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Sensitivity and specificity are often used to assess the performance of a diagnostic test with binary outcomes.Wald-type test statistics
have been proposed for testing sensitivity and specificity individually. In the presence of a gold standard, simultaneous comparison
between two diagnostic tests for noninferiority of sensitivity and specificity based on an asymptotic approach has been studied by
Chen et al. (2003). However, the asymptotic approach may suffer from unsatisfactory type I error control as observed from many
studies, especially in small tomedium sample settings. In this paper, we compare three unconditional approaches for simultaneously
testing sensitivity and specificity. They are approaches based on estimation, maximization, and a combination of estimation and
maximization. Although the estimation approach does not guarantee type I error, it has satisfactory performance with regard to
type I error control. The other two unconditional approaches are exact. The approach based on estimation and maximization is
generally more powerful than the approach based on maximization.

1. Introduction

Sensitivity and specificity are often used to summarize the
performance of a diagnostic or screening procedure. Sensi-
tivity is the probability of positive diagnostic results given the
subject having disease, and specificity is the probability of a
negative outcome as the diagnostic result in the nondiseased
group. Diagnostic tests with high values of sensitivity and
specificity are often preferred and they can be estimated in
the presence of a gold standard. For example, two diagnostic
tests, the technetium-99m methoxyisobutylisonitrile single
photon emission computed tomography (Tc-MIBI SPECT)
and the computed tomography (CT), were compared for
diagnosing recurrent or residual nasopharyngeal carcinoma
(NPC) from benign lesions after radiotherapy in the study by
Kao et al. [1]. The gold standard in their study is the biopsy
method. The sensitivity and specificity are 73% and 88% for
the CT test and 73% and 96% for the Tc-MIBI SPECT test.

Traditionally, noninferiority of sensitivity and specificity
between two diagnostic procedures is tested individually

using the the McNemar test [2–6]. Recently, Tange et al.
[7] developed an approach to simultaneously test sensitivity
and specificity in noninferiority studies. Lu and Bean [2]
were among the first researchers to propose a Wald-type
test statistic for testing a nonzero difference in sensitivity
or specificity between two diagnostic tests for paired data.
Later, it was pointed out by Nam [3] that the test statistic by
Lu and Bean [2] has unsatisfactory type I error control. A
new test statistic based on a restricted maximum likelihood
method was then proposed by Nam [3] and was shown to
have good performance with actual type I error rates closer
to the desired rates. This test statistic was used by Chen et
al. [8] to compare sensitivity and specificity simultaneously
in the presence of a gold standard. Actual type I error rates
for a compound asymptotic test were evaluated on some
specific points in the sample space. It is well known that
the asymptotic method behaves poorly when the sample size
is small. Therefore, it is not necessary to comprehensively
evaluate type I error rate [9–14].
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An alternative to an asymptotic approach is an exact
approach conducted by enumerating all the possible tables for
given total sample sizes of diseased and nondiseased subjects.
The first commonly used unconditional approach is amethod
based on maximization [15]. In the unconditional approach,
only the number of subjects in the diseased and nondiseased
group is fixed, not the total number of responses from both
groups. The latter is considered as the usual conditional
approach by treating both margins of the table as fixed.The 𝑝

value of the unconditional approach based on maximization
is calculated as the maximum of the tail probability over
the range of a nuisance parameter [15]. This approach has
been studied for many years and it can be conservative
due to a smaller actual type I error rate as compared to
the test size in small sample settings. One possible reason
leading to the conservativeness of this approach is the spikes
in the tail probability curve. Storer and Kim [16] proposed
another unconditional approach based on estimation which
is also known as the parametric bootstrap approach. The
maximum likelihood estimate (MLE) is plugged into the null
likelihood for the nuisance parameter. Other estimates may
be considered if the MLE is not available [7]. Although this
estimation based approach is often shown to have type I
error rates being closer to the desired size than asymptotic
approaches, it still does not respect test size.

