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Abstract: Avoiding excessive or insufficient immune responses and maintaining homeostasis are
critical for animal survival. Although many positive or negative modulators involved in immune
responses have been identified, little has been reported to date concerning whether the long non-
coding RNA (lncRNA) can regulate Drosophila immunity response. In this study, we firstly discover
that the overexpression of lncRNA-CR11538 can inhibit the expressions of antimicrobial peptides
Drosomycin (Drs) and Metchnikowin (Mtk) in vivo, thereby suppressing the Toll signaling pathway.
Secondly, our results demonstrate that lncRNA-CR11538 can interact with transcription factors
Dif/Dorsal in the nucleus based on both subcellular localization and RIP analyses. Thirdly, our
findings reveal that lncRNA-CR11538 can decoy Dif/Dorsal away from the promoters of Drs and
Mtk to repress their transcriptions by ChIP-qPCR and dual luciferase report experiments. Fourthly,
the dynamic expression changes of Drs, Dif, Dorsal and lncRNA-CR11538 in wild-type flies (w1118) at
different time points after M. luteus stimulation disclose that lncRNA-CR11538 can help Drosophila
restore immune homeostasis in the later period of immune response. Overall, our study reveals
a novel mechanism by which lncRNA-CR11538 serves as a Dif/Dorsal decoy to downregulate
antimicrobial peptide expressions for restoring Drosophila Toll immunity homeostasis, and provides a
new insight into further studying the complex regulatory mechanism of animal innate immunity.

Keywords: lncRNA-CR11538; Drosophila melanogaster; NF-κB transcription factor Dif/Dorsal; antimi-
crobial peptides; innate immunity; toll pathway

1. Introduction

The innate immune system can effectively protect animals from various bacteria, fungi
and other pathogens [1–3]. The innate immunity signaling pathways, such as the Toll signaling
pathway, are evolutionarily conserved from fruit flies (Drosophila melanogaster) to humans and
Drosophila has emerged as a powerful model organism for studying bacterial infections [4,5].
The Toll signaling pathway goes through a series of signaling cascades to induce NF-κB
transcription factor Dif/Dorsal into the nucleus to activate the expressions of antimicrobial
peptides (AMPs) in response to Gram-positive bacteria or fungal invasion in Drosophila [5,6].
At present, studies have demonstrated that certain specific proteins, acting as positive or
negative modulators, can prevent excessive or insufficient immune responses of Drosophila
Toll pathway [7–18]. Additionally, although many non-coding RNAs, such as miRNAs, can
negatively regulate innate immune response of Toll signaling pathway [19–24], little is known
about the regulatory role of long non-coding RNAs (lncRNAs) in the Drosophila Toll signaling
pathway, and further study is needed.
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LncRNAs are a class of non-coding RNA with transcripts > 200 nucleotides and their
regulatory mechanisms are complex and diverse [25,26]. LncRNAs can act as signals,
decoys, guides and scaffolds to control gene expression at the epigenetic, transcriptional
and post-transcriptional levels [25,27]. Especially, the nucleus-localized lncRNA can par-
ticipate in regulating the binding of transcription factors to gene promoter regions at the
transcription level or modulating epigenetic factors, which has been well studied in mam-
mals [28]. For example, lncRNA-NRON inhibits the nuclear transport of dephosphorylated
transcription factor nuclear factor activated T cells (NFAT) by interacting with importin-β
superfamily members [29]. LncRNA-CCND1 can repress CCND1 transcription by recruiting
TLS to the promoter of CCND1 [30].

LncRNAs play critical roles in Drosophila embryo development [31–36], bristle forma-
tion [37,38], gonadal cell production [39,40], and neuromuscular junctions [41,42]. Several
lncRNAs have been discovered to promote Drosophila Toll immune response. For example,
lncRNA-IBIN was reported to enhance Toll pathway signaling, but was later discovered
to be a putative peptide-encoding gene [43]. VINR has been reported to participate in the
antiviral immunity of Drosophila and can regulate the Toll pathway [44]. Our previous work
demonstrates that lncRNA-CR46018 can promote Drosophila Toll pathway signaling [45].
However, whether and how lncRNA negatively regulate Drosophila Toll pathway remain
unclear up to now.

