemisphere
frontal, occipital, parietal, temporal, and cerebellar white matter;
genu, body, and splenium of the corpus callosum; left and right hemi-
sphere cingulum, internal capsules, corona radiata, and optic radiations,
were then superimposed onto each infant's VFM, VFF, νIC, νISO, and my-
elin g-ratio index maps. Mean and standard deviation values for each
parameter were calculated for each region and plotted with respect to
age.

Pearson partial correlations between computedmyelin g-ratio index
and VFM; myelin g-ratio index and VFF; myelin g-ratio index and νIC;
andmyelin g-ratio index and νISO were calculated for eachwhitematter
tract and region while taking into account the age of subjects.

Modeling g-ratio index trajectories
To characterize developmental trajectories, logarithmic curve

models of the form g-ratio(age) = αln(age) − β, were fit to the mean
myelin g-ratio index data for each brain region and white matter tract.
Potential hemispheric differences were tested by fitting the data to
each hemisphere independently (dual-curve model) as well as average
Fig. 1. Representative raw coronal mcDESPOT VF
combined (single-curve model). An F-test was used to determine
whether the dual-curve model was justified and to identify areas with
hemispheric maturation rate differences.

Results

Representative coronal images of rawmcDESPOT derived VFM maps
and NODDI νIC and νISO parameter maps from 10 representative sub-
jects are shown in Fig. 1, while reformatted coronal and sagittal images
from the spatially normalized whole-brain T1 weighted, and quantita-
tive VFM, VFF, and g-ratio index maps of the same 10 infants are
shown in Figs 2 and 3, respectively. The expected shift in the gray/
white matter contrast across the T1-weighted images is evident,
reflecting the changes in the underlying tissue content that have been
described to take place during this developmental stage (Barkovich
et al., 1988; Dietrich et al., 1988; Paus et al., 2001). Myelin maturation
throughout the brain is further reflected through the spatio-temporal
patterns of the quantitative VFM, VFF, andmyelin g-ratio indexmeasure-
ments. These maps detail a specific myelination pattern, beginning in
the cerebellum and internal capsules, advancing to the splenium of
M and NODDI νIC and νISO parameter maps.



Fig. 2. Normalized coronal T1-weighted and quantitative VFM, VFF, and myelin g-ratio index maps for representative subset of typically developing subjects. Images are shown in radio-
logical convention (viewing left = anatomical right). The sex of each infant is denoted in the bottom panel. Note: while g-ratio in gray matter has limited interpretation, these areas
have not been masked in the g-ratio index maps so that changes in myelination can be better appreciated.
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the corpus callosum and optic radiations, and finally extending to the
occipital, parietal, temporal and frontal lobes. This general center-out,
posterior–anterior pattern mirrors the general myelination pattern
that has been well documented from histological studies (Barkovich
et al., 1988; Kinney et al., 1988; Sidman and Rakic, 1982).

Quantitative trajectories of meanwhite matter myelin g-ratio index,
VFM, VFF, νIC, and νISO are shown in Fig. 4. These developmental trajec-
tories reveal predominantly nonlinear growth pattern, with VFF
and νIC increasing logarithmically with age and VFM following an
approximate sigmoidal pattern (demonstrated previously in Dean
et al., 2014b, 2014a). g-Ratio index estimates in white matter decreased
logarithmically and asymptotically approached the theoretical optimal
estimates of 0.8 (Chomiak and Hu, 2009). The differences in the shape
of these trajectories indicate the differential sensitivity of these mea-
sures to the structural characteristics of white matter. While little mye-
lin is present at birth, reflected by the near-zero VFM and large g-ratio
index values at the beginning of the trajectory, the structural foundation
for myelin (neurons/axons) exists. The presence of this microstructure



Fig. 3. Normalized sagittal T1-weighted and quantitative VFM, VFF, and myelin g-ratio index maps for representative subset of the typically developing subjects. The sex of each infant is
denoted in the bottom panel. Right hemisphere is shown. Note: while g-ratio in gray matter has limited interpretation, these areas have not been masked in the g-ratio index maps so
that changes in myelination can be better appreciated.
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gives rise to the non-zeromeasures of VFF and νIC throughout the entire
age-range.