A combination of the two approaches based on estimation
and maximization has been proposed by Lloyd [4, 17] for
the testing of noninferiority with binary matched-pairs data,
which can be obtained from a case-control study and a twin
study. The 𝑝 value of the approach based on estimation is
used as a test statistic in the following maximization step.
It should be noted that there could be multiple estimation
steps before the final maximization step. The final step must
be a maximization step in order to make the test exact.
This approach has been successfully extended for the testing
trend with binary endpoints [5, 18]. The rest of this paper
is organized as follows. Section 2 presents relevant notation
and testing procedures for simultaneously testing sensitivity
and specificity. In Section 3, we extensively compare the
performance of the competing tests. A real example is
illustrated in Section 4 for the application of asymptotic and
exact procedures. Section 5 is given to discussion.

2. Testing Approaches

Each subject in a study is evaluated by two dichotomous
diagnostic tests, 𝑇

1
and𝑇

2
, in the presence of a gold standard.

Suppose each subject, either diseased or nondiseased, was
already determined by the gold standard before performing
the two diagnostic tests. Within the diseased group, 𝑛

𝑖𝑗
(𝑖 =

0, 1; 𝑗 = 0, 1) is the number of subjects with diagnostic results
𝑇
1
= 𝑖 and𝑇

2
= 𝑗, where𝑇

𝑘
= 0 and𝑇

𝑘
= 1 represent negative

and positive diagnostic results from the 𝑘th test (𝑘 = 1, 2),
respectively, with 𝑝

𝑖𝑗
being the associated probability. The

total number of diseased subjects is 𝑛 = 𝑛
00

+ 𝑛
10

+ 𝑛
01

+ 𝑛
11
.

Similarly,𝑚
𝑖𝑗
(𝑖 = 0, 1; 𝑗 = 0, 1) is the number of subjects with

diagnostic results𝑇
1
= 𝑖 and𝑇

2
= 𝑗 in the nondiseased group,

𝑞
𝑖𝑗
is the associated probability, and𝑚 = 𝑚

00
+𝑚
10

+𝑚
01

+𝑚
11

is the total number of nondiseased patients. Such data can be

Table 1: Test results from two diagnostic tests when a gold standard
exists.

Diagnostic
result

Diseased group Nondiseased group
𝑇
2
= 1 𝑇

2
= 0 𝑇

2
= 1 𝑇

2
= 0

𝑇
1
= 1 𝑛

11
(𝑝
11
) 𝑛

10
(𝑝
10
) 𝑚

11
(𝑞
11
) 𝑚

10
(𝑞
10
)

𝑇
1
= 0 𝑛

01
(𝑝
01
) 𝑛

00
(𝑝
00
) 𝑚

01
(𝑞
01
) 𝑚

00
(𝑞
00
)

organized in a 2 × 2 × 2 contingency table (Table 1), where
N = (𝑛

00
, 𝑛
10
, 𝑛
01
, 𝑛
11
) and M = (𝑚

00
, 𝑚
10
, 𝑚
01
, 𝑚
11
). It is

reasonable to assume that the diseased group is independent
of the nondiseased group.

In a study with given total sample sizes 𝑛 and 𝑚 in the
diseased and the nondiseased groups, respectively, sensitiv-
ities of diagnostic tests 𝑇

1
and 𝑇

2
are estimated as ŝen

1
=

(𝑛
11

+ 𝑛
10
)/𝑛 and ŝen

2
= (𝑛
11

+ 𝑛
01
)/𝑛. Similarly, ŝpe

1
=

(𝑚
00

+ 𝑚
01
)/𝑚 and ŝpe

2
= (𝑚
00

+ 𝑚
10
)/𝑚 are specificities

for 𝑇
1
and 𝑇

2
, respectively. The estimated difference between

their sensitivities is

𝜃sen = ŝen
1
− ŝen
2
=

𝑛
10

− 𝑛
01

𝑛
, (1)

and the estimated difference between their specificities is

𝜃spe = ŝpe
1
− ŝpe
2
=

𝑚
01

− 𝑚
10

𝑚
. (2)