In this study, we detected the role of the differentially expressed lncRNA-CR11538 in
Drosophila immune responses after M. luteus infection based on our previous work [46]. We
constructed the CR11538-overexpressing flies and detected the expression levels of AMPs
Drs and Mtk at 12 h after M. luteus infection by transcriptome sequencing as well as RT-
qPCR. The subcellular localization assay and RIP experiments demonstrated that lncRNA-
CR11538 could interact with transcription factor Dif/Dorsal of the Drosophila Toll pathway.
Both ChIP-qPCR and dual luciferase reporter assays demonstrated that lncRNA-CR11538
can act as a decoy to sequester binding of Dif/Dorsal to the promoters of Drs and Mtk and
inhibit the expressions of Drs and Mtk. Finally, the dynamic expression changes of Drs,
Dif, Dorsal, lncRNA-CR11538 in wild-type fruit flies after M. luteus infection indicated that
the upregulated lncRNA-CR11538 can help fruit flies restore immune homeostasis in the
later of immune response. Taken together, we discovered a novel lncRNA-CR11538 that
can negatively regulate Drosophila Toll pathway via sequestering Dif/Dorsal away from
the promoters of AMPs to suppress their transcriptions.

2. Results
2.1. The Overexpression of lncRNA-CR11538 Reduces AMP Productions of Toll Pathway

In this study, we investigated the most significantly upregulated lncRNA-CR11538
demonstrated by our previous work (Figure 1A) [46], and it was predicted to have no open
reading frame by multiple bioinformatics tools. To explore whether lncRNA-CR11538 can
participate in the regulation of Drosophila immunity responses, we constructed the CR11538-
overexpressing flies using the pUAST-attB plasmid method, and confirmed that lncRNA-
CR11538 was successfully constructed to the desired position in Drosophila genome (Figure 1B).
To overexpress Drosophila lncRNA-CR11538 in a specific period of time, these overexpress-
ing lncRNA-CR11538 transgenic flies were transiently driven by a temperature sensitive
Tub-Gal80ts; Tub-Gal4 flies were especially influenced; the expression level of lncRNA-CR11538
was about 400 times higher than the control (Figure 1C). Additionally, the total length of
lncRNA-CR11538 is 2386 bp, and its secondary structure was predicted by applying the mini-
mum free energy and thermodynamic ensemble method, respectively [47,48]. As shown in
Figure 1D,E, the secondary structure of lncRNA-CR11538 is very complex.
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Figure 1. LncRNA-CR11538 is highly expressed after M. luteus stimulation. (A) Volcano map showing these differentially
expressed lncRNAs in RNA-seq between PBS-treated and M. luteus-infected w1118 flies. (B) PCR was performed using a
forward primer for pUAST-attB and a reverse primer for lncRNA-CR11538. (C) The lncRNA-CR11538 expression level was
detected in the CR11538-overexpressing flies, normalized to their control levels. Minimum free energy method (D) and
thermodynamic ensemble method (E) were used to predict its secondary structure on RNAfold Webserver. For all tests,
p value < 0.05 was considered as statistically significant. *** p < 0.001 vs. the control groups.

We further performed transcriptome sequencing on the CR11538-overexpressing flies
and the control flies at 12 h after infection with M. luteus. The transcriptome analysis
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results indicated that there are a total of 647 differentially expressed genes (DEGs) (|log2
(fold change)| > 1 and adjusted p value < 0.05) including 492 upregulated and 155 down-
regulated genes (Figure 2A). Gene ontology (GO) annotation and Kyoto encyclopedia of
genes and genomes (KEGG) enrichment analysis revealed that these DEGs are significantly
enriched in biological process annotation, the response to bacterial and other biological
stimuli (Figure 2B), including the Toll signaling pathway (Figure 2C). Therefore, to detect
the expression levels of genes of the Toll and Imd pathways in the CR11538-overexpressing
flies, we performed gene set enrichment analysis (GSEA) analysis on the RNA-seq data and
found that the overall gene expressions of the Toll and Imd pathways are downregulated
with a normalized enrichment score of −1.31 and p-value = 0.000 (Figure 2D). These results
suggest that lncRNA-CR11538 could be involved in innate immune response to the invasion
of M. luteus. Remarkably, these results were from the stimulation with M. luteus, so we
mainly focused on the Toll pathway instead of the Imd pathway.