To examine the evolution of themyelin g-ratio index with age, loga-
rithmic functions were fit to the mean g-ratio index versus age data for
frontal, occipital, parietal, temporal, and cerebellarwhitematter, as well
as the body, splenium and genu of the corpus callosum, and the internal
capsules, cingulum, corona radiata, optic radiations, and superior longi-
tudinal fasciculus. For all bilateral regions, functionswere fit to right and
left hemisphere data independently. Regional mean trajectories and
model fits are displayed in Figs. 5 and 6 for these regions, and a compar-
ison of trajectories across all regions is shown in Fig. 7. A summary of the
logarithmic curve equations calculated for each region is shown in
Table 2.While all regionswere found to follow the same logarithmically
decreasingpattern,we identified regional variation in the onset and rate
of myelination. For example, cerebellar white matter is observed toma-
ture prior to other white matter regions, with myelin present at birth,
and frontal white matter having the slowest rate of myelin develop-
ment. This pattern mirrors prior histological studies (Barkovich et al.,
1988; Kinney et al., 1988; Sidman and Rakic, 1982). Using the derived
regional g-ratio index growth trajectories (Table 2), we extrapolated
to 10,000 days to determine the approximate asymptotic value. These
values are shown in Table 3 and, with an average value of 0.78 (range
0.71 to 0.9), agree well with the predicted value of 0.8 (Chomiak and
Hu, 2009).

To examine the associations between the myelin g-ratio index, VFM,
VFF, νIC, and νISO more quantitatively, Pearson partial correlations were
calculated (and converted to T statistics) between eachwhitematter re-
gion and tract, while accounting for age. Partial correlations were



Fig. 4. Representative trajectories of themyelin g-ratio index (blue), VFM (red), VFF (green), νic (orange), and νiso (purple) for themeanwhitematter, outlined in blue on the study-specific
template. error bars represent the standard deviation of themeasurement. Myelin g-ratio index trajectories reveal a decreasing logarithmic trajectory that approaches optimal theoretical
estimates of 0.8.

Fig. 5. Myelin g-ratio index trajectories and corresponding logarithmic fits for frontal, occipital parietal, temporal, and cerebellar white matter.
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Fig. 6.Myelin g-ratio index trajectories and corresponding logarithmic fits for genu, body, and splenium of the corpus callosum; cingulum, corona radiata, optic radiations, internal cap-
sules, and superior longitudinal fasciculus.
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calculated using R, version 2.3.1 (R Core Team, 2012). A summary of
these results is provided in Table 4. Statistical significance was defined
at p b 0.05 (uncorrected for multiple comparisons). Statistically signifi-
cant partial correlations between the myelin g-ratio and VFM, VFF, and
νICwere found in all regions. Betweenmyelin g-ratio index and νISO, sta-
tistically significant partial correlations were found in occipital white
matter, left partial white matter, corona radiate, right internal capsule,
and left optic radiation.

Potential hemispheric developmental differences were also exam-
ined by fitting logarithmic models to myelin g-ratio index data from
left and right hemisphere brain regions independently, as well as to
the combined (left + right) hemisphere data. Residuals to these fits
were then compared using an F-test with summary F-statistics shown
in Table 2 revealing no significant hemispheric differences.

Discussion

In this work, we have outlined a framework for calculating an index
of themyelin g-ratio in vivo through the combination of myelin content
measures derived frommcDESPOT, and neurite density information, es-
timated usingNODDI. Though preliminary, our results in a small sample
of children illustrate a logarithmically decreasing trajectory of g-ratio in-
dices across infancy and early childhood that asymptotically approaches
values aligned with theoretical predictions (Chomiak and Hu, 2009).
These results suggest that this important parameter, which reflects
the efficiency of white matter pathways and may, therefore, inform on
brain network function, may be non-invasively investigated using
MRI. This adds to a growing list of measures that reflect different, but
complementary, aspects of white matter microstructure and develop-
ment, including VFM, fractional anisotropy, radial and axial diffusivity,
magnetization transfer metrics, to name a few (Alexander et al.,
2011). As the first study of myelin g-ratio index changes across early
neurodevelopment, we observe a rapid decrease in this measure during
the first 600 days, which then slows and approaches a minimum value
ranging between 0.71 in the optic radiations, and 0.9 in cerebellar
white matter. The observed developmental trajectory of myelin g-ratio
index broadly corresponds with the development and refinement of
many early cognitive and behavioral functions (Casey et al., 2000,
2005; Johnson and Munakata, 2005; O'Muircheartaigh et al., 2014).