Thehypotheses for noninferiority of sensitivity and speci-
ficity between 𝑇

1
and𝑇

2
are given in the format of compound

hypotheses as

𝐻
0
: 𝜃sen ≤ −𝛿sen,

or 𝜃spe ≤ −𝛿spe,
(3)

against

𝐻
𝑎
: 𝜃sen > −𝛿sen,

𝜃spe > −𝛿spe,
(4)

where 𝛿sen and 𝛿spe are the clinical meaningful differences
between 𝑇

1
and 𝑇

2
in sensitivity and specificity, 𝛿sen > 0 and

𝛿spe > 0. For example, investigators may consider a difference
in sensitivity of less than 0.2 not clinically important (𝛿sen =

0.2).
A test statistic for the hypotheses 𝐻

0
: 𝜃sen ≤ −𝛿sen versus

𝐻
𝑎
: 𝜃sen > −𝛿sen is

𝑍sen (N) =
𝜃sen + 𝛿sen

𝜎̂sen
, (5)

where 𝜃sen is the estimated difference in sensitivities and
𝜎̂sen is the estimated standard error of 𝜃sen. The estimate of
𝜎̂sen based on a restricted maximum likelihood estimation
approach [3, 19, 20] is used, and the associated form is 𝜎̂sen =

√(2𝑝
01

− 𝛿sen(𝛿sen + 1))/𝑛, where

𝑝
01

=
(√𝐵2 − 8𝐴 − 𝐵)

4
,

with 𝐴 =
𝛿sen (𝛿sen + 1) 𝑛

01

𝑛
, 𝐵 = −𝜃sen (1 − 𝛿sen) − 2 (

𝑛
01

𝑛
+ 𝛿sen) .

(6)
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There are two reasons for using this estimate instead of some
other estimates [2]. First, it has been shown to perform well
[8, 20]. Second, it is applicable to a 2×2 contingency tablewith
off-diagonal zero cells. We are going to consider the exact
approaches by enumerating all possible tables with some
of them having zero cells in off-diagonals. The traditional
estimate for 𝜎sen does not provide a reasonable estimate of
variance for such tables.

The test statistic for sensitivity in (5) follows a normal
distribution asymptotically. The null hypothesis 𝐻

0
: 𝜃sen ≤

−𝛿sen would be rejected if the test statistic𝑍sen in (5) is greater
than or equal to 𝑧

𝛼
, where 𝑧

𝛼
is the upper 𝛼 percentile of the

standard normal distribution.
As mentioned by many researchers, the asymptotic

approach has unsatisfactory type I error control especially
in small or medium sample settings. An alternative is an
exact approach by enumerating all possible tables for a given
total of sample sizes. The first exact unconditional approach
considered here is amethod based onmaximization (referred
to as the 𝑀 approach) [15]. The 𝑝 value of this approach
is calculated as the maximum of the tail probability. In this
approach, theworst possible value for the nuisance parameter
is found in order to calculate the 𝑝 value, where Nobs is the
observed data ofN. The tail set based on the test statistic𝑍sen
for this approach is

𝑅
𝑍sen

(Nobs) = {N; 𝑍sen (N) ≥ 𝑍sen (Nobs)} . (7)

It is easy to show that (𝑛
10
, 𝑛
01

| 𝑛) follows a trinomial
distribution with parameters (𝑛; 𝑝

10
, 𝑝
01
). Then, the 𝑀 𝑝

value is expressed as

𝑃
𝑀

(Nobs) = max
𝑝01∈Θ

∑

N∈𝑅𝑍sen (Nobs)

Pr (𝑛
10
, 𝑛
01
; 𝑝
01
) , (8)

where Θ = (𝛿sen,min(1, (1 + 𝛿sen)/2)) is the search range
for the nuisance parameter 𝑝