To verify the effect of lncRNA-CR11538 on Toll signaling pathway in vivo, we exam-
ined the expression levels of Drosomycin (Drs) and Metchnikowin (Mtk), two signature AMPs
of Toll pathway, at different time points in the CR11538-overexpressing flies after infection
with M. luteus. Our results demonstrate that the expressions of Drs and Mtk are significantly
downregulated in the CR11538-overexpressing flies compared to the control group at both
6 h and 12 h post infection, but no significant differences were seen at 24 h post infection
(Figure 3A,B). Of note, to avoid the nonspecific or false positive results, we also constructed
the dsRNA-mediated lncRNA-CR11538 knockdown fly in w1118 flies to test the expression
levels of the antimicrobial peptides. Our findings demonstrated that the expressions of
Drs and Mtk in the dsRNA-mediated lncRNA-CR11538 knockdown flies are significantly
increased compared with the controls at 6 h after infection with M. luteus (Figure S1C–E).
Additionally, the survival rate of the CR11538-overexpressing flies after infection with
Gram-positive lethal bacteria, Enterococcus faecalis (E. faecalis), is significantly lower than
that of the control group (Figure 3C), but the survival rate of the files treated with PBS was
not significantly affected (Figure 3C). Overall, our results implied that lncRNA-CR11538
can inhibit the transcriptions of AMPs to negatively regulate Drosophila Toll signaling.

2.2. The Interaction of lncRNA-CR11538 with Dif/Dorsal

To explore how lncRNA-CR11538 negatively regulates the Toll pathway, we need to
know the distribution of lncRNA-CR11538 because lncRNA has different functions in the nu-
cleus and the cytoplasm. The subcellular location showed that lncRNA-CR11538 is mainly
distributed in the nucleus by a nucleocytoplasmic separation experiment (Figure 4A,B). It
is well-known that AMPs of the Toll signaling pathway are mainly transcribed by transcrip-
tion factors Dif/Dorsal in the nucleus. This seemed to imply that lncRNA-CR11538 could
act as a Dif/Dorsal decoy to exert transcriptional repression effect on AMPs. Interestingly,
lncRNA-CR11538 and Dif/Dorsal were predicted to interact by the lncPro and RPISeq
websites by taking the interaction between roX2 and msl as a positive control (Figure 4C,D).
More importantly, we performed the RIP experiment and confirmed the interaction between
lncRNA-CR11538 and Dif/Dorsal using V5 antibody to immunoprecipitate Dorsal-V5 and
Dif-V5 expressed in S2 cells (Figure 4E,F).

2.3. LncRNA-CR11538 Prevents Binding of Dif/Dorsal to AMPs Promoters

To reveal whether lncRNA-CR11538 can serve as a decoy to prevent the binding of
Dif/Dorsal to the promoters of AMPs, we co-expressed Dif/Dorsal-V5 and lncRNA-CR11538
into S2 cells. The ChIP experiments showed that the highly expressed lncRNA-CR11538
represses the binding of Dif/Dorsal-V5 to the promoters of Drs and Mtk (Figure 5A,C), whilst
the over-expression of lncRNA-CR11538 also leads to a significant decrease in the promoter
activity of AMPs as detected by the dual luciferase reporter assay (Figure 5B,D). These results
indicate that lncRNA-CR11538 could function as a decoy to sequester binding of Dif/Dorsal
to the promoters of AMPs, thereby inhibiting the promoter activity of AMPs to negatively
regulate the Toll pathway in Drosophila.
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Figure 2. Enrichment analysis of DEGs in the CR11538-overexpressing flies after stimulation with M. luteus. (A) Volcano
map showing DEGs among Gal80ts; Tub> CR11538 and Gal80ts; Tub-Gal4/P{CaryP}attP40 after M. luteus challenge. Red:
upregulated genes (>2-fold difference in relative expression and adjusted p < 0.05); blue: downregulated genes (<−2-fold
difference in relative expression and adjusted p < 0.05). (B) Biological process enrichment analysis results were obtained
using all DEGs. (C) Network diagram showing pathways and corresponding genes in KEGG pathway enriched with all
DEGs. “size” represents the number of differentially expressed genes (DEGs) contained in each pathway. (D) GSEA analysis
on the RNA-seq data between the CR11538-overexpressing flies and the control. The GSEA diagram is divided into three
parts. The first part is the line graph of gene Enrichment Score. The second part uses lines to mark the genes under the gene
set. The third part is the rank value distribution map of all genes.
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Figure 3. lncRNA-CR11538 inhibits Toll signaling pathway in vivo. Drs (A) and Mtk (B) expression levels in the CR11538-
overexpressing flies at different time points (0 h, 6 h, 12 h, 24 h) after M. luteus infection. (C) Changes in the survival rate
of the CR11538-overexpressing flies and the control flies treated with PBS or E. faecalis. Measurements made after 36 h.
Gal80ts; Tub-Gal4/P{CaryP}attP40-PBS (n = 115), Gal80ts; Tub > CR11538-PBS (n = 118), Gal80ts; Tub-Gal4/P{CaryP}attP40-E.
faecalis (n = 108), Gal80ts; Tub > CR11538-E. faecalis (n = 109). For all tests, p value < 0.05 was considered as statistically significant.
** p < 0.01, *** p < 0.001 and ns, no significance vs. the control groups.