In addition to being consistent with histological measurements, the
estimated values of the myelin g-ratio index in children using
mcDESPOT-derived VFM in conjunction with NODDI measures appears
to be in agreement with the few studies that have presented similar
MR-derived g-ratio maps(Campbell et al., 2014; Mohammadi et al.,
2015; Stikov et al., 2015a). Though this is initially promising in regards
to the proposed approach, it is important to note that considerable care



Fig. 7. Comparison of reconstructed myelin g-ratio index trajectories for different white matter regions (A); corpus callosum and white matter tracts (B). The left panel represents the
trajectory of myelin g-ratio index across the full age range, while the right panel displays the first 500 days of development.
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must be taken in assigning the estimated myelin g-ratio index directly
to this specific microstructure attribute. As the tissue model proposes,
the quantities of the myelin volume fraction and fiber volume fraction
are needed to estimate the g-ratio, assuming the g-ratio is constant
within a voxel. However, estimation of the myelin or fiber volume frac-
tions are likely to be limited by the respective MRI acquisition methods
and quantitative techniques (Mohammadi et al., 2015).While previous-
ly described qMT methods (Campbell et al., 2014; Stikov et al., 2015a)
have relied on linear relationships to estimate the myelin volume frac-
tion from the bound pool fraction (F), in the current study, a proportion-
ality coefficient relatingVFM to themyelin volume fractionwas not used
as such histological data is not currently available for mcDESPOT-
derived VFM measures. Such an assumption in the current approach
may limit the interpretation of the presented myelin g-ratio index, as
a mis-scaling of the VFM from the myelin volume fraction could result
in a coupling of the VFF and the g-ratio index. Consequently, this could
alter the statistical sensitivity of these measures, such as an implied
Table 2
Summary of calculatedmyelin g-ratio index logarithmicfits to eachhemispheric brain region. An
in bold type denote regions where the right and left hemisphere data were significantly differe

Region/tract Left hemispheric equation

Frontal WM −0.046 ∗ ln(Age) + 1.1936
Occipital WM −0.044 ∗ ln(Age) + 1.1753
Parietal WM −0.044 ∗ ln(Age) + 1.1764
Temporal WM −0.047 ∗ ln(Age) + 1.1969
Cerebellar WM −0.022 ∗ ln(Age) + 1.10272
Cingulum −0.044 ∗ ln(Age) + 1.1748
Corona Radiata −0.05 ∗ ln(Age) + 1.1911
Internal Capsule −0.036 ∗ ln(Age) + 1.1134
Optic Radiation −0.054 ∗ ln(Age) + 1.2089
Superior Longitudinal Fasiculus −0.04 ∗ ln(Age) + 1.1613
g-ratio index changewhen there are onlyfiber density changes. Howev-
er, determining the appropriate scaling coefficient that precisely relates
F to the underlying myelin volume fraction may be challenging, as this
proportionality coefficient is reported to vary widely throughout litera-
ture (Dula et al., 2010; Thiessen et al., 2013) and may be protocol de-
pendent (Stikov et al., 2015a), and thus additionally limiting studies of
the myelin g-ratio. Furthermore, this argument is equally true if such a
proportionality coefficient exists between NODDI-derived VFF and the
true fiber volume density, though this was not previously accounted
for in other studies (Campbell et al., 2014; Stikov et al., 2015a). It is
thus critical for future studies to continue to examine and elucidate
the underlying relationships betweenMRI-derived quantities and asso-
ciated histological estimates, as well as explore the associations be-
tween MRI-derived quantities, such F and VFM.