01
and Pr(𝑛

10
, 𝑛
01
; 𝑝
01
) =

(𝑛!/𝑛
10
!𝑛
01
!(𝑛 − 𝑛

10
− 𝑛
01
)!)(𝑝
01

− 𝛿sen)
𝑛10𝑝
𝑛01

01
(1 − 2𝑝

01
+

𝛿sen)
𝑛−𝑛10−𝑛01 is the probability density function for a trinomial

distribution.
The 𝑀 approach could be conservative when the actual

type I error is much less than the test size [5, 9]. To overcome

this disadvantage of exact unconditional approaches, Lloyd
[21] proposed a new exact unconditional approach based
on estimation and maximization (referred to as the 𝐸 + 𝑀

approach). The first step in this approach is to compute the
𝑝 value for each table based on the estimation approach
[16], also known as parametric bootstrap. We refer to this
approach as the 𝐸 approach. The nuisance parameter in
the null likelihood is replaced by the maximum likelihood
estimate and the 𝐸 𝑝 value is calculated as

𝑃
𝐸
(Nobs) = ∑

N∈𝑅𝑍sen (Nobs)

Pr (𝑛
10
, 𝑛
01
; 𝑝
01
) . (9)

It should be noted that the 𝐸 approach does not guarantee
type I error rate. Once the 𝐸 𝑝 values are calculated for each
table, they will be used as a test statistic in the next𝑀 step for
the 𝑝 value calculation. The 𝐸 + 𝑀 𝑝 value is then given by

𝑃
𝐸+𝑀

(Nobs) = max
𝑝01∈Θ

∑

N∈𝑅𝐸(Nobs)

Pr (𝑛
10
, 𝑛
01
; 𝑝
01
) , (10)

where 𝑅
𝐸
(Nobs) = {N; 𝑃

𝐸
(N) ≤ 𝑃

𝐸
(Nobs)} is the tail set. The

refinement from the 𝐸 step in the 𝐸 + 𝑀 approach could
possibly increase the actual type I error rate of the testing
procedure which may lead to power increase for exact tests.

Monotonicity is an important property in exact testing
procedures to reduce the computation time and guarantee
that the maximum of the tail probability is attained at the
boundary for noninferiority hypotheses. Berger and Sidik
[22] showed that monotonicity is satisfied for paired data
for testing one-sided hypothesis based on the NcNemar test.
Most importantly, the dimension of nuisance parameters is
reduced from two to one [17]. We provide the following
theorem to show the monotonicity of the test statistic 𝑍sen.

Theorem 1. Monotonicity property is satisfied for 𝑍
𝑠𝑒𝑛

under
the null hypothesis: 𝑍

𝑠𝑒𝑛
(𝑛
10
, 𝑛
01

+ 1) ≤ 𝑍
𝑠𝑒𝑛

(𝑛
10
, 𝑛
01
) and

𝑍
𝑠𝑒𝑛

(𝑛
10
, 𝑛
01
) ≤ 𝑍
𝑠𝑒𝑛

(𝑛
10

+ 1, 𝑛
01
).

Proof. Let 𝑥
1
= 𝑛
10
and 𝑥

2
= 𝑛
10

+ 1. For a given 𝑛
01
,

𝑍sen (𝑥
1
) − 𝑍sen (𝑥

2
) =

𝜃sen (𝑥
1
) 𝜎̂sen (𝑥

2
) − 𝜃sen (𝑥

2
) 𝜎̂sen (𝑥

1
) + 𝛿sen𝜎̂sen (𝑥

2
) − 𝛿sen𝜎̂sen (𝑥

1
)

𝜎̂sen (𝑥
1
) 𝜎̂sen (𝑥

2
)

=
(𝜎̂sen (𝑥

2
) − 𝜎̂sen (𝑥

1
)) (𝜃sen (𝑥

1
) + 𝛿sen) + 𝜎̂sen (𝑥

1
) (𝜃sen (𝑥

1
) − 𝜃sen (𝑥

2
))

𝜎̂sen (𝑥
1
) 𝜎̂sen (𝑥

2
)

=
[𝜎̂sen (𝑥

2
) − 𝜎̂sen (𝑥

1
)] (𝜃sen (𝑥

1
) + 𝛿sen) − 𝜎̂sen (𝑥

1
) /𝑛

𝜎̂sen (𝑥
1
) 𝜎̂sen (𝑥

2
)

.