2.4. LncRNA-CR11538 Facilitates Homeostasis Recovery in the Wild-Type Flies after Stimulation

To reveal the physiological role of lncRNA-CR11538 in Drosophila, we examined the
dynamical expression changes of Drs, Dif, Dorsal, and lncRNA-CR11538 in wild-type flies
(w1118) at 0 h, 3 h, 6 h, 12 h, 24 h, 48 h after M. luteus stimulation. Our results demonstrate
the expression level of Drs is significantly upregulated at 3 h after M. luteus stimulation
compared with the control flies and the peak occurs at 6–12 h after M. luteus stimulation,
then gradually declined and almost returned to the original level at 24 and 48 h after M.
luteus stimulation (Figure 6A). As expected, the NF-κB transcription factors Dif and Dorsal
are significantly activated in the early stage of stimulation with M. luteus (Dif at 6–12 h,
Dorsal at 3–6 h) and have no significant difference at other time points compared with the
control (Figure 6B,C). Remarkably, the lncRNA-CR11538 is highly expressed in the later
stage of stimulation with M. luteus (24 h), but no significant change occurs at other time
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points (Figure 6D). Taking all of the above results together, it seems reasonable that in the
early stage of stimulation with M. luteus, the Drosophila NF-κB transcription factors Dif
and Dorsal are upregulated and then promote the transcription of AMPs via binging to
their promoters. Nonetheless, to prevent excessive immune response in the later stage of
stimulation with M. luteus, lncRNA-CR11538 is increased and acts as a Dif/Dorsal decoy to
lead them away from the AMP promoters and restore immune homeostasis.

Figure 4. LncRNA-CR11538 interacts with Dif/Dorsal. (A) U6 and GAPDH are marker genes used to confirm partitioning
between nucleus and cytoplasm. (B) LncRNA-CR11538 expression in nucleus and cytoplasm detected by RT-qPCR. Predicted
scores for interaction potential of lncRNA-CR11538 with Dif or Dorsal via IncPro (C) and RPISeq (D) databases. LncRNA-
CR11538 fold enrichment measured by RIP-qPCR using anti-V5 antibody to immunoprecipitate overexpressed Dorsal-V5
(E) and Dif-V5 (F) in S2 cells. For all tests, p value < 0.05 was considered as statistically significant. *** p < 0.001 vs. the
control groups.
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Figure 5. LncRNA-CR11538 prevents Dif/Dorsal from binding to AMP promoters and inhibits their transcriptions. ChIP-
qPCR was performed on lncRNA-CR11538 overexpressing S2 cells with Dif-V5 (A) and Dorsal-V5 (C) overexpression
normalized to control expression levels. The dual luciferase reporter assay detected transcriptional activity of Dif (B) and
Dorsal (D) with or without lncRNA-CR11538 overexpressing on Drs and Mtk promoters. For all tests, p value < 0.05 was
considered as statistically significant. * p < 0.05; ** p < 0.01 and *** p < 0.001 vs. the control groups.
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Figure 6. LncRNA-CR11538 facilitates immune homeostasis recovery. The dynamic expression levels of Drs (A), Dif (B),
Dorsal (C), lncRNA-CR11538 (D) in the wild-type Drosophila infected with M. luteus were detected by qRT-PCR at 0 h, 3 h,
6 h, 12 h, 24 h and 48 h after stimulation. For all tests, p value < 0.05 was considered as statistically significant. * p < 0.05;
** p < 0.01 and *** p < 0.001 vs. the control groups.