The regional developmental trajectories (Figs 5–7) highlight
myelination and increases in myelin thickness occur at different stages
of development for specific brain regions. This regional variability is
F-testwas used to determine if the data justifiedmodeling thedata independently. Values
nt (p b 0.05 uncorrected).

Right hemispheric equation F stat

−0.044 ∗ ln(Age) + 1.1837 0.0049
−0.038 ∗ ln(Age) + 1.1434 0.1548
−0.044 ∗ ln(Age) + 1.178 0.0207
−0.046 ∗ ln(Age) + 1.1921 0.0281
−0.01 ∗ ln(Age) + 1.0055 0.1283

−0.051 ∗ ln(Age) + 1.2236 1.3038
−0.051 ∗ ln(Age) + 1.2057 0.0864
−0.035 ∗ ln(Age) + 1.1096 0.0091
−0.051 ∗ ln(Age) + 1.2104 0.0279
−0.039 ∗ ln(Age) + 1.1442 0.1175



Table 3
Summary of extrapolated asymptotic myelin g-ratio index values for each brain region.

Region/tract Left hemisphere
asymptotic value

Right hemisphere
asymptotic value

Frontal WM 0.77 0.78
Occipital WM 0.77 0.79
Parietal WM 0.77 0.77
Temporal WM 0.76 0.77
Cerebellar WM 0.9 0.84
Cingulum 0.77 0.75
Corona radiata 0.73 0.74
Internal capsule 0.78 0.79
Optic radiation 0.71 0.74
Superior longitudinal fasiculus 0.79 0.78
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consistent with previous histological (Barkovich et al., 1988), conven-
tional and quantitative MRI studies (Dietrich et al., 1988; Evans and
Brain Development Cooperative Group, 2006; Giedd et al., 1999, 1996;
Kulikova et al., 2014; Prastawa et al., 2010; Westlye et al., 2009). Inter-
estingly, the trajectory of cerebellarwhitematterwas distinct. Although
cerebellar white matter followed a similar logarithmic shape, it devel-
oped at a slower rate and asymptotically approached higher myelin g-
ratio index values than other brain regions. The cerebellum is one of
the earliest brain regions to develop, with the most rapid development
beginning prenatally (Dobbing and Sands, 1973). The slower rate of de-
velopment may, therefore, be due to the lack of imaging data prior to
3months of age. Higher g-ratio index values later in development, how-
ever, may result from cerebellar white matter being composed of larger
axons (Necchi et al., 2008), whichhave higher g-ratio values andmaybe
indicative of thinnermyelin sheaths (Berthold et al., 1983; Gillespie and
Stein, 1983).

Myelin is a critical component of CNS tissue, and the maturation of
themyelinated white matter is a central process of early brain develop-
ment. Myelinated axons play a key role ensuring synchronized trans-
mission and information integration across neural systems, and
myelinated axons underlie normative brain functioning (Fields, 2008,
2005). A particularly interesting observation is the relationships
noted between measured myelin g-ratio index values and the other
Table 4
Summary of partial associations (T-statistics) between myelin g-ratio index and VFM, VFF,
νIC, and νISO over different brain white matter regions and pathways. Bold type denotes
significant (p b 0.05, uncorrected) partial correlations, while taking into account ages.