(11)

Under the null hypothesis, 𝜃sen(𝑥1) + 𝛿sen ≤ 0. In order
to show 𝑍sen(𝑥2) ≥ 𝑍sen(𝑥1), we only need to prove that
𝜎̂sen(𝑥2) − 𝜎̂sen(𝑥1) ≥ 0. From (6), we know that

𝑝
01

=
√𝐵2 − 8𝐴 − 𝐵

4
=

−8𝐴

4 (√𝐵2 − 8𝐴 + 𝐵)
, (12)
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where 𝐴 and 𝐵 are given in (6). It is obvious that 𝐵 is
a decreasing function of 𝑛

10
and 𝐴 is a positive constant

number when 𝑛
01

is fixed and 𝑝
01

is an increasing function
of 𝑛
10
, which leads to 𝜎̂sen(𝑥2) − 𝜎̂sen(𝑥1) ≥ 0. It follows that

𝑍sen(𝑥2) ≥ 𝑍sen(𝑥1).
For a given 𝑛

10
, similar proof will lead to a result of

𝑍sen(𝑛10, 𝑛01 + 1) ≤ 𝑍sen(𝑛10, 𝑛01).

The probability of the tail set for either the 𝑀 approach
or the 𝐸 + 𝑀 approach has two nuisance parameters, 𝑝

01

and𝑝
10
. Applying the theorem for themonotonicity property,

type I error of the test occurs on the boundary of the two-
dimensional nuisance parameter space, 𝑝

01
= 𝑝
10
. Therefore,

there is only one nuisance parameter, 𝑝
01
, in the definition of

the two exact 𝑝 values.
For testing the specificity, the asymptotic approach, the

𝑀 approach, the 𝐸 approach, and the 𝐸 + 𝑀 approach can
be similarly applied to test the hypotheses 𝐻

0
: 𝜃spe ≤ −𝛿spe

against𝐻
𝑎
: 𝜃spe > −𝛿spe. The test statistic [3, 19, 20] would be

𝑍spe =
𝜃spe + 𝛿spe

𝜎̂spe
, (13)

where 𝜎̂spe = (2𝑞
10

−𝛿spe(𝛿spe+1))/𝑛 is the estimated standard
error of 𝜃spe, 𝑞10 = (√𝐷2 − 8𝐶−𝐶)/4,𝐶 = 𝛿spe(𝛿spe+1)𝑚

10
/𝑚,

and 𝐷 = −𝜃spe(1 − 𝛿spe) − 2(𝑚
10
/𝑚 + 𝛿spe). Under the null

hypothesis, one can show that the monotonicity of 𝑍spe is in
a similar way to 𝑍sen.

When there are two diagnostic tests available, we may
want to simultaneously confirm the noninferiority of sensi-
tivity and specificity for the two tests.Thepopulation from the
diseased group and the nondiseased group can be reasonably
assumed to be independent of each other. Then, the joint
probability is a product of two probabilities:

Pr (N,M | N ∈ 𝑅 (Nobs) ,M ∈ 𝑅 (Mobs))

= Pr (N | N ∈ 𝑅 (Nobs))Pr (M | M ∈ 𝑅 (Mobs)) ,
(14)

where 𝑅 is the rejection region. Let 𝛼sen and 𝛼spe be the
significance levels for testing sensitivity and specificity sepa-
rately.We can reject the compoundnull hypothesis𝐻

0
: 𝜃sen ≤

−𝛿sen or 𝜃spe ≤ −𝛿spe at the significance level of 𝛼 when
the sensitivity null hypothesis is rejected at the level of 𝛼sen
and the specificity null is rejected at the level of 𝛼spe, where
𝛼sen𝛼spe = 𝛼. For simplicity, we assume 𝛼sen = 𝛼spe = √𝛼.