3. Discussion

Insects and mammals share conserved innate immunity pathways, such as the Toll signal-
ing pathway in response to the invasion of Gram-positive bacteria and fungi [5,49]. Therefore,
studying further Drosophila innate immune regulators can deepen our understanding of
mammalian immune regulation. Although many positive or negative protein modulators
have been discovered to participate in Toll pathway immune responses, to date only a few
lncRNAs (e.g., CR46018 and VINR) have been found to positively regulate the Drosophila
Toll pathway. It remains unclear how lncRNAs negatively regulate the Drosophila innate
immune system to eliminate excessive immune responses [43–45]. In our study, we were
delighted to find that lncRNA-CR11538 can decoy Dif/Dorsal away from AMP promoters
and inhibit their transcriptions, thereby negatively regulating Toll pathway signaling to
prevent excessive immune activation in Drosophila with M. luteus infection.

Transcriptome sequencing is a very important tool for identifying functional lncRNAs.
At present, most studies have used the transcriptome sequencing to identify new regulatory
lncRNAs and reveal their diversified functions [50,51]. In our work, we used transcriptome
sequencing to demonstrate that lncRNA-CR11538 can inhibit the Drosophila Toll pathway
(Figure 2), and can be involved in regulating the Toll pathway, the longevity pathway and
other metabolic detoxification pathways by KEGG enrichment analysis and GSEA analysis
(Figure 2C,D). In addition, the results from the transcriptome sequencing indicate that
AMPs of the Imd pathway are also differentially expressed in CR11538-overexpressing flies
after M. luteus stimulation. Herein, considering the results are from M. luteus stimulation,
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it is reasonable to argue that the question of whether lncRNA-CR11538 can regulate Imd
pathway needs further study.

The functions of lncRNAs are diverse [27]. lncRNAs have different roles in the
nucleus and outside the nucleus. In the nucleus, lncRNAs can act as signals, decoys,
guides and scaffolds to be involved in the regulation of gene transcription and epigenetics,
thereby performing diverse functions. [25,28]. Interestingly, studies have indicated that
lncRNAs can interact with NF-κB transcriptional factor in mammals [52,53]. These NF-κB
transcriptional factors are evolutionarily conserved between Drosophila and mammals,
which seems to imply that lncRNA-CR11538 can also interact with the NF-κB Dif/Dorsal.
As expected, our results demonstrate that lncRNA-CR11538 can act as a decoy to trap
Dif/Dorsal away from the promoters of Drs and Mtk in the nucleus (Figure 5), thereby
inhibiting the production of AMPs to further repress the Drosophila Toll pathway.

Taken together, we found a new lncRNA-CR11538 that negatively regulates the Toll
signaling pathway and contributes to immune homeostasis recovery in Drosophila. In
brief, lncRNA-CR11538 is highly expressed in Drosophila in the later stage of stimulation
with M. luteus (24 h), and acts as a Dif/Dorsal decoy in the nucleus to lead Dif/Dorsal
away from the promoters of AMPs, thereby inhibiting the expression of AMPs to facilitate
immune homeostasis recovery in the later stage of M. luteus stimulation (Figure 7). All in
all, our study deepened our understanding on the roles played by lncRNA in regulating the
Drosophila Toll pathway, and provided new insights into the study of the innate immune
system of insects and mammals.

Figure 7. Schematic illustration of the mechanism by which lncRNA-CR11538 facilitates immune homeostasis recovery.
Left diagram: In the early stage of immune response, Gram-positive bacteria activate Toll signaling pathway and promote
Dif/Dorsal entering the nucleus to enhance AMP transcriptions, thereby eliminating pathogens. Right diagram: In the late
stage of immune response, redundant AMPs increase the expression of lncRNA-CR11538, which acts as a Dif/Dorsal decoy
to sequester them away from AMP promoters and inhibits the transcriptions of AMPs to restore immune homeostasis.