Region/tract VFM νIC νISO VFF

Body of corpus callosum −10.260 −2.608 −0.073 −4.686
Genu of corpus callosum −15.084 −3.774 −1.277 −7.089
Splenium of corpus callosum −6.683 −4.445 −1.194 −2.467
Right white matter −18.946 −3.817 −0.432 −10.407
Left white matter −18.958 −4.291 −0.706 −12.066
Right frontal WM −12.758 −2.092 −0.303 −5.359
Left frontal WM −12.779 −2.509 0.108 −7.439
Right occipital WM −19.203 −5.109 −2.634 −8.841
Left occipital WM −21.183 −4.354 −2.747 −9.249
Right parietal WM −16.616 −5.335 −1.428 −9.327
Left parietal WM −16.658 −4.932 −2.519 −9.199
Right temporal WM −19.136 −3.052 −1.104 −7.487
Left temporal WM −14.757 −2.644 −1.072 −6.998
Right cerebellar WM −14.508 −2.330 −1.273 −3.562
Left cerebellar WM −15.931 −2.322 −1.735 −3.774
Right cingulum −12.796 −3.245 0.961 −6.187
Left cingulum −14.867 −3.882 −1.955 −6.037
Right corona radiata −13.893 −3.386 −2.869 −6.809
Left corona radiata −15.288 −3.589 −2.519 −7.813
Right internal capsule −16.333 −4.079 −2.344 −6.713
Left internal capsule −15.676 −3.580 −1.603 −6.409
Right optic radiation −12.302 −2.356 −0.291 −5.767
Left optic radiation −9.410 −3.695 −3.144 −4.830
Right superior longitudinal fasiculus −16.249 −2.858 −0.759 −7.059
Left superior longitudinal fasiculus −18.668 −3.664 −1.536 −7.768
quantitative measurements derived from mcDESPOT and NODDI
(Table 4). The presented results, which show partial correlations be-
tween VFM, VFF, vIC, and νISO while taking into account of age, highlight
the strong dependence of the myelin g-ratio index on VFM, VFF, and vIC.
These relationships are not surprising as each of these parameters is
highly influenced by changes to the myelinated white matter and con-
tributes to the estimation of the myelin g-ratio index. It is possible
that such correlations exist in tissue and hence we would expect such
correlations between these MRI metrics. However, it is equally possible
that the correlations between these in vivo parameters exist due to
flaws or invalid assumptions of the framework. Hence, it is important
that the comparisons of the myelin g-ratio index and other MRI param-
eters be substantiated with histological studies as well as in larger co-
horts of similarly aged individuals to ensure these measures are
indeed complimentary. Of the various available measures of whitemat-
ter integrity, myelin thickness may offer unique insight into axonal and
white matter pathway conduction velocity and efficiency (Melbourne
et al., 2014). Myelin g-ratio indices, therefore, may provide important
new insight into brain network function and afford improved under-
standing and prediction of cognitive performance and outcome. For ex-
ample, an increased myelin g-ratio index may reflect decreased myelin
thickness, such as is observed in early infancy (Figs. 4-6).

As myelination proceeds over the first two years, we observe a rapid
change in the g-ratio index that reflects the complexity of early brain
development. As these g-ratio indicesmay be sensitive tomyelin sheath
thickness, g-ratio indices above expected values, could, therefore, be in-
dicative of damage to the myelin sheath, such as in hypomyelinating or
demyelinating disorders. Consequently, mapping myelin g-ratio index
may provide additional information in hypomyelinating leukodystro-
phies, or multiple sclerosis. In contrast, decreasedmyelin g-ratio indices
may suggest an over or hyper-myelination that could result from ineffi-
cientwrapping of themyelin sheath by oligodendrocytes or geneticmu-
tations that result in the overproduction of myelin (Paus, 2010). As
myelination is tightly regulated by both genetics and neuron activity
(Fields, 2005), both increased and decreased myelin sheath thickness
can affect axonal conduction velocity and efficiency, resulting in
disrupted brain messaging and abnormal brain functioning (R. S.
Smith and Koles, 1970; Waxman, 1980). Changes to the myelin g-ratio
index may be indicative of other neurodevelopmental mechanisms,
such as increases of axonal conduction velocity (Purves et al., 2001;
Waxman, 1980). For instance, increases in the size of intra-axonal fibers
(i.e. fiber diameter increases), will result in an increase in the myelin g-
ratio index, though only if fiber increases are not balanced with
myelination. Conduction velocity, on the other hand, is directly related
to themyelin g-ratio (Johansen-Berg and Behrens, 2013), and thus esti-
mates of the myelin g-ratio may be informative to structural and func-
tional brain connectivity studies (Mohammadi et al., 2015), as well as
inform on the overall efficiency of information transfer in specific
white matter tracts and networks. Interpretation of the myelin g-ratio
index within regions of gray matter, and particularly unmyelinated
brain regions are unclear. While recent advances in MRI scanner hard-
ware and image resolution could make measures of the myelin g-ratio
index applicable to studies of the cortical myeloarchitecture (Deoni
et al., 2015; Glasser et al., 2014; McNab et al., 2013), the sensitivity of
NODDI and mcDESPOT imaging techniques to unmyelinated brain re-
gions should also be examined, as thse may provide improved insight
into the significance of the myelin g-ratio index in gray matter. More-
over, as white matter abnormalities and atypicalities of the myelin g-
ratio are thought to underlie neurodevelopmental and psychiatric dis-
orders (Fields, 2008; Nagy et al., 2004), in vivo measurement of myelin
g-ratio index may offer a new perspective to understanding fundamen-
tal white matter alterations.