3. Numerical Study

We already know that both the asymptotic approach and the
𝐸 approach do not guarantee type I error rate; however, it
is still interesting to compare type I error control for the
following four approaches: (1) the asymptotic approach, (2)
the 𝐸 approach, (3) the 𝑀 approach, and (4) the 𝐸 + 𝑀

approach. We select three commonly used values of 𝛿sen and
𝛿spe, 0.05, 0.1, and 0.2. For each configuration of 𝛿sen and
𝛿spe, actual type I error rates are presented in Table 2 for
sample size 𝑛 = 𝑚 = 20 and in Table 3 for sample size

Table 2: Actual type I error rates 𝑛 = 𝑚 = 20.

𝛿sen 𝛿spe 𝐴 approach 𝑀 approach 𝐸 approach 𝐸 + 𝑀

approach

0.05
0.05 0.1285 0.0343 0.0499 0.0489
0.1 0.0894 0.0380 0.0489 0.0490
0.2 0.0877 0.0401 0.0479 0.0480

0.1
0.05 0.0894 0.0380 0.0489 0.0490
0.1 0.0621 0.0421 0.0481 0.0492
0.2 0.0610 0.0444 0.0470 0.0481

0.2
0.05 0.0877 0.0401 0.0479 0.0480
0.1 0.0610 0.0444 0.0470 0.0481
0.2 0.0599 0.0468 0.0460 0.0471

Table 3: Actual type I error rates 𝑛 = 𝑚 = 50.

𝛿sen 𝛿spe 𝐴 approach 𝑀 approach 𝐸 approach 𝐸 + 𝑀

approach

0.05
0.05 0.0821 0.0300 0.0492 0.0498
0.1 0.0731 0.0341 0.0489 0.0493
0.2 0.0677 0.0356 0.0486 0.0498

0.1
0.05 0.0731 0.0341 0.0489 0.0493
0.1 0.0650 0.0387 0.0486 0.0489
0.2 0.0603 0.0404 0.0482 0.0494

0.2
0.05 0.0677 0.0356 0.0486 0.0498
0.1 0.0603 0.0404 0.0482 0.0494
0.2 0.0559 0.0422 0.0479 0.0499

𝑛 = 𝑚 = 50 at the significance level of 𝛼 = 0.05. It can be seen
from both tables that the asymptotic approach generally has
inflated type I error rates. Both the𝑀 approach and the𝐸+𝑀

approach are exact tests and respect the test size as expected.
Although the𝐸 approach does not guarantee type I error rate,
the performance of the 𝐸 approach is much better than the
asymptotic approach regarding the type I error control. Even
for large sample size, the𝑀 approach is still conservative.The
𝐸 + 𝑀 approach has an actual type I error rate which is very
close to the nominal level when 𝑛 = 𝑚 = 50.

The asymptotic approach will not be included in the
power comparison due to inflated type I error rates. We
include the 𝐸 approach in the power comparison with the
𝑀 approach and the 𝐸 + 𝑀 approach due to the good
performance of type I error control in the 𝐸 approach. The
power is a function of four parameters: 𝑝

01
, 𝜃sen, 𝑞10, and 𝜃spe

Power
𝜙
= ∑

N∈𝑅sen
Pr (𝑛
10
, 𝑛
01
; 𝑝
01
, 𝜃sen)

⋅ ∑

M∈𝑅spe
Pr (𝑚

10
, 𝑚
01
; 𝑞
10
, 𝜃spe) ,

(15)

where 𝜙 = 𝐸,𝑀 and 𝐸 + 𝑀 approaches and 𝑅sen and
𝑅spe are the rejection region for the diseased group and the
nondiseased group at a significance level of √𝛼 based on the
𝜙 approach. Given the two parameters 𝑞

10
and 𝜃spe in the

nondiseased group, the power is a function of 𝜃sen for a given
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Figure 1: Power curves for the 𝐸 approach, the 𝑀 approach, and the 𝐸 + 𝑀 approach for balanced data with 𝜃spe = 0, 𝑞
10

= 0.2, 𝑝
01

= 0.3,
𝛿sen = 0.2, and 𝛿spe = 0.2 for the first row and 𝜃spe = 0, 𝑞

10
= 0.2, 𝑝

01
= 0.4, 𝛿sen = 0.4, and 𝛿spe = 0.2 for the second row.