4. Materials and Methods
4.1. Fly breeding, Strain and Model Construction

Drosophila were grown in a medium composed of corn meal/agar/yeast, the culture
temperature was maintained at 24 ± 1 ◦C, and the light/dark cycle was 12 h. The fly
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stocks w1118 (#3605), Tub-Gal80ts; TM2/TM6B (#7019), Tub-Gal4/TM3, Sb1, Ser1 (#5138) were
obtained from the Bloomington Drosophila Stock Center (Bloomington, IN, USA). To
generate CR11538-overexpressing flies, the full-length lncRNA-CR11538 was constructed
into the pUAST-attB vector using primers listed in Supplementary Table S1. The con-
structed plasmid was injected into embryos of attp2# (25C6): y [1] M{vas-int.Dm}ZH-2A
w[*]; P{CaryP}attP40. In order to minimize the effect of lncRNA-CR11538 on the develop-
ment of Drosophila, the transgenic CR11538 flies were crossed with temperature sensitive
Tub-Gal80ts; Tub-Gal4 flies and cultured at 18 ◦C, and transiently overexpressed lncRNA-
CR11538 once transferred to an incubator at 29 ◦C for 24 h for the following experiments.

4.2. Sepsis and Survival Experiments

Adult male flies were collected for 3 to 4 days. The control flies and CR11538-
overexpressing flies were infected with M. luteus using a Nanoject instrument (Nano-
liter 2010; WPI, Sarasota, FL, USA). A glass capillary filled with M. luteus suspension
was inserted into the thorax of each fly and the insects were collected at the required
detection times for the subsequent experiments. Postinfection survival rates indicate im-
mune response deficiencies [54]. The 36 h survival rate was determined after infection
of ≥ 100 flies/group with Enterococcus faecalis (E. faecalis) concentrate.

4.3. Genomic DNA Extraction and lncRNA Identification in Drosophila

Ten anesthetized flies were placed in a 1.5 mL centrifuge tube containing 100 µL
digestion buffer (100 mM NaCl, 10 mM Tris-Cl [pH 8.0], 25 mM EDTA [pH 8.0], and
0.5% (w/v) SDS). The flies were pulverized and digestion buffer was added to make up the
volume to 500 µL. The suspension was incubated in 65 ◦C water bath for 4 h and shaken
once every 30 min to promote sample digestion. The centrifuge tube was removed and
400 µL phenol and 400 µL chloroform:isoamyl alcohol (24:1 v/v) were added to it. The tube
was sealed, inverted, and vigorously mixed. The suspension was allowed to stand 5 min
and centrifuged at 12,000× g for 10 min. The supernatant was decanted into an empty dry
centrifuge tube. Then, 400 µL isopropanol was added and the suspension was gently mixed
for 3 min and allowed to stand for 10 min. The samples were centrifuged at 14,000× g
for 10 min and the white flakes adhered to the bottom of the tube. The precipitate was
washed with 500 µL of 70% (v/v) ethanol, centrifuged. Discarded the ethanol, air-dried the
samples. The precipitate was dissolved in 200 µL TE buffer. PCR was then performed using
the forward primer of pUAST-attB and the reverse primer of lncRNA-CR11538 (listed in
Supplementary Table S1) to localize lncRNA-CR11538 insertion into the Drosophila genome.

4.4. RNA Extraction and RT-qPCR

Total RNA was isolated from treated adult flies with RNA isolator total RNA extraction
reagent (Vazyme Biotech Co. Ltd., Nanjing, Jiangsu, China). For RT-PCR, cDNA was
prepared with a first-strand cDNA synthesis kit (Vazyme Biotech Co. Ltd., Nanjing,
Jiangsu, China). The qPCR was performed in an ABI StepOne Plus real-time PCR system
(Applied Biosystems, Foster City, CA, USA) with AceQ SYBR Green Master Mix (Vazyme
Biotech Co. Ltd., Nanjing, Jiangsu, China). The mRNA expression levels were normalized
to the rp49 control. All experiments were conducted in triplicate. The relative 2−44Ct

method was used for data analysis [55]. All primers used in this analysis are listed in
Supplementary Table S2. All qPCR data are reported as means ± SEM.