In addition, estimation of the myelin g-ratio index may also provide
new insights into typical brain development. Prior cross-sectional and
longitudinal studies have sought to develop quantitative models of
white matter development (Dean et al., 2014b; Lebel and Beaulieu,
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2011). However, the developmental trajectory of the myelin g-ratio is
unknown. While we fit logarithmic models to the data herein, these
models begin to deviate in the older ages (i.e., beyond 1500 days in
Figs. 5–7).Models thatmore accurately reflect and characterize the evo-
lution of g-ratio index with age may be realized by both examining ad-
ditional biological growth models (Dean et al., 2014a), and extending
the sample in age and sampling density. Moreover, longitudinal study
designs that utilize mixed-effects modeling approaches (Dean et al.,
2014b; Lebel and Beaulieu, 2011; Travers et al., 2014) may be informa-
tive about the individual variation of the myelin g-ratio index across
early childhood development.

Potential applications are not limited to the study of early
neurodevelopment but include the study of neurodevelopmental and
psychiatric disorders, typical and atypical aging, plasticity, and struc-
ture–function relationships. For example, it is likely that these age-
related changes in white matter maturation and myelination reflect
changes in brain activity. Studies combining resting-state fMRI
(Alcauter et al., 2015) or electroencephalography (EEG) measurements
(Dubois et al., 2008; Horowitz et al., 2014; Meyer-Lindenberg, 1996)
with maps of the myelin g-ratio index could be informative of the
dramatic changes in inter- and intra-hemispheric connectivity and
underlying functioning of the neural circuits during early brain develop-
ment. Furthermore, while the current study did not investigate differ-
ences between males and females due to the small sample size and
the disproportionate number of males and females, male–female differ-
ences in the brain havemore recently hypothesized to arise from differ-
ences in the myelin g-ratio (Paus and Toro, 2009; Pesaresi et al., 2015).
We have previously reported regionally dependent differences in
myelination trajectories across this period of early neurodevelopment
(Dean et al., 2014b; Deoni et al., 2012), and therefore we anticipate my-
elin g-ratio index measurements to be sensitive to g-ratio differences
between males and females. Hence, studies utilizing combined
mcDESPOT and NODDI acquisition techniques to estimate the myelin
g-ratio index may provide a flexible framework to the study of white
matter.