𝑝
01
. We compared multiple configurations of the parameters.

Typical comparison results for balanced data are presented in
Figure 1. The power difference between the 𝐸 approach and
the 𝐸+𝑀 approach is often negligible and both are generally
more powerful than the 𝑀 approach. We also compared the
power for unbalanced data with the ratio of sample size 1/2,
1/3, 2, and 3. Similar results are observed as compared to the
balanced data; see Figure 2.We also observe similar results in
comparing the power as a function of 𝜃spe for the given 𝜃sen,
𝑝
01
, and 𝑞

10
.

4. An Example

Kao et al. [1] compared diagnostic tests to detect recurrent
or residual NPC in the presence of a gold standard test.
Simultaneous comparison of sensitivity and specificity is
conducted between the CT test (𝑇

1
) and the Tc-MIBI SPECT

test (𝑇
2
), with 𝑛 = 11 and 𝑚 = 25. The diagnostic results

using these two tests are presented in Table 4. The sensitivity
and specificity are 73% and 88% for the CT test and 73% and
96% for the Tc-MIBI SPECT test. The clinical meaningful
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Figure 2: Power curves for the 𝐸 approach, the𝑀 approach, and the 𝐸 +𝑀 approach for unbalanced data with 𝜃spe = 0, 𝑞
10

= 0.3, 𝑝
01

= 0.2,
𝛿sen = 0.1, and 𝛿spe = 0.1.

Table 4: Results of CT and Tc-MIBI SPECT diagnoses of NPC in
the presence of a gold standard.

Diagnostic result
Diseased group

(NPC: +)
Nondiseased group

(NPC: −)
CT: + CT: − CT: + CT: −

Tc-MIBI SPECT: + 5 3 1 0

Tc-MIBI SPECT: − 3 0 2 22

difference in sensitivity and specificity is assumed to be 𝛿sen =

0.01 and 𝛿spe = 0.01, respectively. Four testing procedures are
used to calculate the 𝑝 value: (1) the asymptotic approach;
(2) the 𝐸 approach; (3) the 𝑀 approach; and (4) the 𝐸 + 𝑀

approach. The 𝑝 values based on the asymptotic, 𝐸, 𝑀, and
𝐸 + 𝑀 approaches are 0.0677, 0.0317, 0.0764, and 0.0418,
respectively. Both the 𝐸 approach and the 𝐸 + 𝑀 approach
reject the null hypothesis at a 5% significance level, while the
asymptotic approach and the 𝑀 approach do not. It should
be noted that the two tests have the same sensitivities which
may contribute to the significant result even with a small
difference between the two tests.

5. Discussion

In this paper, the asymptotic approach, the𝐸 approach, the𝑀
approach, and the 𝐸 +𝑀 approach are considered for testing
sensitivity and specificity simultaneously in the presence of a
gold standard. Although the 𝐸 approach does not guarantee
type I error rate, it has good performance regarding type I
error rate control and the difference between the 𝐸 approach
and the𝐸+𝑀 approach is negligible. Since the computational
time is not an issue for this problem and the 𝐸 +𝑀 approach

is an exact method, the 𝐸 +𝑀 approach is recommended for
use in practice due to the power gain as compared to the 𝑀

approach.
Tang [9] has studied the 𝐸 approach and the𝑀 approach

for comparing sensitivity and specificitywhen combining two
diagnostic tests. The 𝐸 approach has been shown to be a
reliable testing procedure. We would consider comparing the
𝐸+𝑀 approachwith the𝐸 approach in this context as a future
work. The intersection-union method may be considered for
testing sensitivity and specificity [8].
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