4.5. RNA-Sequencing and Enrichment Analyses

RNA integrity was assessed with the RNA Nano 6000 assay kit for the Bioanalyzer
2100 system (Agilent Technologies, Santa Clara, CA, USA). PCR was performed with Phu-
sion high-fidelity DNA polymerase, universal PCR primers, and index (X) primer. The PCR
products were purified in the AMPure XP system (Beckman Coulter, Beverly, MA, USA)
and library quality was assessed in the Agilent Bioanalyzer 2100 system (Agilent Tech-
nologies, Santa Clara, CA, USA). Index-coded samples were clustered on a cBot cluster
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generation system using a TruSeq PE cluster kit v3-cBot-HS (Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions. The reference genome index was built and
paired-end clean reads were aligned to the reference genome with Hisat2 v2.0.5. Feature-
Counts v. 1.5.0-p3 enumerated the reads mapped to each gene. Differential expression
analysis was performed in the DESeq2 package of R v. 1.20.0 (R Core Team, Vienna, Aus-
tria). Genes with adjusted p < 0.05 and relative difference in expression level > 2 fold or
<−2-fold were deemed differentially expressed. Gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the
DEGs using the clusterProfiler package in R 4.0.3 (R Core Team, Vienna, Austria). Gene
set enrichment analysis (GSEA) was used to determine whether a predefined gene set
significantly differs between two biological states [56]. The local version of the GSEA tool
(http://www.broadinstitute.org/gsea/index.jsp (18 August 2021)) was used for the GSEA
and the KEGG datasets were used independently.

4.6. Subcellular Fractionation

RNA isolation was performed in accordance with the protocols of Rockland Immuno-
chemicals [57]. In brief, 1 × 107 S2 cells were resuspended in five volumes lysis buffer
(10 mM HEPES, 60 mM KCl, 1 mM EDTA, 0.075% (v/v) NP-40, 1 mM DTT, and 1 mM
PMSF adjusted to pH 7.6). The samples were then centrifuged at 1000 rpm for 3 min to
separate the nuclear and cytoplasmic fractions. The supernatants were transferred to fresh
tubes and the mixtures were aspirated with filter cartridges to isolate cytoplasmic RNA.
The pellets were washed with ice-cold cell fractionation buffer and the nuclear RNA was
isolated with TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The RNA was then subjected
to RT-qPCR analysis. The expression levels of the target genes in the individual fractions
were normalized to their input expression levels.

4.7. Cell culture and Transfection

Drosophila S2 cells were maintained at 28 ◦C in SFX insect medium (HyClone Labora-
tories, Logan, UT, USA) supplemented with 10% (v/v) fetal bovine serum (FBS), 100 U/mL
penicillin, and 100 µg/mL streptomycin (Invitrogen, Carlsbad, CA, USA). Full-length
2386bp lncRNA-CR11538 was obtained by PCR with primers and integrated into the pAc5.1
plasmid. S2 cells were transiently transfected with 500 µL transfection complex in 6
mm plates (Corning, Corning, NY, USA) or with 50 µL transfection complex in 24-well
plates (Corning, Corning, NY, USA) using X-treme gene HP transfection reagent (Roche
Diagnostics, Basel, Switzerland) according to the manufacturer’s instructions.

4.8. Prediction of Interaction between RNA and Protein

The RPISeq RNA/protein interaction prediction tool (http://pridb.gdcb.iastate.edu/
RPISeq/ (18 August 2021)) [58] and lncPro (http://bioinfo.bjmu.edu.cn/lncpro/
(18 August 2021)) were used to predict the interaction potential between lncRNA-CR11538
and Dif/Dorsal. Known interaction between roX2 and msl was the positive control.

4.9. RNA-Immunoprecipitation (RIP)

In total, 3 × 107 transfected cells were dissolved in RIPA buffer (50 mM Tris-HCl
[pH 7.4], 150 mM NaCl, 10 mM EDTA, 1% (w/v) NP-40, and 1 mM PMSF), RNase in-
hibitor (Thermo Fisher Scientific, Waltham, MA, USA) and protease inhibitor cocktail
(Roche Diagnostics, Basel, Switzerland) on ice for 30 min. After centrifugation at 13,000× g,
4 ◦C for 15 min, the supernatants were pre-cleared with protein A agarose (Invitrogen,
Carlsbad, CA, USA) at 4 ◦C for 1 h. Anti-V5-labeled or control IgG antibodies (ABclonal
Biotechnology Co. Ltd., Wuhan, Hubei, China) were added to the pre-cleared supernatants
and the samples were incubated at 4 ◦C for 4 h. Protein A agarose was then added and
allowed to bind for 1~3 h. The conjugated beads were washed five times with RIPA buffer
for 5 min each time. The remaining complexes were eluted with elution buffer (100 mM
Tris [pH 8.0], 10 mM EDTA, and 1% (w/v) SDS). The samples were treated with protease

http://www.broadinstitute.org/gsea/index.jsp
http://pridb.gdcb.iastate.edu/RPISeq/
http://pridb.gdcb.iastate.edu/RPISeq/
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K and the RNA was extracted with phenol/chloroform. The purified RNA was analyzed
by RT-qPCR.