Despite the promise of in vivomyelin g-ratio imaging, potential lim-
itations exist with the present study. First, the limited sample size chal-
lenges our ability to investigate hemispheric and sex differences. Larger
cross-sectional and longitudinal studies examining the changes of the
myelin g-ratio index throughout development are needed to address
such questions. Second, we acknowledge the lack of histological valida-
tion of the utilized tissue model. Thus, there may be concerns regarding
the accuracy and reproducibility of MRI-based g-ratio index measures.
The tissue model used here relies on the assumption that a single
value is capable of characterizing the myelin g-ratio of all the axons
within a voxel (De Santis et al., 2015). Such assumptions may be overly
simplistic as studies have more recently shown the axon caliber to vary
within a voxel (Assaf et al., 2008; De Santis et al., 2015;West et al., 2015;
H. Zhang et al., 2011). Computing anoverall distribution of themyelin g-
ratio index at each voxel may be more appropriate to characterize the
various fiber populations that reside in a voxel, however, such ap-
proaches likely suffer from long acquisitions and high computing de-
mands, though such implementations are of interest for future work.
Though the g-ratio index values calculated here agree well with prior
theoretical models (Chomiak and Hu, 2009; Rushton, 1951), and
histologically-derived measures (Berthold et al., 1983; Chomiak and
Hu, 2009; Goldman and Albus, 1968) of themyelin g-ratio, themajority
of this past work has involved animal and adult samples and, thus, may
differ from the pediatric values reported here. We attempted to address
this by extrapolating the pediatric trajectories (Table 3). Stikov et al.
(2015a, b) has additionally showed histological measurements of the
myelin g-ratio in themacaque corpus callosum to be consistentwith ag-
gregate MRI g-ratio estimates (Stikov et al., 2015b, a), giving promise to
the underlying tissue model. Nevertheless, such studies have thus far
been limited and further investigation of MRI based g-ratio indices
within animals and adults are needed for more thorough comparative
analysis, while the dependence of g-ratio index estimates on multiple
fiber populations should additionally be investigated.

In addition to the concern about the actual tissuemodel, there is also
uncertainty regarding the specificity and accuracy of themyelin content
and neurite density information. In particular, mcDESPOT values are
known to be elevated compared to conventional multi-echo spin-echo
measures (J. Zhang et al., 2015) and have yet to be histologically validat-
ed in humans (Lankford and Does, 2013). We have noted strong quali-
tative agreement between histology and mcDESPOT in a Shaking Pup
model of dysmyelination (Hurley et al., 2010), while mcDESPOT VFM
maps of early neurodevelopment qualitatively agree with known spa-
tial–temporal profile of histological myelin measurements (Flechsig,
1901) and have further been shown to reflect clinical impairment in
white matter pathologies, such as multiple sclerosis (Kitzler et al.,
2012; Kolind et al., 2012), amyotrophic lateral sclerosis (Kolind et al.,
2013), and epilepsy (Spader et al., 2013). Such studies give confidence
that mcDESPOT is strongly sensitive, if not specific, to myelin content.
Moreover, despite the lack of direct histological validation of NODDI,
neurite density measures derived from diffusion imaging data has
been shown to be comparable to histological measures (Jespersen
et al., 2010). Future histological studies are thus critical for quantitative-
ly evaluating these novel and informative microstructural imaging
techniques.

Finally, contrary to themcDESPOT acquisition, theNODDI protocol has
not been tuned for different ages in relation to different brain sizes and
diffusion properties. While the quality of the NODDI data was not ob-
served to be impaired by the choice of parameters used in the current
study, it may have been possible to reduce the NODDI acquisition if
such an optimized protocol had been developed (Kunz et al., 2014).
Moreover, we adhered to using the default adult diffusivities provided
in the NODDI MATLAB toolbox (H. Zhang et al., 2012) for the estimation
of the NODDI model quantities. Such an assumption may be valid in the
developing brain provided that the centralmicrostructural differences be-
tween a child and adult are developmental differences ofmyelination and
fiber density, which may lead to considerable differences in diffusion
metrics(Hüppi and Dubois, 2006; Kunz et al., 2014; Lebel et al., 2012).
Nevertheless, the development of efficient NODDI acquisition protocols
and examining the effects of the underlying NODDI model assumptions,
such as the default diffusivities, on parameter estimates are critically im-
portant for utilizing the NODDI technique, aswell as the presented g-ratio
index mapping approach, in studies of early neurodevelopment.

Integrating parametric imaging information from mcDESPOT and
NODDI represents a unique and non-invasive technique for quantifying
an index of the myelin g-ratio in vivo. For the first time, we have pre-
sented developmental trajectories of this myelin g-ratio index during
early childhood. This presentedwork provides an important step for un-
derstanding the developmental patterns ofwhitemattermicrostructure
andwill facilitate future studies examining the role of themyelin g-ratio
throughout brain maturation.
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