4.10. Transcription Factor (TF) Binding Site Prediction

The AMP promoter sequences were obtained from flybase (http://flybase.org/
(18 August 2021)). The Dif and Dorsal motifs were obtained from the literature [59].
All promoter sequences and motifs were submitted to the Multiple EM for Motif Elicitation
database (MEME; https://meme-suite.org/meme/tools/meme (18 August 2021)).

4.11. Chromatin Immunoprecipitation (ChIP)

ChIP was performed as previously described [60]. Transfected S2 cells were cross-
linked with 1% (v/v) formaldehyde for 10 min. They were then lysed with cell and nuclear
lysis buffers. Clarified lysates were then sonicated. The chromatin was sheared into
200–800-bp fragments and used in ChIP incubation with Dynabeads protein G (Thermo
Fisher Scientific, Waltham, MA, USA) coated either with anti-V5 antibody (ABclonal
Biotechnology Co. Ltd., Wuhan, Hubei, China) or anti-mouse IgG antibody on a rotating
platform at 4 ◦C overnight. After repeated washings on a magnetic rack (Thermo Fisher
Scientific, Waltham, MA, USA), the V5-bound genomic DNA was eluted from the Dyn-
abeads and the cross-links were reversed at 65 ◦C overnight. The DNA fragments were
purified with an AxyPrep PCR cleanup kit (Axygen Scientific, Union City, CA, USA). The
qPCR analysis was performed using DNA from the Input and ChIP experiments and the
primers listed in Supplementary Table S3. At least three independent experiments were
conducted on the AMPs promoters.

4.12. Dual Luciferase Reporter Assay

S2 cells were transfected with mixed transfection complex containing pIEx4-V5-Dif or
pIEx4-V5-Dorsal, pGL3-Drs-promoter or pGL3-Mtk-promoter, pAc-empty or pAc-CR11538,
and Renilla luciferase plasmid (pRL). Promega pRL (Promega, Madison, WI, USA) was
used to normalize transfection efficiency. Luciferase activity was measured in a dual-
luciferase reporter assay system (Promega, Madison, WI, USA) according to the manufac-
turer’s instructions.

4.13. Data Processing and Statistical Analysis

Experimental data were collected from three independent biological replicates and
were presented as means ± SEM. Significant differences between values under different
experimental conditions were subjected to two-tailed Student’s t-tests. Statistical fly sur-
vival analysis was performed using log-rank (Mantel–Cox) tests. Graphs were plotted with
GraphPad Prism v. 8.3 (GraphPad Software, La Jolla, CA, USA) and RStudio (R Core Team,
Vienna, Austria). p < 0.05 was considered statistically significant. * p < 0.05; ** p < 0.01;
*** p < 0.001; ns, not significantly different from the control.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms221810117/s1. Figure S1: The expression levels of IM1 (A), IM2 (B), in control flies
and the CR11538-overexpressing flies were measured at 6h after M. luteus infection. The expression
levels of lncRNA-CR11538 (C), Drs(D), Mtk(E) in control flies and the dsRNA-mediated lncRNA-
CR11538 knockdown flies were measured at 6h after M. luteus infection. Figure S2: The dynamic
expression levels of lncRNA-CR46018 (A), IBIN(B), VINR (C) in the wild-type Drosophila infected
with M. luteus were detected by qRT-PCR at 0 h, 3 h, 6 h, 12 h, 24 h and 48 h after stimulation. Table
S1: Primers used for transgene vector construction. Table S2: Primers used for quantitative RT-PCR.
Table S3: Primers used for ChIP-qPCR. Table S4: The differentially expressed genes (DEGs) in the
transcriptome analysis results of CR11538-overexpressing flies and the control flies at 12 h after
infection with M. luteus.
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